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Samples in the Initial 
Feature Space

Samples in the 
GHOST-Induced Feature 

Space

Graphical model of the samples

Conditional Random 
Field on the Samples

f=

𝑓1
𝑓2
⋮
𝑓𝑚

Meta-Feature 
Extraction

𝑤𝑡 =

𝑤1
𝑡

𝑤2
𝑡

⋮
𝑤𝑚
𝑡

Learned 
Weightsh

l

a

o

n

e
k

m

g

c

j

d

i

f
b

Energy Minimization
Topological 
properties

Feature 
Similarity

Samples
Clustering

min
𝑥

𝑥𝑎,𝑏𝑑
𝑡 𝑎, 𝑏 = +⋯

𝑥𝑎,𝑏
𝑥𝑎,𝑐

Step: t
Distance: 𝑑𝑡 𝑎, 𝑏 = 𝑤𝑡𝑓𝑎,𝑏

Third-Order Clique

Weights update

Clusters Update

Dual Decomposition Resolution

Fourth-Order Clique



Highlights

GHOST: Graph-based Higher-Order Similarity Transformation for

Classification

Enzo Battistella, Maria Vakalopoulou, Nikos Paragios, Éric Deutsch

• Novel higher-order metric learning algorithm with Conditional Random

Fields.

• Leverage graph and hyper-graph structures.

• Semi-supervised feature selection and weighting.

• Dedicated classification principle.
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Abstract

Exploring and identifying a good feature representation to describe high-

dimensional datasets is a challenge of prime importance. However, plenty

of feature selection techniques and distance metrics exist, which entails an

intricacy for identifying the one best suited to the task. This paper provides

an algorithm to design high-order distance metrics over a sparse selection of

features dedicated to classification. Our approach is based on Conditional

Random Field (CRF) energy minimization and Dual Decomposition, which

allow efficiency and great flexibility in the considered features. The opti-

mization technique ensures the tractability of high-dimensionality problems

using hundreds of features and samples. Our approach is evaluated on syn-

thetic data as well as on Covid-19 patient stratification. Comparisons with

state-of-the-art baselines and our proposed method on different classification

results prove the learned metric’s relevance.
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1. Introduction

In machine learning, the choice of suitable feature spaces is of prime

importance. Not only the dimensionality curse might affect the data, but

some variables might be noisy or non-relevant. Many techniques have been

investigated to select the most relevant features using some statistical met-

rics as correlation [1] or the importance weights an algorithm, as elastic-net,

grants to the variables [2]. Also, many approaches, such as clustering algo-

rithms, require a relevant metric to define a similarity notion between the

samples. However, depending on the algorithm’s mathematical properties

and the metric, very different results are obtained [3]. To tackle the difficult

task of designing a dedicated similarity function, some studies investigated

semi-supervised clustering or distance learning [4, 5, 6]. Such approaches

present the significant advantage of selecting the most relevant dimensions

while warping the feature space, favoring the spatial proximity of samples

presenting the same labels. Moreover, distance learning is semi-supervised.

It aims at learning a good representation space, which can be learned from

any clustering informative of the ground truth without the need for the ac-

tual labels. Despite the tremendous amount of work carried out on this topic,

another aspect has been poorly considered, leveraging higher-order patterns

in the data.

Graph structures are a standard model for data representation and allow

great expressiveness. They have been adopted in various fields, from detect-

ing network attacks [7] to modeling opinion diffusion processes [8], graph

approaches’ versatility is remarkable. They have already significantly spread

to biological and medical data as they allow us to express better the intri-

2



cate interactions at stake [9]. Some of the prominent investigation areas are

genomics [10] and spatial proteomics [11].

Moreover, many applications require leveraging the higher-order struc-

tures of a hypergraph [12, 13], a generalization of graphs where hyper-

edges can connect any number of nodes. However, higher-order information

is generally computationally prohibitive to use in machine-learning-based

methods[14]. Therefore, for tractability’s sake, most techniques resort to

surrogates such as casting a nonlinear hypergraph into a linear graph approx-

imation [15], relying on small predefined patterns [16] to define a homogenous

hypergraph where the hyperedges all have a fixed size, or summarising the

graph structure by a feature such as clique order, centrality, or connectiv-

ity [17].

This study proposes a new approach to bridge the gap between feature

selection, distance learning, and leveraging higher-order patterns. In par-

ticular, we propose a distance learning framework that can leverage com-

plex higher-order information between the features. We define the notion of

higher-order distance to characterize the similarity between groups of sam-

ples. To characterize the expressiveness of the learned feature space and com-

pare it to other methods, we resort to classification and define a K-Nearest

Neighbors classifier-based approach to leverage this higher-order metric on

the samples. We report results on synthetic and medical datasets against

state-of-the-art techniques, proving the superiority of our method.
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Figure 1: Proposed GHOST approach. A general overview of the different steps of

our process. Our proposed GHOST approach aims at identifying the most relevant meta-

features for a classification task. Meta-features might include any distance or higher-order

metric between any number of the original features of the data. The approach relies on

Conditional Random Field energy minimization for distance learning. It combines cluster

label inference and optimization of meta-feature weights to induce a new metric space

where samples with the same label are close.

2. Related Work

The main difficulty of clustering methods is to select the right data nor-

malization, similarity notion and features to use [18]. Two main trends can

be observed to tackle those issues, both leveraging contextual information.

First, the constraint-based approaches consider partial annotations guiding

the clustering process. Following this paradigm, the methods from [19] or [20]

account for information on samples that must or cannot be clustered together

to influence the clustering while being agnostic of the actual clustering. These
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approaches might be further generalized to constraints on conjunctions and

disjunctions of instances [21]. Second, metric learning approaches aim to

learn a measure to discover specific properties. It offers the ability to iden-

tify structures similar to a given ground truth. This paradigm involves a

more complex annotation as it requires actual clusterings. However, once

the metric is learned, its strength dwells in its ability to be applied to other

datasets without the need for any additional label. Besides, many stud-

ies demonstrated the essential role of the distance measure considered for

clustering [5]. In this regard, in [22], the authors leverage a deep learning

architecture to define a space representation, allowing them to define a better

similarity notion between instances, while authors from [23] resort to a Sup-

port Vector Machine algorithm. In [4], constraints are defined to formulate

the metric-learning task as a convex optimization problem.

Our study is based on the work of [6], which presents the advantage of

allowing a general definition of distance, performing simultaneously feature

and metric selection as well as their weighting. Besides, it is designed for a

center-based clustering algorithm, of which K-Means is a popular example.

This formulation presents the asset of defining a relevant cluster represen-

tative whose good properties have been demonstrated for feature selection

in [24, 3]. This clustering paradigm is the critical point in our approach for

exploiting higher-order graph structures in a reasonable computational time

and space. This approach relies on the expression power of CRF.

Despite CRF’s excellent expressiveness and ability to capture higher-order

relations, the toll for fully leveraging this higher-order information might be

heavy on memory and time consumption. To cope with this issue, authors
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from [25, 26] proposed to exploit the binary nature of the CRF labels in our

settings to optimize the resolution. Finally, in [27], dual decomposition is

exploited to divide the initial energy to minimize in several easier-to-solve

sub-problems.

In this study, we adapt and extend the formulation of metric learning pre-

sented in [6]. The main contribution is to bring center-based clustering and

the notion of pairwise metrics to higher-order settings through the inclusion

of graph properties. In addition, we modified the error function originally

considered to better account for unbalanced classes. Finally, we propose an

approach to leverage graph structural information from our data.

3. Methodology

Without loss of generality, let us define a metric assessing the similarity

of a set of h objects as a hth-order metric. For instance, a usual distance is

referred to as a 2nd-order metric or pairwise metric. For the simple case of

pairwise metrics, we based our study on [6]. We extend this formulation by

introducing hth-order metrics for any h > 2. The case of 3rd-order metrics

will be more detailed for clarity’s sake. However, the same approach is ap-

plied to obtain the results for any order. The proposed GHOST approach is

represented in Figure 1.

3.1. Center-Based Clustering

As in [6], our approach is based on center-based clustering. Considering

a set of objects to cluster V , we define a set of binary variables {xp,q}p,q∈V
indicating whether p is assigned to the cluster of center q, xp,q = 1, or not,
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xp,q = 0. We consider a distance dp,q between objects p and q.

min
x

∑
p,q∈V

dp,qxp,q s.t.
∑
q∈V

xp,q = 1, ∀p

xp,q ≤ xq,q, xp,q ∈ {0, 1}, ∀p, q.
(1)

The above system minimizes, with respect to three constraints, the dis-

tance between a point and the center of the cluster it is assigned to. First,

each point has to belong to one and only one cluster. Second, if a point is

assigned to a cluster center, this center must be assigned to itself. Third,

assignment variables are binary. [6] casts the previous optimization problem

as an equivalent energy minimization task:

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,q

ϕp,q(xp,q, xq,q) +
∑
p

ϕp(xp) (2)

up,q being the second-order potentials of the CRF standing for the distance

to the cluster center and ϕp, ϕp,q the constraints. up,q can be defined as the

effective distance between p and its current cluster center, as it will be null

for any q different from the center. More precisely:

up,q(xp,q, d) = dp,qxp,q

ϕp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q), ϕp(xp) = δ(
∑
q

xp,q = 1)
(3)

with xp = {xp,q | q ∈ V } and δ(e) = 0 if e True and ∞ otherwise.

