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Magnetoelastic measurements in the piezomagnetic antiferromagnet UO2 were performed via the
fiber Bragg grating method in magnetic fields up to 150 T generated by a single-turn coil setup. We
show that in short timescales, order of a few micro seconds, pulsed-magnetic fields excite mechan-
ical resonances at temperatures ranging from 10 K to 300 K, in the paramagnetic as well as within
the robust antiferromagnetic state of the material. These resonances, which are barely attenuated
within the 100 ms observations, are attributed to the strong magnetoelastic coupling in UO2 com-
bined with the high crystallographic quality of the single crystal samples. They compare well with
mechanical resonances obtained by a resonant ultrasound technique and superimpose on the known
non-monotonic magnetostriction background. A clear phase-shift of π in the lattice oscillations is,
unexpectedly, observed in the antiferromagnetic state when the magnetic field overcomes the piezo-
magnetic switch-field Hc ' −18 T. We further present simulations and a theoretical argument to
explain the observed phenomena.

I. INTRODUCTION

The antiferromagnetic (AFM) insulator Uranium diox-
ide UO2 has been the subject of extensive research during
the last decades predominantly due to its widespread use
as nuclear fuel in pressurized heavy water reactors. Be-
sides efforts to understand the unusually poor thermal
conductivity of UO2 which impacts its performance as
nuclear fuel [1], a recent magnetostriction study in pulsed
magnetic fields to 92 T uncovered linear magnetostriction
in UO2 [2] - a hallmark of piezomagnetism.

Piezomagnetism is characterized by the induction of
a magnetic polarization by application of mechanical
strain, which, in the case of UO2, is enabled by bro-
ken time-reversal symmetry in the 3-k antiferromagnetic
structure which emerges below TN = 30.8 K [3–6] and
is accompanied by a Jahn-Teller distortion of the oxy-
gen cage [7–10]. This also leads to a complex hysteretic
magnetoelastic memory behavior where magnetic domain
switching occurs at fields around ±18 T at T = 2.5 K. In-
terestingly, the very large applied magnetic fields proved
unable to suppress the AFM state that sets in at TN [2].
These earlier results provide direct evidence for the un-
usually high energy scale of spin-lattice interactions, and
call for further studies in higher magnetic fields.

Here we present axial magnetostriction data obtained
in a UO2 single crystal in magnetic fields to 150 T.

∗ rschoenemann@lanl.gov
† mjaime@lanl.gov

These ultra-high fields were produced by single-turn coil
pulsed resistive magnets and applied along the [111] crys-
tallographic axis at various temperatures between 10 K
and room temperature. We see, at all temperatures, a
dominant negative magnetostriction proportional to the
square of the applied field accompanied by unexpectedly
strong oscillations that establish a mechanical resonance
in the sample virtually instantly upon delivery of the
ultra-fast, 102 T/µs, magnetic field rate-of-change. The
oscillations observed quickly set, well within a single os-
cillation period, are long-lasting due to very low losses,
with frequencies in the hundreds of kilohertz that match
mechanical resonances obtained with a resonant ultra-
sound spectroscopy (RUS) technique [11]. When the
sample temperature is reduced, the frequencies soften,
consistent with observations in studies of the UO2 elas-
tic constant c44 as a function of temperature [12]. When
the magnetic field is applied at temperatures T < 30.8 K
in the AFM state, the magnetic field changes sign to a
negative field magnitude (a characteristic of destructive
magnets) in excess of the UO2 AFM domain-switch-field
of ' -18 T. This negative field that follows a positive field
pulse exposes yet another unexpected result, namely a π
(180o) phase-shift in the magnetoelastic oscillations. We
use a driven harmonic oscillator and a analytical model
to shed light on the origin of our findings.
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FIG. 1. (a) Uniaxial magnetostriction ∆l/l0 of a UO2 single crystal along the [111] axis for T = 10 K (red line) and 40 K (black
line). The dashed blue line is a 2nd order polynomial fit of the 40 K data representing the expected magnetostriction behavior.
The arrows marking up and down sweep of the magnetic field. The inset shows a picture of the UO2 single crystal attached to
the FBG-furnished fiber. Note that the sample is not physically attached to the sample holder, other than through the 125µm
optical fiber. A copper coil, located next to the sample was used to measure the magnetic field. (b) ∆l/l0 of UO2 as a function
of time for pulses at different temperatures between 10 and 300 K. The spike in ∆l/l0 during the first few microseconds is
caused by the magnetostriction of the sample (shown in (a)) due to the changing magnetic field during the field pulse (d),
whereas the oscillatory part of the signal continues after the field decayed to zero. A detailed view of the oscillations at 40 K
is shown in the inset (c) as well as the magnetic field vs. time during the first 20µs (d).

