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Sparse coding is now one of the state-of-art approaches for solving inverse problems. In combination with (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA), among other algorithms, one can efficiently get a nice estimator of the sought sparse signal. However, the major drawback of these methods is the tuning of the so-called hyperparameter. In this paper, we first provide an Expectation-Maximization (EM) algorithm to estimate the parameters of a Bernoulli-Gaussian model for denoising a sparse signal corrupted by a white Gaussian noise. Then, building on the Expectation-Maximization interpretation of ISTA, we provide a simple iterative algorithm to blindly estimate all the model parameters in the linear inverse problem context, including the hyperparameter involved in the popular 0 regularized minimization. Moreover, the algorithm directly yields an estimator of the sparse signal.

INTRODUCTION

Sparse coding is now one of the state-of-the-art approaches for linear inverse problems [START_REF] Ribes | Linear inverse problems in imaging[END_REF][START_REF] Starck | Sparsity and inverse problems in astrophysics[END_REF] of the form

y = Hx + e (1) 
where y ∈ R Ny is the observed/measured signal, x ∈ R Nx is the original signal, H ∈ R Ny ×Nx is a linear operator, and e ∈ R Ny is some noise supposed to be white and Gaussian. Usually, the signal x is supposed to admit a sparse representation in a chosen, or learned, dictionary of atoms [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF]. Without loss of generality, we suppose here that the signal x is sparse.

A popular approach to estimate sparse signals relies on the minimization of min

x 1 2 y -Hx 2 + λR(x) (2) 
where . refers to the 2 norm, R is a regularization term enforcing sparsity, such as 1 or 0 (quasi)-norms, and λ > 0 is a fixed hyperparameter. Solving (2) can be efficiently done using proximal descent methods [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] and more particularly the (Fast) Iterative Shrinkage/Thresholding (FISTA) [START_REF] Beck | A fast iterative shrinkagethresholding algorithm for linear inverse problems[END_REF] and Iterative Hard Thresholding (IHT) [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF] algorithms for the 1 and 0 problems, respectively. One of the main drawbacks of the optimization approach (2), is the tuning of the hyperparameter λ. In the pure denoising case, one can use the Stein Unbiased Risk Estimator (SURE) for choosing the λ with the 1 regularization [START_REF] Blu | The SURE-LET approach to image denoising[END_REF]. In [START_REF] Giryes | The projected GSURE for automatic parameter tuning in iterative shrinkage methods[END_REF], the authors proposed the Generalized-SURE (GSURE) to extend the SURE approach to inverse problems solving with 1 regularization. For the 0 problem, This work was supported by the French National Agency for Research through the BMWs project (ANR-20-CE45-0018).

the SURE approach no longer applies, and the SCORE approach has been proposed [START_REF] Deledalle | Stein consistent risk estimator (score) for hard thresholding[END_REF] in the denoising case.

An alternative is the Bayesian framework, where sparsity is modeled through a suitable prior. A popular choice is the Bernoulli-Gaussian (BG) model [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF], which is strongly related to the 0 regularized problem through the maximum a posteriori estimator [START_REF] Soussen | From Bernoulli-Gaussian deconvolution to sparse signal restoration[END_REF]. In [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF], the authors proposed a stochastic-EM procedure to estimate the sparse solution of a deconvolution problem. Indeed, a classical EM procedure appears intractable because of the combinatorial aspect due to the BG prior. Following the EM approach developed in [START_REF] Figueiredo | An EM algorithm for waveletbased image restoration[END_REF] which relies on an additional latent variable, [START_REF] Kowalski | An unsupervised algorithm for hybrid/morphological signal decomposition[END_REF] proposed an iterative procedure to estimate the parameters of a BG model when the matrix H is a union of unitary dictionaries. However, with the chosen prior on the hyperparameters, this approach leads to a non-convergent estimate even in the denoising case as shown in [START_REF] Gassiat | On simultaneous signal estimation and parameter identification using a generalized likelihood approach[END_REF]. Moreover, preliminary experiments show that the method is not robust for the general inverse problem. Finally, MCMC approaches for the BG sparse model do not scale well in practice [START_REF] Ge | A new MCMC algorithm for blind Bernoulli-Gaussian deconvolution[END_REF] although recent efforts have been carried out to improve their efficiency [START_REF] Amrouche | A partially collapsed Gibbs sampler for unsupervised nonnegative sparse signal restoration[END_REF].