This study defines a generalization of this energy formulation for cluster-

ing. Here is an example in a third-order setting. In addition to the previous

notations, we consider a third-order distance dp,p′,q for any triplet of objects

to cluster p, p′, and q. Examples of such higher-order distances are given in
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section 3.10.

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,p′,q

up,p′,q(xp,qxp′,q, d) +
∑
p,q

ϕp,q(xp,q, dq,q) +
∑
p

ϕp(xp)

(4)

the new function up,p′,q being the third-order potentials of the CRF, every-

thing else remaining unchanged. More precisely:

up,p′,q(xp,qxp′,q, d) = dp,p′,qxp,qxp′,q (5)

3.2. Metric Learning Formulation

Our framework learns a distance between objects using a set ofK training

subjects {V k, Ck, yk} for each set k ∈ K, V k is the set of objects to be

clustered according to ground truth Ck and knowing input data yk. We are

also assuming that we can get from the input data a positive feature function

for each pair of objects p, q as fp,q(y
k) and for each triplet of objects p, p′, q as

fp,p′,q(y
k). The codomain of the feature’s functions will be called meta-feature

space as it is obtained from the task’s actual features and is GHOST’s input

space. We consider a meta-feature space of size d. One should notice that

even though there is a ground truth cluster for each set, the cluster centers

remain unknown. A feasible solution xk of Ck denoted as xk ∈ X (Ck), will

consist in a set of assignments such as for each ground truth cluster C ∈ Ck

all the objects p ∈ C are assigned to the same center q ∈ C. Besides, we are

looking for a distance over a set S of cardinal 2 ≤| S |≤ 3 expressed as:

dkS =

 dkp,q = wTfp,q(y
k) if S = {p, q}

dkp,p′,q = wTfp,p′,q(y
k) otherwise

(6)
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For conciseness sake’s, we will denote Ek(x, d) = E(x, dk) and uk(x, d) =

u(x, dk).

w being the weight vector we want to estimate. At the difference

of the formulation proposed in [6], we impose wi ≥ 0, ∀i ≤ d. This specificity

aims to enforce the positivity of the distance obtained. Also, as it has been

presented in [6], a projection of the weights onto R+ ensures better perfor-

mance in the second-order settings. We impose this constraint to improve

the higher-order distance learning resolution’s tractability, as highlighted in

the proofs (in Appendix).

Notice that GHOST is very robust and flexible as we use the same weight

vector w for both the second-order and the third-order distances, which

means that a component i of vectors fp,q(y
k) and fp,p′,q(y

k) have to relate

to the same property. The i-th component of fp,p′,q(y
k) can be a generaliza-

tion of fp,q(y
k), but it can also stand alone, and in this case, fp,q(y

k) will be

null. Similarly, a component fp,q(y
k) might not possess any relevant gener-

alization, and in this case, fp,p′,q(y
k) will be null. For instance, a suitable

third-order function fp,p′,q could have for component the perimeter or surface

of the triangle {p, p′, q}. With this particular example, in addition to the

initial second-order warping of the space, such as having a small distance

between each object of the cluster and the center, we will also have a small

distance between pairs of objects. However, much more intricate properties

can be introduced. For instance, we can consider statistical distances as the

Mahalanobis distance between the set of observations {p, p′} and q, which

is designed to estimate if the object q is a natural center for the set {p, p′}

regarding mean and variance considerations. We will present in Section 3.10,
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possible higher-order feature functions definition on graph structures.

As in [6], a Max-Margin approach is considered to approximate w. We

are looking for xk ∈ X (Ck) whose energy Ek(xk, d) is smaller than the energy

of any other solution x by an error function ∆(x, d) to be defined, i.e.

∃xk ∈ X (Ck), Ek(xk, d) ≤ Ek(x, d)−∆(x, d) + ξk (7)

where slack variable ξk is considered in the case of infeasible training sets.

Adding this constraint to the previous energy minimization problem gives

the regularized loss:

min
{xk∈X (Ck)}

τJ(w) +
∑
k

LEk (8)

where J(w) is a regularization term penalizing w complexity e.g. lasso reg-

ularization, while the hinge loss LEk includes ξk and is expressed as:

LEk(xk, w) = Ek(xk, w)−min
x

(Ek(x,w)−∆(x, Ck)) (9)

It favors feasible solutions with energy close to the minimal energy for any

possible assignment penalized by the error function according to the violated

constraints.

3.3. Max-Margin Energy

The good choice of ∆(x, Ck) is essential to obtain a relevant w. In par-

ticular, we need this error function to be 0 if x ∈ X (Ck) and to have a value

representing on what extent x violates the constraints imposed by the ground

truth X (Ck). We consider the training set k with cluster ground truth Ck

the function:

∆(x,Ck) = α
∑
C∈Ck

W (1−
∑
q∈C

xq,q) + β
∑
C∈Ck

1

| C |
∑
p∈C

(1−
∑
q∈C

xp,q) (10)
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with W (z) = |z|([z < 0].(| V k | − | C |) + [z > 0]. | C |), [.] being the

indicator function. The first term penalizes solutions x presenting no or

several exemplars for a ground truth cluster C ∈ Ck. We have adapted the

error function W proposed in [6] to better account for unbalanced classes

with an additional penalty on the sizable clusters presenting no exemplars

or the small clusters presenting several exemplars. If there is more than one

center in C, W will increase with the number of centers and the difference

between the size of V k and C. If there is no center in C, W will increase with

the size of C. The second term penalizes the solutions that do not assign

an object of a ground truth cluster C ∈ Ck to an exemplar from C. We

considered a weight inversely proportional to the cluster’s size to balance the

importance of small clusters in the learning process. The learning constants

α and β characterize the relative importance of having a center per cluster

and assigning all objects to a center from their ground truth cluster. If we are

confident in the number of clusters, if they present a contextual significance,

for instance, but the separation between the two clusters is fuzzy, we would

set α > β. If we want to maintain the separation between the known clusters

but the actual number of clusters is unclear, we would set β > α. In the

following, we want to maintain both aspects equally, so we consider α = β.

The regularized loss defined in equation 8 can be expressed as a new CRF

energy Ēk = Ek −∆:

Ēk(x,w) =
∑
p,q

ūk
p,q(xp,q) +

∑
p,p′,q

ūk
p,p′,q(xp,qxp′,q)+

∑
p,q

ϕ̄p,q(xp,q) +
∑
p

ϕ̄p(xp) +
∑
C∈Ck

ϕ̄C(xC)− β|Ck|
(11)
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with:

ūk
p,q(xp,q) = uk

p,q(xp,q, d) + β[∃C ∈ Ck, p, q ∈ C]
xk
p,q

| C |

ūk
p,p′,q(xp,qxp′,q) = uk

p,p′,q(xp,qxp′,q, d)

ϕ̄p,q(xp,q) = ϕp,q(xp,q, xq,q)

ϕ̄p(xp) = ϕp(xp), xp = {xp,q | q ∈ V }

ϕ̄C(xC) = −αW (1−
∑
q∈C

xq,q)

(12)

It is interesting to notice that thanks to the property of ∆ for a feasible

solution xk ∈ X (Ck), Ēk(xk, w) = Ek(xk, w).

3.4. Optimizing over {xk}

For a fixed w, minimizing Ēk(xk, w) requires the constraints to be satis-

fied, ϕ̄p(x
k
p) = 0 and ϕ̄p,q(x

k
p,q) = 0, which entails xk ∈ X (Ck). And, in this

case, ∆(x,Ck) = 0. Thus,

xk = argmin
x∈X (Ck)

(
∑
p,p′,q

dp,p′,qxp,qxp′,q +
∑
p,q

dp,qxp,q) (13)

To minimize this problem, we only need to find the set Qk of exemplars

q minimizing the above function per cluster in Ck and then assign each point

of the cluster to its exemplar. In this case, the constraints will be satisfied

as we ensure each cluster has one and only one center and assign all cluster

samples to this center.

3.5. Dual Decomposition

A dual decomposition approach is a widespread approach in optimization.