II. METHODS

In this work, the magnetostriction signal of UO2 was
measured with a 100 MHz coherent pulse fiber Bragg in-
terrogation method. The setup is driven by a mode-
locked pulsed 90 fs Er laser with a 100 MHz repetition
rate and allows interrogation speed on the 10 ns scale.
This method offers a faster readout rate than traditional
fiber Bragg grating (FBG) interrogation systems which
operate in the range of several kHz [13]. The UO2 single
crystal was attached to the optical fiber using an epoxy
encapsulant with the crystallographic [111] axis aligned
parallel to the fiber and the magnetic field. A picture of
the sample is shown as an inset in figure 1(a). Details
about the FBG setup can be found in Ref. [14]. During
the field pulse, the induced voltage in a small copper coil,
located in close proximity to the sample (see picture in
figure 1(a)), was used to measure the magnetic field.

The magnetic field was generated with a semi destruc-
tive capacitor-driven single-turn coil magnet system at
the National High Magnetic Field Laboratory’s pulse
field facility at Los Alamos National Laboratory. The
system is designed for fields up to 300 T with a rise time
of approximately 2.5µs. Note that for magnetic fields
in the region of 200 T and above, damage to the cryo-
stat and sample becomes increasingly likely. Therefore
magnetic fields were limited to ≈ 150 T in this study,

with a peak rate of change in the order of 102 T/µs. Fur-
ther details about the single-turn coil setup are presented
in Refs. [15, 16]. Optical measurement techniques, like
the FBG method used here, are in general advantageous
in single-turn experiments when compared to, e.g., elec-
trical capacitance-based dilatometry measurements pre-
dominantly due to optical fibers being impervious to the
large induced voltages generated inside even small metal-
lic loops caused by the large dB/dt, as well as the asso-
ciated electromagnetic noise.

The measurement of the natural mechanical reso-
nances of elastic vibration where several normal modes
of the sample are determined, is obtained with a set
of piezoelectric transducers using a technique known as
resonant ultrasound spectroscopy. Here, one transducer
serves as source of the tunable sinusoidal wave of fre-
quency f and the other serves as detector at the syn-
chronous frequency of the sample’s response. The elec-
tronics and room temperature apparatus was described
in detail by Balakirev et al. [11]. In our case, the trans-
ducer had an Al2O3 hemisphere that allows precise and
reproducible point contact on desired positions of the
crystal [17]. As a frequency scan is performed, a res-
onance peak is observed at each of the normal modes.
We performed resonant mode measurements on UO2 sin-
gle crystals alone as well with the 125µm optical fiber
attached.
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FIG. 2. Magnetic field vs. time of a 146 T pulse in a single-
turn coil (a) and a 60 T pulse in a non-destructive short
pulse magnet (b). (c) Fourier transformations of the field
vs. time curves shown in (a, b). FFT’s of the short pulse
magnet/single-turn pulses are depicted by red/black lines re-
spectively.