This article deals with the unsupervised estimation of the BG parameters. In the denoising case, we first develop an EM algorithm to estimate all the parameters of the Bernoulli model in section 2. Then, in section 3, we revisit the approach [START_REF] Figueiredo | An EM algorithm for waveletbased image restoration[END_REF], using an additional latent variable, to extend the EM estimation in the linear inverse problem context. Furthermore, we propose an iterative algorithm similar to ISTA that estimates the model parameters and provides an estimation of the sparse signal x. These approaches are evaluated on both simulated and real data in section 4.

BG PRIOR AND DENOISING

We first study the denoising case, i.e. H = IN with N = Ny = Nx:

y = x + e . (3) 
We assume a BG prior on x denoted by x ∼ BN (p, 0, σ 2 x IN ). That is, for each coordinate n of x, we have

p(xn|p, σ 2 x ) = (1 -p)δ(xn) + p 1 √ 2πσ 2 x e - x 2 n 2σ 2 x ( 4 
)
where δ stands for the Dirac delta function. The parameter p ∈ (0, 1) is directly related to the level of sparsity, i.e., the rate of non-zero components in vector x -the smaller, the sparser -while parameter σ 2

x is related to the range of the nonzero components. The noise is assumed to be white and Gaussian:

e ∼ N (0, σ 2 e IN ) . (5) 
The goal is to estimate the model parameters θ = (σ 2 e , p, σ 2 x ) by maximizing the likelihood of data y, in an empirical Bayes fashion.

Using x as a hidden variable, we can derive an EM algorithm:

θ (t+1) = argmin θ E x|y,θ (t) [L(y, x|θ)] . (6) 
where L(y, x|θ) = -log p(y, x|θ). The following proposition summarizes the E-step of the algorithm. For the sake of conciseness, we denote by Nx µ,

σ 2 = 1 √ 2πσ 2 exp (-(x-µ) 2 2σ 
2 ). Proposition 2.1 (E-step for denoising). Consider the BG denoising model (3)-( 5) and denote by θ (t) = {(σ 2 e ) (t) , p (t) , (σ 2 x ) (t) } the estimated parameters at iteration t. Furthermore, define ) . (7) Then, the expectation term within (6) reads:

φ (t) n = p (t) Ny n (0, (σ 2 x ) (t) + (σ 2 e ) (t) ) p (t) Ny n (0, (σ 2 x ) (t) + (σ 2 e ) (t) ) + (1 -p (t) )Ny n (0, (σ 2 e ) (t) ) with µ (t) = (σ 2 x ) (t) (σ 2 x ) (t) + (σ 2 e ) (t) , ν (t) = (σ 2 x ) (t) (σ 2 e ) (t) (σ 2 x ) (t) + (σ 2 e ) (t
E x|y,θ (t) [L(y, x|θ)] = C + 1 2σ 2 e N n=1 y 2 n (1 -φ (t) n ) +N log σe 1 -p + 1 2σ 2 e N n=1 (µ (t) -1) 2 y 2 n + ν (t) φ (t) n + 1 2σ 2 x N n=1 (µ (t) yn) 2 + ν (t) φ (t) n + log 1 -p p σx N n=1 φ (t) n ( 8 
)
where C is some constant which does not depend on θ.

Sketch of proof. Thanks to the componentwise independence of the prior and likelihood functions, the expectation reduces to a sum of coordinate-wise operations:

E x|y,θ (t) [L(y, x|θ)] = N n=1 E xn|yn,θ (t) [L(yn, xn|θ)].
The coordinate neg-log-likelihood is further developed into:

L(yn, xn|θ) = (yn -xn) 2 2σ 2 e + 1 2 log[σ 2 e ] -log p(xn|θ) + C
Let us now calculate the law of xn|yn, θ (t) . To do so, we apply Bayes' rule with the prior distribution (4). Up to a few rearrangements (to isolate the factors depending on xn), we get:

p(xn|yn, θ (t) ) = (1 -p (t) )δ(xn) Ny n (0, (σ 2 e ) (t) ) p(yn|θ (t) ) + p (t) Nx n µ (t) yn, ν (t) Ny n (0, (σ 2 x ) (t) + (σ 2 e ) (t) ) p(yn|θ (t) )
with µ (t) and ν (t) given by [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF], which rereads:

p(xn|yn, θ (t) ) = (1 -φ (t) n ) δ(xn) + φ (t) n Nx n µ (t) yn, ν (t) .
It follows that