Its efficient resolution by projected subgradients has been introduced for
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MRF and CRF in [28]. It presents the crucial property of optimally solving

the dual linear programming problem. Besides, its versatility allows the

generalization to higher-order CRF as performed in [27].

The dual decomposition principle aims at isolating several much easier

subproblems tailored to be equivalent to the original problem after sum-

mation. A simple and popular decomposition is to consider each node in-

dependently. Each subproblem might be solved by very efficient inference

techniques as graph-cuts approaches, without venturing into a scaling issue.

The global resolution leads to a projected subgradient scheme, provably of-

fering an optimal solution. Formally, dual decomposition expression relies

on simple subproblems, also called slave problems, and on a master problem

enacting as a coordinator.

Here, for each k < K, we define a slave problem per datapoint p ∈ V k,

Ēk
p , and one per cluster C ∈ Ck, Ēk

C .

Ēk
p (x,w) =

∑
q ̸=p

ūk
p,q(xp,q) +

∑
p′,q ̸=p

ūk
p,p′,q(xp,qxp′,q)+

∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)−
β

| V k |
+

∑
q

(
1

| V k | +1
(ūk

p,q(x
k
q,q) +

∑
p′

ūk
q,p′,q(x

k
q,qx

k
p′,q)) + λp,qxq,q)

Ēk
C(x,w) =ϕ̄C(xC) +

∑
q

(
1

| V k | +1
(ūk

p,q(x
k
q,q)+∑

p′

ūk
q,p′,q(x

k
q,qx

k
p′,q)) + λCqxq,q)

(14)

where the Lagrangian variables λ = {{λp,q}, {λCq}} are used to ensure the

consistency of the solution. We impose the satisfaction of: λ ∈ Λk = {λ :∑
p∈Sk λp,q + λCq = 0,∀C ∈ Ck, q ∈ C}. Therefore, by design, Ēk(xk, w) =

13



∑
p Ē

k
p (x,w) +

∑
C Ēk

C(x,w). Thus, using the hinge loss define in equation 9

per subproblem, the loss function to be minimized is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p
+
∑
k

∑
C∈Ck

LĒk
C

(15)

3.6. Slave Problems Optimization

To optimize w, we first need to solve the slave problems by leveraging

their specific structures. An essential characteristic to notice is that, for

fixed {xk}, the slaves’ energy can be related to CRF energies. Details of all

the proofs and computation steps are provided in Supplementary Materials.

3.6.1. Point-Wise Subproblem Solution {x̂k,p}

Regarding the point-wise subproblems, we proceed as follows. The so-

lution in pairwise settings has been demonstrated in [6]. In the following

lemma, we generalize the solution that was proposed to a third-order con-

text as:

Lemma 1. For fixed p ∈ V k, let θkq =
ūk
q,q(1) + ūk

q,q,q(1)

|V |k + 1
+ λp,q and θ̄kq =

[θkq ]+ + ūk
p,q(1) + ūk

p,q,q(1) + ūk
p,p,q(1) where [z]+ = max(0, z). minimizer x̂p of

Ēk
p (x,w, λ

k) is given by

x̂p
q,q =[θkq < 0], x̂p

p,q = [q = q̄] where q̄ = argmin
q

(θ̄kq ) (16)

3.6.2. Cluster-Wise Subproblem Solution {x̂k,C}

Regarding the cluster-wise subproblems, we proceed as follows. The so-

lution in pairwise settings has been demonstrated in [6]. We can notice that

our formulation of the cluster-wise subproblem presents a high similarity with

the original formulation, and the only difference for the optimization is in θkq

expression:
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Lemma 2. For fixed C ∈ Ck, let θkq =
ūk
q,q(1) + ūk

q,q,q(1)

| V k | +1
+ λCq , ∀q ∈ C. A

minimizer x̂C of Ēk
C(x,w, λ

k) is given, ∀q ∈ C, by

x̂C
q,q =


[θkq < α(| V k | −|Ck|)],

if
∑

q′∈C [θ
k
q − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise

(17)

with [z]− = min(0, z).

3.6.3. Optimizing over λ and w

To optimize over λ and w, we perform an iterative projected subgradient

approach:

w ←− w − stδw, λk ←− projΛk(λk − stδλk
) (18)

with {δw} and {δλk
} subgradient functions and projΛk the projection onto

Λk. Then, the following lemma gives the updates to be applied iteratively to

efficiently obtain the approximation of w and {λk
p,q, λ

k
Cq
}. The updates are

obtained by summing the respective updates of each subproblem according

to the formula provided in equation 15.

Lemma 3. Let st be the weight granted to the optimization at step t. We

define X̂k
q = x̂k,C

q,q +
∑

p x̂
k,p
q,q and X̂k

p,q = x̂k,p
q,q x̂

k,p
p,q + x̂k,C

q,q [p = q, q ∈ C]. Then,

update reduces to:

w −=st(τ∇J(w) +
∑
k

δkw), λk
p,q −= st(

X̂k
q

| V k | +1
− x̂k,p

q,q )

λk
Cq
−=st(

X̂k
q

| V k | +1
− x̂k,C

q,q )

(19)
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where

δkw =
∑

p,p′,q∈V k

xk
p,qx

k
p′qf

k
p,p′,q +

∑
p,q∈V k

xk
p,qf

k
p,q − (

∑
p,q ̸=p∈V k

(x̂k,p
p,q x̂

k,p
q,qf

k
p,q,q + x̂k,p

p,qf
k
p,p,q)+

∑
p,q ̸=p∈V k

x̂k,p
p,qf

k
p,q +

∑
q∈V k

1

| V k | +1
(X̂k

q f
k
q,q +

∑
p∈V k

X̂k
p,qf

k
q,p,q))

(20)

Note that ∇J(w) has to refer to a subgradient if J is non-differentiable.

Besides, a constraint can be imposed over w by applying a projection during

w update.

w ←− projW (w − stδw) (21)

where W can be any convex set of constraints included in R+. For instance,

we mimic a true distance and satisfy the positivity constraint over w with

projW (z) = max(z, 0). It will also enforce an additional sparsity on the

weight vector. Notice that at least a positivity constraint has to be imposed

for the resolution of the higher-order distance learning. We summarize the

complete learning process in Algorithm 1.

To improve the tractability of the approach, we leveraged a stochastic

gradient descent (sgd) framework. It consists in randomly selecting a subset

of the training samples at each subgradient iteration and performing the

updates by relying only on those samples.

3.7. Generalization to Higher-Order Distances

Our approach’s strength is its ability to be efficiently generalized to any

order. Let h ≥ 2 be the order of the distance we are looking for. h cor-

responds to the maximal set size we will consider in our metric definition.

Our target metric considers any set S of size | S |≤ h and is defined as
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Algorithm 1: Learning Process

Data: training cohorts {V k, Ck, yk}, features functions

{f 2
p,q(y

k), f 3
p,p′,q(y

k)}

1 λk ← 0, ∀k

2 do

3 Optimize xk: ∀C ∈ Ck,

qc = argminq∈C(
∑

p,p′∈C dp,p′,qxp,qxp′q +
∑

p∈C dp,qxp,q);

4 xk
p,q = 1, p ∈ C ⇐⇒ q = qC ;

5 Iterate T subgradient updates:

6 repeat

7 Solve slaves Ēk
p , Ē

k
C via lemmas 1, 2;

8 Update w, λk via lemma 3

9 until T times ;

10 Project w over W ⊂ R+

11 while Not Convergence;
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dS = wTf{p}p∈S
(y) where f{p}p∈S

is a positive feature function providing a

closeness score on set S. This metric aims to establish a characterization of

the meaningfulness of samples grouped in S altogether.

A formal mathematical description is provided in Appendix D.

3.8. Extension to Cluster Metrics

A final interesting addition we can bring to our higher-order distance

learning framework is to consider a metric between a sample and a ground

truth cluster. The difference between this particular setting and the previous

higher-order metrics is that here, we will consider a metric able to tackle sets

of objects of different sizes (the size of the clusters) and thus will not have a

defined order. The interest in such a distance is to benefit from a structural

metric characterizing the closeness between a sample and a given cluster.

During inference, it will be especially valuable for identifying the most suited

cluster for a sample.

A formal mathematical description is provided in Appendix E.