III. RESULTS

Magnetostriction ∆l/l0 vs. magnetic field curves at
T = 10 K and 40 K are displayed in Fig. 1. We ob-
serve an overall negative magnetostriction signal at high
fields as expected from previous results in pulsed mag-
netic fields to 92 T [2] with no indication of suppression
of the robust AFM order. However, the signal is highly
hysteretic due to the large mechanical resonances that are
superimposed on the magnetostriction signal. The mag-
netostriction signal itself roughly follows a second order
polynomial field dependence (blue dashed line).

The field-induced mechanical resonances become
clearer when ∆l/l0 is plotted as a function of time (Fig.
1(b)). Oscillations start with the onset of the field pulse
and persist during the entire data acquisition period
(100µs at 300 K, 50µs for lower temperatures). The
high quality of our UO2 crystal is probably a key fac-
tor behind the low attenuation of the mechanical reso-
nances observed in the experiment. This is validated by
a large quality factor Q = f/w found by RUS and rang-
ing from 2500 to 5000. Here, f is the frequency and w the
width of the resonance (fitted by a Lorenzian). The onset
of the mechanical resonances is approximately instanta-
neous, which indicates that they arise as a response to
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FIG. 3. (a) Fourier transforms of ∆l/l0 shown in figure 1(b)
displaying three dominant frequencies labeled as f1, f2 and f3.
The low frequency peaks originate from the background mag-
netostriction. (b) Resonant ultrasound spectroscopy (RUS)
spectra at T = 300 K. The RUS spectra of the bare sample
(black line) and the sample with the attached optical fiber
(red line) were recorded along the [111] axis. (c) Normalized
temperature dependence of f1,2,3.

the magnetic field change and the strong magnetoelastic
coupling. Hence, it does not appear that this mechanism
is triggered by the shock wave generated by the disinte-
gration of the single turn coil which would need a few
microseconds to reach the sample. A similar experiment
run with identical interrogation parameters and a bare
FBG sensor, i.e. with no sample attached to the fiber,
yielded no detectable mechanical resonances.

In order to understand the origin of the observed me-
chanical resonances, we compare the typical field vs. time
profile of a 146 T pulse performed in a single turn coil
(Fig. 2(a)) with a 60 T shot in a short-pulse magnet (Fig.
2(b)). The field generated by the short pulse magnet has
a total duration of about 100 ms with a rise time of 10 ms.
The single turn coil on the other hand has a pulse dura-
tion in the order of 25µs and a rise time of 2.5µs (×4000
faster compared to the non-destructive magnet). Fur-
thermore, the field switches sign several times, referred
to as magnetic field recoil, displaying a significantly less
attenuated behavior than the short-pulse magnet. The
extremely short timescales in the single turn pulse re-
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FIG. 4. (a) ∆l/l0 vs. time at 10 K with a peak field of 126 T before (black line) and after (red line) the 700-1200 kHz band pass
filter was applied. The experimental data is compared to a driven harmonic oscillator model with a characteristic frequency
of 800 kHz matching the dominant oscillations seen during the field pulse in the magnetostriction signal (grey curve). The
experimental data and the model show a π phase shift around 7.3µs marked by the grey vertical line. (b) Magnetoelastic
oscillations at 10, 40 and 70 K after application of a 700-1200 kHz band pass filter to the experimental data. Curves are shifted
for clarity in figures (a, b). (c) Fast Fourier Transform of ∆l/l0 at T = 10 K. The windows of the band pass filter (W1, W2,
W3) are highlighted in different colors. The filtered curves (black lines) for each window are shown in (d) and are compared
with sinusoidal functions indicated as red dashed lines.

sults in a shift of the Fast Fourier Transform (FFT) of
the field pulse towards higher frequencies up to several
MHz (i.e., high frequencies are 50 dB more intense) which
is displayed in Fig. 2(c). Thus, if the system under
study is magnetic - the field-pulse itself can, by virtue
of the strong magnetoelastic coupling present in UO2

[12, 18, 19], excite mechanical resonances in the range
of several 100 kHz.