E xn|yn,θ (t) [xn] = µ (t) ynφ (t) n (9) E xn|yn,θ (t) x 2 n = (µ (t) yn) 2 + ν (t) φ (t) n (10) 
Finally, using that

-log p(xn|xn = 0, θ) = 1 2 log[σ 2 x ] + x 2 n 2σ 2 x -log[p] + C -log p(xn = 0|θ) = -log[1 -p]
one gets

E xn|yn,θ (t) [-log p(xn|θ)] = log 1 -p p σx φ (t) 1 + (µ (t) yn) 2 + ν (t) 2σ 2 x φ (t) 1 -log(1 -p) + C. (11) 
To complete the EM algorithm, it remains to minimize the negative log-likelihood. By setting the derivative to zero w.r.t. θ of ( 8), we get a closed-form expression of the EM summarized now. Proposition 2.2 (M-step for denoising). Consider the BG denoising model (3)- [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. Then, the EM solution θ (t+1) at iteration t + 1 is given by

p (t+1) = 1 N N n=1 φ (t) n , (σ 2 x ) (t+1) = ν (t) + (µ (t) ) 2 N p (t+1) N n=1 y 2 n φ (t) n (σ 2 e ) (t+1) = 1 N N n=1 y 2 n - 2µ (t) N N n=1 y 2 n φ (t) n + p (t+1) (σ 2 x ) (t+1)
Once all the θ parameters are estimated using the EM procedure, one can choose any estimator for x. In the following, we will be explicitly interested in the two estimates studied in [START_REF] Protter | Closed-form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary[END_REF] for denoising, that is, the so-called marginal MAP (MMAP) estimator and the posterior mean estimate. The MMAP estimator consists of estimating first the support of the sparse signal by marginalizing out the nonzero coefficients of x. It reads [START_REF] Protter | Closed-form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary[END_REF]:

x M M AP n = σ 2 x σ 2 x +σ 2 e yn if |yn| > λ M M AP 0 otherwise (12) 
with

λ M M AP = 2σ 2 e σ 2 e + σ 2 x σ 2 x log 1 -p p 1 + σ 2 x σ 2 e . (13) 
The posterior mean estimator is given by Eq. [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF]. One can notice that this is generally a non-sparse signal.

EXTENSION TO INVERSE PROBLEMS

As stressed in [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF], the EM approach with BG prior is intractable for general inverse problems. Following Figueiredo and Nowak's approach [START_REF] Figueiredo | An EM algorithm for waveletbased image restoration[END_REF], we introduce a latent variable z ∈ R Nx such that to ensure a nondegenerate distribution. In [START_REF] Figueiredo | An EM algorithm for waveletbased image restoration[END_REF], z was used as the hidden variable in an EM algorithm, which turns on to the popular ISTA, to estimate the sparse signal x: the E-step reduces to the gradient descent on the 2 data-fidelity term while the M-step reduces to the proximal operator associated with the regularizer. Here, we use z as a latent variable to be estimated (as in Sparse Bayesian Learning [START_REF] Wipf | Sparse Bayesian learning for basis selection[END_REF]) and consider x as the hidden variable that is marginalized out. Let α ≤ 1 be a fixed parameter such that 

y = Hz + n , z = x + b (14 
min z -log p(y|z, σ 2 e (t+1) ) + E x|z (t) ,θ (t) 1 2σ 2 b (t+1) z -x 2 + C
where C is some constant which does not depend on z. Let x(t) = E x|z (t) ,θ (t) {x} be the posterior mean estimate of the BG denoising problem with respect to z (t) given by [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF]. Using the linearity of the expectation, the minimization with respect to z reads 

p(z|y, x(t) , σ 2 e , θ (t+1) ) being Gaussian, the minimizer, denoted by z (t+1) , reads [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF] 

z (t+1) = x(t) + α HH T H T y -Hx (t) (20) 
Algorithm 1 summarizes this EM procedure. of the noise. It turns out that by construction, the algorithm provides an estimate for x, which is the posterior mean of the denoising problem for z. Furthermore, one can also compute the threshold associated with the MMAP estimator in the denoising step related to z (t) , that is λ M M AP as given in [START_REF] Figueiredo | An EM algorithm for waveletbased image restoration[END_REF]. The following numerical experiments show that these values can be used to tune the hyperparameter λ in the classical 0 minimization.