3.9. Time Complexity Analysis

The time complexity of one update of this learning process isO(d
∑K

k=1(
|V k|
T

)h)

where h is the maximal order considered. The division by T is introduced

thanks to the sgd formulation. The complexity of one update in the orig-

inal second-order formulation [6] was O(d
∑K

k=1 |V k|2). The impact on the

runtime of going from the second order to the third order is presented in

Section 5.
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Without balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Without path feature Validation Test Validation Test Validation Test Validation Test

Average 0.6 0.42 0.76 0.35 0.62 0.4 0.58 0.43

Min 0.52 0.4 0.75 0.27 0.54 0.38 0.49 0.42

Min Max 0.59 0.38 0.68 0.32 0.63 0.37 0.6 0.39

Min center 0.62 0.34 0.75 0.26 0.6 0.32 0.57 0.35

KNN 0.62 0.41 0.69 0.29 0.64 0.4 0.61 0.43

With balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Without path feature Validation Test Validation Test Validation Test Validation Test

Average 0.71 0.61 0.72 0.62 0.72 0.6 0.71 0.62

Min 0.66 0.62 0.68 0.62 0.67 0.62 0.65 0.63

Min Max 0.65 0.58 0.65 0.59 0.65 0.56 0.65 0.59

Min center 0.74 0.62 0.75 0.64 0.75 0.61 0.74 0.63

KNN 0.72 0.6 0.73 0.62 0.72 0.58 0.73 0.61

With balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

With path feature Validation Test Validation Test Validation Test Validation Test

Average 1 0.77 1 0.84 1 0.73 1 0.82

Min 1 0.76 1 0.83 1 0.71 1 0.81

Min Max 1 0.79 1 0.85 1 0.75 1 0.83

Min center 1 0.78 1 0.8 1 0.73 1 0.8

KNN 1 0.69 1 0.81 1 0.63 1 0.75

Table 1: Results with the synthetic dataset of the different experiments in the second-order

settings for the various inference strategies. Training results are not reported as reaching

1 in all cases.

3.10. Extracting and Leveraging Structural Information from Data

Several approaches exist in order to design a graph structure on data

sets with no natural graph representation. Here, we relied on a distance

matrix between objects computed as the sum of all the different feature

functions used in distance learning. Then, a k-nearest neighbors approach

was computed, meaning that there is an edge between two objects p and q

iff p (resp. q) is in the k objects the closest of q (resp. p).

Once a graph structure was obtained, we studied different ways of lever-

aging their properties. Our first, most simple approach is considering the
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shortest path Sp,q between objects p and q in the graph. The distance be-

tween those objects will then be the weighted length Lp,q of such a path. The

generalization of this method for a set of objects {p1, ..., pl} and a potential

center q is defined as follows:

SPl(p1, ..., pl) =
∑

i∈{1,...,l}

∑
j∈{i+1,...,l}

Lpi,q + Lpj ,q

Lpi,pj

The interpretation of this graph metric is that the center of a cluster q has to

be a hub for the objects of its cluster i.e. the ratio between the shortest path

and the shortest path passing by q has to be small for any pair of objects in

the cluster.

Similarly, we considered the eccentricity of a set of objects {p1, ..., pl} as

a l-order graph metric. We deem a set of objects to have a small maximal

weighted graph diameter to belong to the same cluster.

Then, we considered two connectivity-related metrics. The first one is

based on the clique order of a set of objects CO(p1, ..., pl) and is defined as

max degree(G)−CO(p1, ..., pl) with max degree(G) the maximal degree of

a node in the whole graph. By doing so, we consider that the bigger the

clique order in the set of objects, the more relevant their association in a

cluster.

The second metric is based on the connectivity resilience CR(p1, ..., pl),

which is the minimal number of nodes to remove to disconnect the set of

objects. The metric is defined as l − CR(p1, ..., pl).

3.11. Leveraging a Task Dedicated Distance for Classification

In order to perform the classification, we relied on a K-Nearest Neighbors

framework. Once the distance was learned, we labeled a new sample as the

20



ground truth cluster from which it is the closest. We experimented and

compared different strategies to determine the closest cluster: 1) Average

distance to the points of the cluster, 2) Minimum distance to the points

of the cluster, 3) Maximum distance to the points of the cluster, 4) Min

center: Distance to the center of the cluster, 5) Majoritarian cluster of the

k-nearest neighbors. The distance between the new sample p and objects of

the cluster C is computed using the learned dedicated distance. For l > 2-

order distances, we compute the distance on the set {p, p1, ..., pl−2, q} where

we iterate over all possible sets {p1, ..., pl−2} ∈ C l−2 and q is the cluster center

discovered during the learning step.

4. Implementation Details

We implemented the algorithm proposed in [6] and used it as a base-

line. It is available at https://github.com/ebattistella/Second-order-

Distance-learning. Besides, the adaptation to general higher-order dis-

tances we propose in this study is available at https://github.com/ebattistella/

Higher-order-Distance-Learning-GHOST-.

To prove the relevance of our higher-order formulation, we leveraged two

datasets of very different natures. First, we synthesized a dataset with sam-

ples in dimension 100 with 60 noisy dimensions. Clusters are designed by

considering 100 samples generated from Gaussian distributions with different

variances and means between the two clusters on the non-noisy dimensions.

The noise is simulated by taking a much larger variance. Ideal graphs were

generated on this dataset as one clique per cluster with no connection between

cliques. Then, we added noise to the graphs using a rewiring method [29].
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For each pair of nodes, we added or removed an edge with a probability of p.

We considered values of p ∈ [0, 0.5] with an increment of 0.1. We generated

training, validation, and test sets considering different variances and means.

For each set, we considered base variances randomly chosen for each feature

between 0 and 200 shifted by respectively 10, 30, and 50 for the non-noisy

dimensions and 1000, 2000, and 10000 for the noisy ones. Regarding the

means, we considered base means randomly chosen for each feature between

−50 and 50 shifted by 0, 10, and 50, respectively. The aim was here to

visualize the generalizability of the learned weights and their resilience to in-

creasing noise. We applied the same principle and distributions to generate a

simulated benchmark presenting 3 clusters and 100 samples. We then lever-

aged a Covid-19 dataset introduced in [30]. We used the same training and

testing sets as the authors and compared their results to the classification

performance of our proposed GHOST approach over the Severe/Non-severe

staging task. The two classes are defined as the several cases, patients need-

ing intubation after four days of the onset of the disease, and the non-severe

cases, patients recovering after four days of the disease onset. A graph of the

data was obtained through the method proposed in Section 3.10 by consid-

ering the 5 closest neighbors.

The second-order feature functions we based all our experiments on are

feature-wise Euclidean distances. In addition, to assess the influence of differ-

ent metrics, we considered meta-features Euclidean, Minkowski, City-block,

Cosine, Correlation, Hamming, Jaccard, Chebyshev, Matching, Yule, Bray-

curtis, Dice, Kulsinski, Russellrao, Pearson-correlation based, Spearman-

correlation based, Kendall-correlation based distances on the full feature
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space.

We first used the simple pairwise distance defined using the basic for-

mulation from [6]. Then, we complemented this with our balanced error

function to better account for the cluster size. We finally added a shortest-

paths-based metric SP2 to assess the value of graph information even in

second-order settings and compare it with the higher-order. We performed

the higher-order distance learning using the combination of the second-order

meta-features with the different higher-order metrics defined in Section 3.10.

We considered the third-order approach, the cluster metric approach, and the

combination of both approaches, which constitutes our GHOST approach.

w is initialized with ones on all dimensions.

5. Results and Discussion

5.1. Synthesized Dataset

In this subsection, we considered the two synthesized clusters. This exper-

iment aimed to assess the capacity of our higher-order framework to leverage

information from a graph according to its level of noise and combine it with

usual second-order metrics to perform classification. We used as a baseline

the second-order framework performances with and without considering path

length information in a graph. The assessment metrics used are described in

Appendix F. First, we reported the results in the second-order without graph

information nor balanced error function, without graph information and with

balanced error function, and with both in Table 1. Here, we reported the

performance of the different strategies to infer the label of a new sample de-

fined in Section 3.11. We observed superior results of the distance to cluster
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Third-order
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

only

p Training Validation Test Training Validation Test Training Validation Test Training Validation Test

0 1 1 1 1 1 1 1 1 1 1 1 1

0.1 0.97 0.91 0.96 0.97 0.92 0.96 0.97 0.92 0.96 0.97 0.91 0.96

0.2 0.9 0.92 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92

0.3 0.59 0.58 0.64 0.78 0.77 0.79 0.61 0.6 0.61 0.63 0.62 0.67

0.4 0.62 0.62 0.68 0.78 0.78 0.8 0.59 0.58 0.65 0.66 0.65 0.71

0.5 0.54 0.52 0.48 0.57 0.54 0.48 0.51 0.5 0.46 0.57 0.55 0.5

Cluster metric
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

only

p Training Validation Test Training Validation Test Training Validation Test Training Validation Test

0 1 1 1 1 1 1 1 1 1 1 1 1

0.1 0.97 0.91 0.96 0.97 0.92 0.96 0.97 0.92 0.96 0.97 0.91 0.96

0.2 0.9 0.92 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92

0.3 0.7 0.66 0.64 0.78 0.77 0.79 0.7 0.63 0.61 0.63 0.62 0.67

0.4 0.61 0.6 0.63 0.76 0.75 0.8 0.6 0.59 0.6 0.67 0.66 0.7

0.5 0.53 0.48 0.5 0.55 0.47 0.5 0.5 0.47 0.46 0.5 0.49 0.5

GHOST Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

p Training Validation Test Training Validation Test Training Validation Test Training Validation Test