The FFT of ∆l/l0(t) in UO2 reveals three distinct fre-
quencies labeled f1, f2 and f3 for temperatures between
40 and 300 K, as shown in Fig. 3(a). All modes display a
softening as the temperature is lowered and a stiffening
below TN (Fig. 3(c)), in agreement with previous mea-
surements of the elastic constants of UO2 which show
a similar behavior [12]. Three independent elastic con-
stants c11, c12 and c44 exist for a lattice with cubic sym-
metry. The distinct temperature dependence of all three
mechanical resonance frequencies f1−3 indicates that we

probe predominantly resonances that are associated with
c44 [12]. The observed frequencies are in agreement with
RUS data obtained at 300 K, shown in Fig. 3(b). The
RUS measurements reveal a rich spectrum of sharp res-
onances in the frequency range up to 1 MHz. When the
crystal is attached to the fiber, a broadening of resonance
peaks is observed, as well as a decrease in amplitude, in-
dicating a larger damping, product of a larger system
consisting of the crystal, glue and fiber. Nevertheless,
the overall range of mechanical resonance frequencies ob-
served in the magnetostriction measurements is compara-
ble with RUS spectra. In the FBG measurements we ob-
serve three distinct frequencies. The additional mechani-
cal resonance frequencies present in the RUS spectra are
potential resonances that are either completely damped
by the attached fiber and encapsulant or they only have
a small compressive component parallel to the fiber since
the FBG method is less sensitive to sheer strain. Note
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that the RUS measurements on the bare UO2 crystal
were performed on a ≈ 2 mm longer sample than the
FBG and RUS measurements with the optical fiber at-
tached. The change of the sample geometry also affects
the mechanical resonance frequencies.

Upon cooling the sample below the antiferromagnetic
transition we observe a substantial change in the mechan-
ical resonances when compared to temperatures above
TN:

(i) In the data recorded at 10 K, within the AFM or-
dered phase, the resonances appear to be significantly
damped after t ≈ 7µs, particularly the FFT amplitude
of f3 = 800 kHz is suppressed when compared to f1 and
f2, in contrast to the Fourier transforms of the data sets
above TN where f3 is clearly the dominant resonance
(Fig. 3(a)). The attenuation effect becomes more ap-
parent when band pass filters are applied to the experi-
mental data, isolating the individual resonances and re-
moving the magnetostriction background (Fig. 4(a, b,
d)). We show that, when compared to f3, the amplitude
of lower resonances f2 and f3 does not display a drastic
change for t > 7µs. The beating pattern observed in
f3 indicates the presence of two resonances very close to
each other, which we cannot easily resolve in the FFT.
These details are also impacted by the lower and upper
limits chosen for the band pass filter.

(ii) A π phase shift can be observed in the mechanical
resonances at t ≈ 7µs which is accompanied by the ob-
served attenuation effect. One can clearly identify the π
phase shift after a 700-1200 kHz high pass filter was ap-
plied to the experimental data (Fig. 4(d)). Interestingly
only f3 shows the phase shift and both lower resonances
f1 and f2 seem not to be affected and follow a single
sinusoidal function as shown in Fig. 4(d)).

The phase shift around t ≈ 7µs coincides with a mag-
netic field value of approximately −18 T close to the field
value where a abrupt sign change of the AFM ordering
vector L0 (as defined in Ref. [20]) leads to a jump in
the lattice distortion and the characteristic piezomag-
netic butterfly that was reported in Ref. [2]. This effect
is illustrated in Fig. 5 with the piezomagnetic butterfly
shown in the inset. The origin of the phase shift can
be found in the sudden reversal of L0 (red) to the −L0

(blue) as we demonstrate in the following section.