NUMERICAL EXPERIMENTS

Evaluation is carried out for denoising and deconvolution of signals and images. To this aim, we simulate BG sparse signals as follows. For an arbitrary sparsity level p ∈ (0, 1), we set σ 2

x = 1, and σ 2 e is chosen according to the desired input Signal-to-Noise Ratio (iSNR = 10 log 10

Hx 2 e 2
). We generate 100 realizations of a vector y = Hx + e of size 40 000. We also tested our approach on the fishing boat test image of size 512 × 512. We used a Daubechies-4 orthogonal wavelet transform to get sparse coefficients. We initialize the parameters to be estimated by EM using the method of moments, and the sparse coefficients by zeros. We have fixed α = 1. The comparisons are mainly based on the output SNR (oSNR = 10 log 10 x 2

x-x 2 , where x is the current estimate of x). The experiments are run with Python on a laptop with an Intel Core i7 CPU at 1.8 GHz with 16 GB of RAM.

Denoising

Fig. 1 illustrates the ability of the EM procedure, given by Prop. 2.2, to recover the parameters of simulated signals in the case of a denoising problem. We display the relative error on a given parameters, i.e. θi -θ i θ i , denoting by θi the estimated value. Fig. 2 deals with the denoising problem of simulated signals with p = 0.01. The proposed approach is compared with denoising by hard thresholding, i.e. the set of 0 solutions obtained for a wide range of hyperparameter λ, see [START_REF] Starck | Sparsity and inverse problems in astrophysics[END_REF]. The parameter estimates provided by our procedure turn out to be very accurate. In turn, our unsupervised approach yields a posterior mean estimate that reaches the best oSNR.

We can see in Fig. 3 that for image denoising, the proposed unsupervised posterior-mean estimator remains very competitive. Here, the best oSNR is reached by the hard-thresholding algorithm with specific values of λ. 

Deconvolution

In the following experiments, the operator H corresponds to a convolution operator (which behaves like a low-pass filter) combined to the orthogonal wavelet transform. The normalized convolution kernel is K(px, py) = px+0.5 px-0.5 py+0.5 py-0.5 Nx (0, η) Ny (0, η) dxdy, where η controls the width of the kernel. In this experiment, BG signals are drawn with p = 0.01. We evaluated the ability of the algorithm to recover the parameters for various η. Fig. 4 shows the relative error for each parameters. We can stress that the parameters are recovered precisely whenever η ≤ 0.3. Fig. 5 compares the proposed approach with 0 minimization, performed using the IHT algorithm with warm restarts [START_REF] Hale | Fixed-point continuation for 1-minimization: Methodology and convergence[END_REF]. When the kernel becomes wide, the oSNR given by the MMAP value of λ for the 0 minimization outperforms the posterior-mean estimate. The unsupervised value of λ provided by our approach is closed to the best possible oSNR achieved by the 0 minimization. For image deconvolution, the posterior-mean estimate provides excellent empirical results for small kernels. Its performances collapse for wide convolution kernels. However, the MMAP value of λ appears to be more robust. Using a redundant wavelet transform could help improving the empirical results by providing sparser coefficients. Moreover, the proposed algorithm does not benefit from warm-restarts contrary to the 0 minimization. 

CONCLUSION

We proposed fully unsupervised algorithms based on an EM procedure to estimate the parameters of a BG prior. For denoising, we have shown empirically that the estimation is excellent and robust. The posterior-mean estimate reaches then the best possible empirical oSNR as expected. For inverse problems, the EM approach relies on an additional latent variable which reduces to an iterative algorithm such as ISTA, where the previous denoising EM procedure replaces the proximal step. In addition to a posterior-mean estimate, which depends on the latent variable, we also provide a value for the hyperparameter λ used in the 0 minimization. Future works will study how our approach could exploit warm-start strategies to improve the estimation of the parameters in difficult inverse problems. We also plan to do a proper comparison with Bayesian approaches such as [START_REF] Chaari | Sparse signal recovery using a bernoulli generalized gaussian prior[END_REF][START_REF] Juan G Serra | Variational em method for blur estimation using the spike-and-slab image prior[END_REF]. Results on inverse problems with images should also benefit from a translation-invariant wavelet transform, which produces sparser representations.
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