0 1 1 1 1 1 1 1 1 1 1 1 1

0.1 0.98 0.91 0.97 0.97 0.92 0.96 0.98 0.92 0.95 0.98 0.91 0.97

0.2 0.91 0.93 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92

0.3 0.71 0.65 0.65 0.79 0.76 0.8 0.71 0.63 0.62 0.62 0.61 0.68

0.4 0.62 0.62 0.68 0.78 0.78 0.8 0.6 0.59 0.6 0.67 0.66 0.7

0.5 0.54 0.52 0.48 0.57 0.54 0.48 0.51 0.5 0.46 0.57 0.55 0.5

Table 2: Results on the synthetic dataset of the different higher-order experiments with

the distance to center inference strategy.

center approach on all metrics. This trend was consistent in the different

experiments we performed. Thus, in the following, we only reported results

from this strategy for concision’s sake. In addition, it is interesting to notice

that using the class balanced error function as described in 3.2 significantly

increases the performance from random results (< 0.5 on Test) to results

> 0.6. Finally, the graph information is highly valuable here as it brings the

results over all the metrics above 0.7.

Table 2 presents the comparison of the performance using the different

frameworks defined in this study. The second-order results reported in Ta-
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ble 1 with path length information have been obtained with the ideal graph

without noise. The foremost point to notice is the greater performance and

lesser overfitting of the methods leveraging third-order information compared

to the second-order. Indeed, the results of the higher-order approach with

noise up to 40% (rewiring probability up to 0.4) surpass all the results of the

second-order approaches (obtained in a perfect case without noise, p = 0).

Moreover, it is worth mentioning that whereas the cluster and the third-order

frameworks alone performed similarly, their combination reported higher re-

sults for higher noise, p above 0.4.

Further results with 3 clusters are reported in Appendix F. In this case,

the original second-order formulation totally fails to learn a generalizable

metric and presents random results. On the other hand, GHOST manages

perfect results up to the noise of 20% (p=0.2) and very good performance

up to a noise of 50% (p=0.50).

We observe that the second-order method only needs 30 seconds, while

the third-order with the cluster metric needs 270 seconds.

5.2. Covid-19 Dataset

Table 3 presents the results of our GHOST framework over the Covid-19

dataset introduced in [30] and compares them to the results obtained by the

authors using an Ensemble approach for both feature selection and classi-

fication. We also compared our results with an approach investigating the

use of deep learning-based representations to integrate the imaging informa-

tion. By leveraging the 3D contouring model proposed in [30], we extracted a

deep feature space of dimension 128 of the lung. The classification ensemble

approach used in [30] with classical imaging features is used as a bench-
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mark. In addition, we report the results of the automated machine learning

tool TPOT [31], which relies on genetic algorithms to find the best machine

learning pipeline, including feature selection and classification models. This

experiment highlights the interest in considering graph information as it im-

proves the results over the basic framework. Also, it not only enables us

to outperform an ensemble method over several standard classifiers leverag-

ing carefully chosen features obtained with both field expert knowledge and

an ensemble data-driven framework but also the results obtained using deep

learning representation-based features and a classification pipeline defined by

a state-of-the-art genetic algorithm.

Framework
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Training Test Training Test Training Test Training Test

GHOST 0.67 0.71 0.78 0.8 0.69 0.73 0.65 0.69

Ensemble 0.73 0.7 0.82 0.81 0.67 0.64 0.8 0.77

Deep Features 0.71 0.68 0.8 0.79 0.72 0.72 0.71 0.64

TPOT 0.84 0.64 0.87 0.76 0.82 0.71 0.86 0.56

Table 3: Performance of the different learning frameworks over the Covid-19 dataset.

The first row is the GHOST framework, the following 3 rows are the performance of the

ensemble of standard classifiers on classical imaging features as defined in [30], of the

ensemble of standard classifiers on deep learning representations-based imaging features

and of a feature selection and classification pipeline learned by the genetic algorithm

defined in [31].

6. Conclusion

This paper proposed a novel distance learning framework to leverage

higher-order information, including graph patterns and cluster-based met-
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rics, towards a dedicated-to-the-task metric definition. Moreover, we demon-

strated the value of leveraging graph-based information for classification. In

particular, we have highlighted the interest in designing a graphical repre-

sentation of data to extract structural information. Also, we studied the

relevance of higher-order metrics and experimented with several directions

to better account for structures in the data. In the future, we aim to study

other kinds of data with known graphical representations as PPI networks.

We also want to study more intricate metrics to better exploit higher-order

information, for instance, Mahalanobis distance or graph-density-based in-

formation.

In this study, we have proved the efficiency of our approach on a chal-

lenging Covid-19 patient stratification task and present results outperforming

ensemble approaches for feature selection and classification on common clas-

sical and deep learning representations-based imaging features as well as a

dedicated pipeline automatically designed by a state-of-the-art genetic algo-

rithm.

We show that the time complexity of our method is polynomial in the

number of training objects with the order as degree. This might be a lim-

itation on very large datasets, but GHOST remains tractable on common

medical datasets of several hundreds of patients as the Covid-19 one we

used. In addition, the resolution through dual decomposition is highly par-

allelizable by design. An implementation on GPU would greatly improve

the running time. As this approach is meant to be used with expert anno-

tation, it requires manually designing meta-features using known notions of

similarity between the samples. However, this constraint is well suited for
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many applications, as in network science, where metrics, including higher-

order metrics, are leveraged to uncover complex patterns that could be used

to define GHOST meta-features [32]. In further work, we want to investigate

the definition of meta-features with a graph neural network-based method to

determine a metric between groups of samples as the ones detailed in [33].

For the same reason, this method requires an annotation of the samples to

learn the different cluster structures. An interesting direction we would like

to pursue to alleviate the need for cluster annotation is GHOST’s ability to

be used with annotated and non-annotated datasets. The ground truth of

the datasets without annotations can be inferred periodically using any clus-

tering method and the current learned metric. It would allow the learning

process to rely on different data structures and enforce the metric learned

to present properties of a specific clustering method. Finally, we would like

to leverage GHOST’s ability to learn from several grounds truths and/or

datasets (which number is represented by the K in our formulation) towards

learning to perform a consensus of different higher-order community detec-

tion methods. This direction would be particularly valuable as it would

improve the robustness of community detection, for which many definitions

coexist [34].
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A. K. Gandhi, A. Bouchard-Côté, A. P. Weng, A. Roth, Spatialsort:

a bayesian model for clustering and cell population annotation of spa-

tial proteomics data, Bioinformatics 39 (2023) i131–i139.

[12] S. Jin, Y. Hong, L. Zeng, Y. Jiang, Y. Lin, L. Wei, Z. Yu, X. Zeng,

X. Liu, A general hypergraph learning algorithm for drug multi-task

predictions in micro-to-macro biomedical networks, PLOS Computa-

tional Biology 19 (2023) e1011597.

[13] N. Somu, M. R. G. Raman, K. Kirthivasan, V. S. S. Sriram, Hyper-

graph based feature selection technique for medical diagnosis, Journal

of Medical Systems (2016).

[14] A. Antelmi, G. Cordasco, M. Polato, V. Scarano, C. Spagnuolo, D. Yang,

A survey on hypergraph representation learning, ACM Computing Sur-

veys 56 (2023) 1–38.

30



[15] C. Yang, R. Wang, S. Yao, T. Abdelzaher, Semi-supervised hypergraph

node classification on hypergraph line expansion, in: Proceedings of

the 31st ACM International Conference on Information & Knowledge

Management, 2022.

[16] A. R. Benson, D. F. Gleich, J. Leskovec, Higher-order organization of

complex networks, Science (2016).

[17] R. Lambiotte, M. Rosvall, I. Scholtes, From networks to optimal higher-

order models of complex systems, Nature Physics (2019).

[18] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recog-

nition Letters (2010).

[19] Z. Yu, Z. Kuang, J. Liu, H. Chen, J. Zhang, J. You, H.-S. Wong,

G. Han, Adaptive ensembling of semi-supervised clustering solutions,

IEEE Transactions on Knowledge and Data Engineering (2017).

[20] K. Wagstaff, Refining inductive bias in unsupervised learning via con-

straints, in: AAAI/IAAI, 2000.

[21] I. Davidson, S. Ravi, Clustering with constraints: Feasibility issues and

the k-means algorithm, in: Proceedings of the 2005 SIAM international

conference on data mining, SIAM, 2005.