IV. HAMILTONIAN

Following Bar’yakhtar et al. [20], we denote as L1, L2

and L3 the different AFM vectors that describe the 3-k
order in UO2, and M the average magnetization. The
magnetic unit cell below the AFM transition is made of
4 formula units, each formula unit carrying a magnetic
moment S1, S2, S3, and S4. The above AFM vectors
and magnetization can be expressed, in terms of the in-
dividual magnetic moments as:
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FIG. 5. Magnetic field (upper panel) and magnetostriction of
UO2 (lower panel) as a function of time. The magnetostric-
tion data was mapped and extrapolated onto the single turn
field profile using previously published pulse field data (Ref.
[2]) shown in the inset. The vertical line at t ≈ 7µs separates
the two states with positive (red) and negative (blue) AFM
ordering vector L0 by reaching the switching field of ≈ −18 T
in this case.

M = S1 + S2 + S3 + S4,

L1 = S1 + S2 − S3 − S4,

L2 = S1 − S2 + S3 − S4,

L3 = S1 − S2 − S3 + S4,

In the Landau approach, the thermodynamic poten-
tial must be able to describe both the paramagnetic and
AFM phases. This is achieved by performing a polyno-
mial expansion of the free energy whose terms respect
the symmetry of the highest symmetry phase [21]. Such
terms have already been worked out in Ref. [20]. The
Hamiltonian of the system can thus be written as:

Ĥ =

∫
d3rĤ(r), (1)

where Ĥ can be found in the supplemental material.
Since we are primarily interested in explaining the prop-
erties of the mechanical resonances and the π phase shift
in response to an applied pulsed magnetic fields, we make
the simplifying following assumption: the magnetic re-
sponse of the sample is primarily determined by the ex-
ternal magnetic field, and elastic vibrations do not af-
fect it significantly. As a result, we write each mag-
netic quantity under the form µ = µeq + δµ (with
µ = L1, L2, L3,M). µeq represents an equilibrium value,
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and δµ the deviation away from that value, i.e. the re-
sponse to the magnetic pulse.

We then write the mechanical equations of motion,
from which we retain ρüx

ρüx =
∂

∂x

(
∂Ĥ
∂η1

)
+

∂

∂y

(
∂Ĥ
∂η6

)
+

∂

∂z

(
∂Ĥ
∂η5

)
, (2)

In the mechanical equations, ρ is the volumic mass
and uα is the displacement field in direction α. Since the

derivations are lengthy, we will focus on the component
ux of the displacement field which, after replacing with
the Hamiltonian expression (see SI) and assuming, as
demonstrated in Ref. [20], that at equilibrium, Leq1x = L0,
Leq2y = L0 and Leq3z = L0, we write L1x = L0+δL1x, L1y =

δL1y, L1z = δL1z, etc. Similarly, Ref. [2] shows that
no magnetization seems to exist in the antiferromagnetic
phase, so we write Mx = δMx, etc. We also recall that
η1 = ∂ux

∂x , η5 = ∂ux

∂z + ∂uz

∂x , the equation can now be
written, for linear terms, as

ρüx ≈ c11
∂2ux
∂x2

+ c12

(
∂2uy
∂x∂y

+
∂2uz
∂x∂z

)
+ c44

(
∂2ux
∂y2

+
∂2uy
∂y∂x

+
∂2uz
∂z∂x

+
∂2ux
∂z2

)

+ L0(λ1 + λ′1)
∂δL1x

∂x
+ λ′1L0

(
∂δL2y

∂x
+
∂δL3z

∂x

)
+
λ

2
L0

(
∂δL1y

∂y
+
∂δL2x

∂y
+
∂δL1z

∂z
+
∂δL3x

∂z

)
. (3)

In Equation 3, the terms proportional to λ1, λ′1 and λ relate the linear change of shape of an antiferromagnetic
uniform domain with respect to antiferromagnetic excitation.