[22] M. T. Law, R. Urtasun, R. S. Zemel, Deep spectral clustering learning,

in: International conference on machine learning, PMLR, 2017.

[23] T. Finley, T. Joachims, Supervised clustering with support vector ma-

chines, in: International conference on Machine learning, 2005.

31



[24] E. Battistella, M. Vakalopoulou, T. Estienne, M. Lerousseau, R. Sun,

C. Robert, N. Paragios, E. Deutsch, Gene expression high-dimensional

clustering towards a novel, robust, clinically relevant and highly compact

cancer signature, in: IWBBIO 2019, Granada, Spain, 2019.

[25] A. Fix, A. Gruber, E. Boros, R. Zabih, A graph cut algorithm for

higher-order markov random fields, in: 2011 International Conference

on Computer Vision, IEEE, 2011.

[26] H. Ishikawa, Transformation of general binary mrf minimization to the

first-order case, IEEE transactions on pattern analysis and machine

intelligence (2010).

[27] N. Komodakis, B. Xiang, N. Paragios, A framework for efficient struc-

tured max-margin learning of high-order mrf models, IEEE transactions

on pattern analysis and machine intelligence (2014).

[28] N. Komodakis, N. Paragios, G. Tziritas, Mrf energy minimization and

beyond via dual decomposition, IEEE transactions on pattern analysis

and machine intelligence (2010).

[29] N. Jarman, E. Steur, C. Trengove, I. Y. Tyukin, C. Van Leeuwen, Self-

organisation of small-world networks by adaptive rewiring in response

to graph diffusion, Scientific Reports (2017).

[30] E. Battistella, G. Chassagnon, M. Vakalopoulou, S. Christodoulidis, T.-

N. Hoang-Thi, S. Dangeard, E. Deutsch, F. Andre, E. Guillo, N. Halm,

et al., Ai-driven quantification, staging and outcome prediction of covid-

19 pneumonia, Medical Image Analysis (2021).

32



[31] T. T. Le, W. Fu, J. H. Moore, Scaling tree-based automated machine

learning to biomedical big data with a feature set selector, Bioinformat-

ics (2020).

[32] Q. F. Lotito, F. Musciotto, A. Montresor, F. Battiston, Higher-order

motif analysis in hypergraphs, Communications Physics 5 (2022) 79.

[33] N. Jiang, B. Ning, J. Dong, A survey of gnn-based graph similarity

learning, in: 2023 8th International Conference on Image, Vision and

Computing (ICIVC), IEEE, 2023, pp. 650–654.

[34] A. K. Dey, Y. Tian, Y. R. Gel, Community detection in complex net-

works: From statistical foundations to data science applications, Wiley

Interdisciplinary Reviews: Computational Statistics 14 (2022) e1566.

33



Appendix A. Optimizing over {x̂k,p}

For a fixed p.

Ēk
p (x,w) =

∑
p,q ̸=p

ūk
p,q(xp,q) +

∑
p,p′,q ̸=p

ūk
p,p′,q(xp,qxp′,q)+

∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)−
β

|V k|
+

∑
q

(
1

|V k|+ 1
(ūk

q,q(x
k
q,q) +

∑
p′

ūk
q,p′,q(x

k
q,qx

k
p′,q)) + λp,qxq,q)

=
∑
p,q ̸=p

ūk
p,q(1)xp,q +

∑
p,p′,q ̸=p

ūk
p,p′,q(1)xp,qxp′,q

+
∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)−
β

|V k|
+

∑
q

(
1

|V k|+ 1
(ūk

q,q(1)x
k
q,q +

∑
p′

ūk
q,p′,q(1)x

k
q,qx

k
p′,q)

+ λp,qxq,q)

=
∑
p,q ̸=p

(ūk
p,q(1) +

∑
p,p′,q ̸=p

ūk
p,p′,q(1)xp′,q)xp,q+

∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)−
β

|V k|

+
∑
q

(
1

|V k|+ 1
(ūk

q,q(1) +
∑
p′

ūk
q,p′,q(1)x

k
p′,q) + λp,q)xq,q

(A.1)

We still have here a complex CRF energy to minimize. To solve this problem

in general settings, we could use a replacement strategy leveraging the binary

nature of the variables as proposed in [25]. However, it would lead to a costly

optimization that would hinder the whole framework’s tractability. Thus, we

exploit the particularity of our distance learning task and impose a positivity

constraint over the distance. Thus, ∀p, p′, q, ūk
p,p′,q(1) > 0 and we have no
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constraint on xp′,q, then, fixing ∀p′ ̸= p, q, xp′,q = 0 will decrease the objective

function. So, it comes down to:

min
x

Ēk
p (x,w) = min

x
(
∑
p

∑
q ̸=p

(ūk
p,q(1) + ūk

p,q,q(1)xq,q+

ūk
p,p,q(1))xp,q +

∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)

− β

| V k |
+
∑
q

(
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λp,q)xq,q)

(A.2)

Minimizing Ēk
p (x,w) requires the constraints ϕ̄p(xp) = 0 and ϕ̄p,q(xp,q) = 0

as the alternative is an infinite cost. It imposes that there exists one and

only one q such that xp,q = 1 and for that q, xq,q = 1. Thus, ∀q, if we denote

θkq =
ūk
q,q(1) + ūk

q,q,q(1)

| V k | +1
+λp,q and θ̄kq = [θkq ]++ūk

p,q(1)+ūk
p,q,q(1)+ūk

p,p,q(1) with

[z]+ = max(0, z), the terms containing xq,q are (up,q,qxp,q + θkq )xq,q. Then, to

decrease our objective function, we have to set xq,q = 1 if θkq < 0 and the

cost up,q,q will only be paid if p is assigned to q. Regarding this assignment,

the cost of xp,q = 1 will be minimal iff q = argmin θ̄kq where the term [θkq ]+

accounts for the extra cost of satisfying xp,q = 1 =⇒ xq,q = 1 will entail if

xq,q did not verify θkq < 0 and so would have been set to 0.

Lemma 4.

x̂p
q,q =[θkq < 0]

x̂p
p,q =[q = q̄] where q̄ = argminq(θ̄

k
q )

(A.3)

with θkq =
ūk
q,q(1) + ūk

q,q,q(1)

| V k | +1
+λp,q and θ̄kq = [θkq ]++ūk

p,q(1)+ūk
p,q,q(1)+ūk

p,p,q(1)
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Appendix B. Optimizing over {x̂k,C}

For a fixed C.

Ēk
C(x,w) =ϕ̄C(xC) +

∑
q∈C

(
1

| V k | +1
(ūk

q,q(x
k
q,q)

+
∑
p′

ūk
q,p′,q(x

k
q,qxp′,q)) + λCxC)

(B.1)

As previously, for better traceability, we will enforce the positivity constraint

on our distance, so ∀p′ ̸= q, xp′,q = 0 as ūk
q,p′,q > 0 and we have no constraint

over xp′,q when p′ ̸= q.

Regarding xq,q, we consider two cases:

(i) ∀q ∈ C, x̂k,C
q,q = 0. Then, the optimal energy is OPT1 = −α | Ck |.

(ii) ∃q, x̂k,C
q,q = 1. Then:

Ēk
C(x,w) =ϕ̄C(xC) +

∑
q∈C

(
1

| V k | +1
(ūk

q,q(x
k
q,q) + ūk

q,q,q(x
k
q,q))+

λCxC)

=
∑
q∈C

(
1

| V k | +1
((ūk

q,q(1) + ūk
q,q,q(1))x

k
q,q) + λCqxC)

− α(| V k | − | Ck |)(
∑
q∈C

xk
q,q − 1)

=
∑
q∈C

(
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λCq

− α(| V k | − | Ck |))xk
q,q + α(| V k | − | Ck |)

In this case, ∀q ∈ C,

x̂q,q = 1 ⇐⇒ 1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1) + λCq

−α(| V k | − | Ck |) < 0
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i.e.

x̂q,q = [
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λCq <

α(| V k | − | Ck |)]

And, in this case, the optimal energy is

OPT2 =
∑
q∈C

[
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λCq

−α(| V k | − | Ck |)]− + α(| V k | − | Ck |)

with [z]− = min(0, z).

Finally, the second case holds true iff

OPT2 < OPT1

⇐⇒
∑
q∈C

[
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λCq

− α(| V k | − | Ck |)]− + α(| V k | − | Ck |) < −α | Ck |

⇐⇒
∑
q∈C

[
1

| V k | +1
(ūk

q,q(1) + ūk
q,q,q(1)) + λCq

− α(| V k | − | Ck |)]− + α | V k |< 0

Lemma 5. For fixed C ∈ Ck, let θkq =
1

| V k | +1
ūk
q,q(1) + ūk

q,q,q(1) + λCq ,

∀q ∈ C. A minimizer x̂C of Ēk
C(x,w, λ

k) is given by

∀q ∈ C, x̂C
q,q =



[θkq < α(| V k | − | Ck |)],

if
∑

q′∈C [θ
k
q − α(| V k | − | Ck |)]−+

α | V k |< 0

0 otherwise

with [z]− = min(0, z)
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Appendix C. Optimizing over λ and w

These updates are defined from subgradients of the objective function.

We compute the partial derivatives of each subproblem’s hinge loss. We

denote by x̂k,p and x̂k,C binary minimizers of energies Ēk
p (x,w) and Ēk

C(x,w).

δwk,p =
∑
p′,q ̸=p

xk
p,qx

k
p′,qf

k
p,p′,q +

∑
q ̸=p

xk
p,qf

k
p,q+

∑
q

1

| V k | +1
(xk

q,qf
k
q,q +

∑
p′

xk
q,qx

k
p′,qf

k
qp′,q)−

(
∑
q ̸=p

x̂k,p
p,q x̂

k,p
p′,qf

k
p,p′,q +

∑
q ̸=p

x̂k,p
p,qf

k
p,q+

∑
q

1

| V k | +1
(x̂k,p

q,qf
k
q,q +

∑
p′

x̂k,p
q,q x̂

k,p
p′,qf

k
qp′,q))

δwk,C =
∑
q

1

| V k | +1
(xk

q,qf
k
q,q +

∑
p′

xk
q,qx

k
p′,qf

k
qp′,q)−

∑
q

1

| V k | +1
(x̂k,C

q,q f
k
q,q +

∑
p′

x̂k,C
q,q x̂

k,C
p′,qf

k
qp′,q)

δλk,p =xk
q,q − x̂k,p

q,q

δλk,C =xk
q,q − x̂k,C

q,q

(C.1)

Thus, we have the update:

δw =τ∇J(w) +
∑
k

(
∑
p

δwk,p +
∑
C

δwk,C)

=τ∇J(w) +
∑
k

δkw
(C.2)
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with:

δkw =
∑
p,p′,q

xk
p,qx

k
p′,qf

k
p,p′,q +

∑
q

xk
p,qf

k
p,q−

(
∑
q ̸=p

x̂k,p
p,q x̂

k,p
p′,qf

k
p,p′,q +

∑
q ̸=p

x̂k,p
p,qf

k
p,q+

∑
q

1

| V k | +1
(X̂k

q f
k
q,q +

∑
p′

X̂k
p′,qf

k
qp′,q))

(C.3)

with X̂k
q = x̂k,C

q,q +
∑

p x̂
k,p
q,q and X̂k

p′,q =
∑

p x̂
k,p
q,q x̂

k,p
p′,q + x̂k,C

q,q x̂
k,C
p′,q

Finally, to obtain an acceptable solution λ we need to project on set Λ.

To that purpose, we simply have to substract by
λk,C +

∑
p λ

k,p

| V k | +1
= xk

q,q −

X̂k
q

| V k | +1
. Thus, we have to update w and λ with the following formulas:

Lemma 6. Let st be the weight accorded to the optimization at step t. We

define X̂k
q = x̂k,C

q,q +
∑

p x̂
k,p
q,q and X̂k

p′,q = x̂k,p
q,q x̂

k,p
p′,q + x̂k,C

q,q x̂
k,C
p′,q. Then, update

reduces to:

w −=st(τ∇J(w) +
∑
k

δkw)

λk
p,q −=st(

X̂k
q

| V k | +1
− x̂k,p

q,q )

λk
p,q −=st(

X̂k
q

| V k | +1
− x̂k,C

q,q )

(C.4)

where

δkw =
∑
p,p′,q

xk
p,qx

k
p′,qf

k
p,p′,q +

∑
p,q

xk
p,qf

k
p,q−

(
∑
p′,q ̸=p

x̂k,p
p,q x̂

k,p
p′,qf

k
p,p′,q +

∑
q ̸=p

x̂k,p
p,qf

k
p,q+

∑
q

1

| V k | +1
(X̂k

q f
k
q,q +

∑
p′

X̂k
p′,qf

k
qp′,q))

(C.5)
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Appendix D. Generalization to Higher-Order Distances

Our approach’s strength is its ability to be efficiently generalized to any

order. Let h ≥ 2 be the order of the distance we are looking for. h cor-

responds to the maximal set size we will consider in our metric definition.

Our target metric considers any set S of size | S |≤ h and is defined as

dS = wTf{p}p∈S
(y) where f{p}p∈S

is a positive feature function providing a

closeness score on set S. This metric aims to establish a characterization

of the meaningfulness of samples grouped in S altogether. In this case, we

consider the energy defined as:

E(x, d)k =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

uk
p,p1,...,pl,q

(xp,q

∏
i∈[1,l]

xpi,q, d)+

∑
p,q

ϕp,q(xp,q, xq,q) +
∑
p

ϕp(xp) +
∑
C

ϕC(xC)− β|Ck|
(D.1)

We now consider the higher order potential of order l < h−2, up,p1,...,pl,q(
∏

i∈[1,l] xpi,q, d)

focusing on establishing the cost of assigning p, p1, ..., pl to q. The potentials

definitions are:

uk
p,p1,...,pl,q

(xp,q

∏
i∈[1,l]

xpi,q, d) = dkp,p1,...,pl,qxp,q

∏
i∈[1,l]

xpi,q

dkp,
∏

i∈[1,l] pi
xp,q

∏
i∈[1,l]

xpi,q = wTfp,p1,...,pl,q(y
k)

ϕp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q)

ϕp(xp) = δ(
∑
q

xp,q = 1)

(D.2)

First, regarding the optimization over {xk} for a fixed vector w. As previ-

ously, the satisfaction of the constraints induces:

xk = argmin
x∈X (Ck)

(
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

dkp,p1,...,pl,qxp,q

∏
i∈[1,l]

xpi,q) (D.3)
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And, again, this problem’s minimization only requires the setQk of exemplars

q minimizing the above function per cluster in Ck. Then, we assign each point

of the cluster to its exemplar. In this case, the constraints will be satisfied

as we ensure each cluster has one and only one center and assign all cluster

samples to this center.

As before, for each k < K, we define a slave problem per datapoint

p ∈ V k, Ēk
p , and one per cluster C ∈ Ck, Ēk

C .

Ēk
p (x,w) =

∑
l∈[0,h−2]

∑
p1,...,pl,q ̸=p

uk
p,p1,...,pl,q

(xp,q

∏
i∈[1,l]

xpi,q, d)

+
∑
q

ϕ̄p,q(xp,q) + ϕ̄p(xp)−
β

| V k |
+

∑
q

(
1

| V k | +1
(

∑
l∈[0,h−2]

∑
p1,...,pl

uk
q,p1,...,pl,q

(xq,q

∏
i∈[1,l]

xpi,q, d)) + λp,qxq,q)

Ēk
C(x,w) = ϕ̄C(xC)+∑
q

(
1

| V k | +1
(

∑
l∈[0,h−2]

∑
p1,...,pl

uk
q,p1,...,pl,q

(xq,q

∏
i∈[1,l]

xpi,q, d) + λCqxq,q)

(D.4)

where the Lagrangian variables λ = {{λp,q}, {λCq}} are used to ensure the

consistency of the solution. We impose the satisfaction of: λ ∈ Λk = {λ :∑
p∈Sk λp,q + λCq = 0,∀C ∈ Ck, q ∈ C}. Therefore, by design, Ēk(xk, w) =∑
p Ē

k
p (x,w)+

∑
C Ēk

C(x,w). Thus, finally, the lost function to be minimized

is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p
+
∑
k

∑
C∈Ck

LĒk
C

(D.5)

Appendix D.0.1. Optimizing over {x̂k,p}

Regarding the point-wise subproblems, we proceed as follows. In the

following lemma, we generalize the solution that was proposed in Lemma 1
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to a general order configuration as:

Lemma 7. For fixed p ∈ V k, let θkq =

∑
l∈[0,h−2] u

k
q,...,q(1)

|V |k + 1
+ λk

p,q and

θ̄kq = [θkq ]+ +
∑

l∈[0,h−2]

∑
p1,...,pl∈{p,q} u

k
p,p1,...,pl,q

where [z]+ = max(0, z). mini-

mizer x̂p of Ēk
p (x,w, λ

k) is given by

x̂k,p
q,q = [θkq < 0], x̂k,p

p,q = [q = q̄] where q̄ = argmin
q

(θ̄kq ) (D.6)

Appendix D.0.2. Optimizing over {x̂k,C}

Regarding the cluster-wise subproblems, we generalize the Lemma 2 with:

Lemma 8. For fixed C ∈ Ck, let θkq =

∑
l∈[0,h−2] u

k
q,...,q(1)

| V k | +1
+ λk

Cq
, ∀q ∈ C. A

minimizer x̂k,C of Ēk
C(x,w, λ

k) is given, ∀q ∈ C, by

x̂k,C
q,q =


[θkq < α(| V k | −|Ck|)],

if
∑

q′∈C [θ
k
q − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise

(D.7)

with [z]− = min(0, z).