If we perform a Fourier transform ux =
∫
dq
2π

∫
dω
2π ux(q, ω)ei(q.r−ωt), etc., yielding:

(
c11q

2
x + c44

[
q2y + q2z

]
− ρω2

)
ux(q, ω) = −(c44 + c12)qx [qyuy(q, ω) + qzuz(q, ω)]

+ iqxL0 [(λ1 + λ′1)δL1x(q, ω) + λ′1 (δL2y(q, ω) + δL3z(q, ω))]

+
λ

2
L0 (qy [δL1y(q, ω) + δL2x(q, ω)] + qz [δL1z(q, ω) + δL3x(q, ω)]) (4)

We now have sets of coupled harmonic oscillators which
are driven by a force which is proportional to L0 (a cyclic
permutation x → y → z allows to get the equations for
the other components). In other words, given a proper
change of basis, we can diagonalize this set of equations
and write the displacement fields dynamical equations
under the form

(ω0(q)2 − ω2)u1(q, ω) = F1(q, ω),

with F1(q, ω) being the force driving the oscillation of u1
at pulsation ω with wavevector q. This has an obvious
solution, which is

u1(q, ω) =
F1(q, ω)

ω0(q)2 − ω2
.

We note that F1 is proportional to L0, the antiferro-
magnetic order parameter. It is then clear that upon
reversal of the AFM order, L0 −→ −L0, the force ap-
plied on the set of harmonic oscillators reverses sign, i.e.
F1 → −F1 = eiπF1 and thus a π phase shift must be ex-
perienced in the elastic oscillatory response of the sample
long enough after the pulse. Hence, sufficient switching
of the AFM order is likely the cause of the phase shift
observed in Fig. 4. It is to be noted that the main energy
couplings responsible for such an effect are quadratic in
the AFM vectors and linear in strain; in other words,
they are typical (antiferro)magnetostriction terms. We
note that some of those energy couplings are the same
ones from which piezomagnetism arises (see Equation 31-
32 from Ref. [20]).
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Therefore, by assuming that the force driving the os-
cillations is proportional to the systems strain (shown
in Fig. 5) and fixing the frequency at 800 kHz, we are
able to model the experimental data with a simple driven
harmonic oscillator. As depicted in Fig. 4(a) this har-
monic oscillator model reproduces the magnetostriction
background as well as the π phase shift in the 800 kHz
oscillations. The attenuation observed in the oscillations
after the switching of L0 is not captured by the model
and will be discussed in detail below.

V. DISCUSSION

A recent X-ray study on UO2 single crystals evidences
the presence of AFM domains and subsequently the co-
existence of AFM phases L0 and −L0 connected by time-
reversal even in magnetic fields beyond the piezomagnetic
switching field [22]. This is also supported by magne-
tostriction measurements [2], which show that the first
pulse taken below TN always has a smaller magnetostric-
tion slope for fields below the switching field. This could
be caused by the coexistence of all possible domains, with
some contracting and some expanding as the field in-
creases. In our measurements we observe a large atten-
uation effect around the switching field but oscillations
seem not to be further damped afterwards. Therefore,
the attenuation of f3 appears to be caused by the cou-
pling of the mechanical resonances to critical spin fluc-
tuations and/or domain movement close to the piezo-
magnetic switching field which can lead to a significant
attenuation of the mechanical resonances similar to the
dramatically increased ultrasonic attenuation that was
observed in UO2 in the vicinity of the AFM phase tran-
sition [12]. The mechanical resonances f1 and f2 might
have a predominantly transversal character which would
explain the smaller amplitude and the absence of atten-
uation below TN since the longitudinal or compressive
modes are expected to be more affected by spin fluctu-
ations [23]. For future experiments we plan to perform
magnetocaloric measurements to detect possible heating
effects at the switching field caused by dissipative pro-
cesses like domain movement.

Another interesting point is that the π phase shift only
occurs in f3. The effect is completely absent in f2 and
much less clear in f1 which is only slightly out of phase
when compared to the single sinusoidal function in the
time interval between 0 and 20µs (Fig. 4(d)). As of now
we do not have a conclusive argument on why the phase
shift is only visible in f3. Depending on the involved
antiferromagnetic excitations and the anisotropy of the
magneto-elastic couplings, longitudinal and transversal
mechanical resonances can display different phase shifts.
A possible way to test this in future experiments is to use
a birefringent FBG which can yield an orthogonal biax-
ial strain response along two directions with polarization
based probing techniques.

We demonstrate that mechanical resonances can be a

useful tool to detect otherwise-elusive AFM domain flips,
and possibly also other types of crystallographic domain
dynamics (e.g., in liquid crystals). On the other hand,
our results indicate that mechanical resonances can also
cause issues in experiments where they are unwanted.
A mitigation strategy in experiments where excessive
noise is prevalent could consist of clamping the sample
as well as to conduct runs with different sample and/or
sample-holders geometries and dimensions to minimize
mechanical resonances triggered by the magnetic field.
This phenomena is reminiscent of wire-motion resonances
in electrical transport experiments performed in short-
pulse magnets, which can be quite detrimental to the
data quality and which effects are minimized by fixing
the wires and in this way effectively shifting their reso-
nances to frequencies outside of the experimental range
of interest.

VI. SUMMARY

We measured the lattice dilation along [111] for the
first time up to 150T in UO2, in the AFM as well as in
the paramagnetic states. Surprisingly, the AFM state is
robust against a field ≥ 120T at 10 K, energy-wise ∼ 4×
stronger than TN = 30K (if g = 2). This result confirms
the large energy scale for correlations in UO2. We show
that mechanical resonances can be induced virtually in-
stantaneously via the magnetoelastic coupling in UO2 by
µs field pulses generated with the single turn coil tech-
nique, making this material an interesting candidate for
magneto-elastic transducers. We demonstrate the impact
of the piezomagnetic switching in UO2 on the standing
wave indicated by a π phase shift and a distinct mode de-
pendent attenuation of the mechanical resonances. Our
findings present a novel way to study magnetic dynamics
in high magnetic fields and could have an impact on the
interpretation of past and future data collected in exper-
iments involving semi destructive pulsed magnetic fields
as well practical implications, e.g., as a way to trigger
resonators at faster speeds.
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Supplemental Material

I. HAMILTONIAN

As mentioned in the main text, the terms of the Hamiltonian can be derived from the polynomial expansion of the
free energy and were worked out by Bar’yakhtar et al.. They can can be written as:

Ĥ =
1

2
α0
L(T − TN )

[
L2
1x + L2

2y + L2
3z

]
+

1

4
βL
[
L4

1 +L4
2 +L4

3

]

+
1

2
αMM

2 +
1

2
λML

[
(M .L1)

2
+ (M .L2)

2
+ (M .L3)

2
]

+
c11
2

[
η21 + η22 + η23

]
+ c12 [η1η2 + η2η3 + η3η1] +

c44
2

[
η24 + η25 + η26

]

+
λ1
2

(
L2
1xη1 + L2

2yη2 + L2
3zη3

)
+
λ′1
2

(
L2
1x + L2

2y + L2
3z

)
(η1 + η2 + η3)

+
λ2
2

(L1yL1zη4 + L2xL2zη5 + L3xL3yη6) +
λ3
2

(
M2

xη1 +M2
y η2 +M2

z η3
)

+
λ′3
2

(MyMzη4 +MxMzη5 +MxMyη6)

+
λ

2
([L1xL1y + L2xL2y] η6 + [L1xL1z + L3xL3z] η5 + [L2yL2z + L3yL3z] η4)

+
A

2

[(
∂L1

∂x

)2

+

(
∂L1

∂y

)2

+

(
∂L1

∂z

)2

+

(
∂L2

∂x

)2

+

(
∂L2

∂y

)2

+

(
∂L2

∂z

)2

+

(
∂L3

∂x

)2

+

(
∂L3

∂y

)2

+

(
∂L3

∂z

)2
]

+
B

2

[(
∂L1

∂x

)2

+

(
∂L2

∂y

)2

+

(
∂L3

∂z

)2
]

−M .H. (1)

Here, x, y and z are oriented along the axes of the cubic cell of UO2, and ηi, i = 1, 6 are the corresponding strain
using Voigt notation.
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