Appendix D.0.3. Optimizing over λ and w

Lemma 9. Let st be the weight granted to the optimization at step t. We

define X̂k
q = x̂k,C

q,q +
∑

p x̂
k,p
q,q and X̂k

p,
∏

i∈[1,l] pi,q
= x̂k,p

q,q

∏
i∈[1,l] x̂

k,p
piq

+ x̂
k,Cq
q,q [pi =

q,∀i ∈ [1, l]]. Then, the updates reduce to:

w −=st(τ∇J(w) +
∑
k

δkw), λk
p,q −= st(

X̂k
q

| V k | +1
− x̂k,p

q,q )

λk
Cq
−=st(

X̂k
q

| V k | +1
− x̂k,C

q,q )

(D.8)
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where

δkw =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q∈V k

fp,p1,...,pl,q(x
k
p,q

∏
i∈[1,l]

xk
pi,q

, d)−

∑
q∈V k

(X̂k
q f

k
q,q +

∑
l∈[0,h−2]

(
∑

p ̸=q∈V k

∑
pi∈{p,q}∀i∈[1,l]

x̂k,p
p,q x̂

k,p
q,qf

k
p,p1,...,pl,q

+

1

| V k | +1

∑
p∈V k

∑
pi∈{p,q}∀i∈[1,l]

X̂k
p,
∏

i∈[1,l] pi,q
fk
q,
∏

i∈[1,l] pi,q
))

(D.9)

Appendix E. Extension to Cluster Metrics

A final interesting addition we can bring to our higher-order distance

learning framework is to consider a metric between a sample and a ground

truth cluster. The difference between this particular setting and the previous

higher-order metrics is that here we will consider a metric able to tackle sets

of objects of different sizes (the size of the clusters) and thus will not have a

defined order. The interest in such a distance is to benefit from a structural

metric characterizing the closeness between a sample and a given cluster.

During inference, it will be especially valuable for identifying the most suited

cluster for a sample.

We formulate this new problem by adding to the higher-order distance

defined in the previous section a term wTfp,C(y
k) for any p ∈ V k and any

C ∈ Ck. Then, from the previously defined energy E(x, d)k we will define

our new energy

Ek∗(x, d) = Ek(x, d) +
∑
p∈V k

∑
C∈Ck

wTfp,C(y
k)
∑
q∈C

xp,q

where we penalize the assignment of a sample p to a center q by the distance

between the sample and the center’s cluster according to given cluster-wise
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feature functions. First, regarding the optimization over {xk} for a fixed

vector w. As previously, the satisfaction of the constraints induces to find

the cluster centers q minimizing for its cluster C:

argmin
q∈C

(
∑

l∈[0,h−2]

∑
p1,..,pl,p∈C

dkp,p1,...,pl,qxp,q

∏
i∈[1,l]

xpi,q +
∑
p∈C

wTfp,C(y
k)xp,q) (E.1)

xk is inferred by assigning each sample of a cluster to the cluster center. We

modify the cluster-wise slave problems of the dual decomposition as follows:

Ēk∗
C (x,w) = Ēk

C(x,w) +
∑
p∈V k

wTfp,C(y
k)
∑
q∈C

xp,q +
1

2(| V k | +1)
wTfq,C(y

k)
∑
q∈C

xq,q

(E.2)

with Ēk
C(x,w) the energy defined as in equation D.4. Therefore, the cluster-

wise slave resolution is now:

Lemma 10. For fixed C ∈ Ck. Let θk∗q =

∑
l∈[0,h−2] u

k
q,...,q(1) + fq,C(y

k)

| V k | +1 + λk∗
Cq

,

∀q ∈ V k. A minimizer x̂k,C∗ of Ēk
k,C∗(x,w, λ

k∗) is given, ∀q ∈ C, by:

x̂k,C∗
q,q =


[θk∗q < α(| V k | −|Ck|)],

if
∑

q′∈C [θ
k∗
q − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise

(E.3)

The updates are defined as:

Lemma 11. Let st be the weight granted to the optimization at step t. We

consider X̂k
q and X̂k

p,
∏

i∈[1,l] pi,q
as defined in lemma 9.

w∗ −=st(τ∇J(w) +
∑
k

δk∗w ), λk∗
p,q −= st(

X̂k
q

| V k | +1
− x̂k,p

q,q )

λk∗
Cq
−=st(

X̂k
q

| V k | +1
− x̂k,C∗

q,q )

(E.4)
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where

δk∗w =δkw +
∑
p∈V k

∑
C∈Ck

fp,C(y
k)
∑
q∈C

xk∗
p,q −

∑
p∈V k

∑
C∈Ck

fp,C(y
k)
∑
q∈C

(xk,C∗
p,q + xk,p

p,q)+

(
X̂k

q

| V k | +1

∑
q ̸=p∈C

(xk,C∗
p,q + xk,p

p,q))

(E.5)

Appendix F. Assessment metrics

Regarding the classification metrics, we relied on criteria allowing multi-

class classification with unbalanced classes as Balanced Accuracy (BA), Weighted

Precision (WP), Weighted Recall (WR), and Weighted F1-score (WF). In a

general multi-class setting for a set of classes C, we consider each class c ∈ C

in one-versus-rest. We denote the set of true positives of class c as yc, and

the set of samples predicted positive for class c as yPc . We define the precision

(P), recall (R), and F1-score (F) of a class c ∈ C against all the other classes

as:

P (c) =
| yPc ∩ yc |
| yPc |

, R(c) =
| yPc ∩ yc |
| yc |

, F (c) =
2P (c)R(C)

2P (c) +R(c)

Recall corresponds to the True Positive Rate for the class c. Precision

is the Positive Predictive Value. F1-score represents the harmonic mean

between R and P. Then, the weighted version WS of a metric S ∈ {P,R, F}

corresponds to the average of S over all classes of C weighted by the size of

the classes:

WS =
1∑

c∈C | yc |
∑
c∈C

| yc | S(c)

Finally, the balanced accuracy is the proportion of correctly predicted sam-

ples normalized by the number of samples in the class. Formally, it is defined
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as:

BA =
1∑

c∈C | yc |
∑
c∈C

| yPc ∩ yc |
| yc |

Appendix G. Simulated Benchmark with 3 Clusters

Second-order
Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Baseline

Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Baseline 1 0.33 0.33 1 0.07 0.06 1 0.25 0.25 1 0.75 0.75

GHOST Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

p Training Validation Test Training Validation Test Training Validation Test Training Validation Test

0 1 1 1 1 1 1 1 1 1 1 1 1

0.1 1 1 1 1 1 1 1 1 1 1 1 1

0.2 1 0.92 1 1 0.93 1 1 0.9 1 1 0.96 1

0.3 1 0.66 0.92 1 0.43 0.93 1 0.6 0.89 1 0.86 0.96

0.4 0.97 0.55 0..72 0.97 0.81 0.85 0.97 0.47 0.67 0.99 0.82 0.89

0.5 0.73 0.34 0.33 0.87 0.21 0.64 0.73 0.26 0.26 0.91 0.75 0.75

Appendix G.1. Convergence Criterion Evolution

Here, we report a Figure of the convergence criterion evolution through

the different training steps for GHOST and the second-order formulation.

While the values are not comparable, it allows us to compare the convergence

time for each algorithm and the number of steps required in the challenging

case of distance learning with three clusters.
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Figure G.2: Convergence Criterion Evolution through the learning process.

47


	Introduction
	Related Work
	Methodology
	Center-Based Clustering
	Metric Learning Formulation
	Max-Margin Energy
	Optimizing over {xk}
	Dual Decomposition
	Slave Problems Optimization
	Point-Wise Subproblem Solution {k,p}
	Cluster-Wise Subproblem Solution {k,C}
	Optimizing over  and w

	Generalization to Higher-Order Distances
	Extension to Cluster Metrics
	Time Complexity Analysis
	Extracting and Leveraging Structural Information from Data
	Leveraging a Task Dedicated Distance for Classification

	Implementation Details
	Results and Discussion
	Synthesized Dataset
	Covid-19 Dataset

	Conclusion
	Optimizing over {k,p}
	Optimizing over {k,C}
	Optimizing over  and w
	Generalization to Higher-Order Distances
	Optimizing over {k,p}
	Optimizing over {k,C}
	Optimizing over  and w


	Extension to Cluster Metrics
	Assessment metrics
	Simulated Benchmark with 3 Clusters
	Convergence Criterion Evolution


