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Résumé. Dans cet article, nous revisitons le problème de l’intégration numérique
d’une fonction monotone bornée, en nous concentrant sur la classe des méthodes de Monte
Carlo non séquentielles. Nous établissons dans un premier une borne inférieure pour l’er-
reur maximale dans Lp d’un algorithme non séquentiel, qui généralise pour p > 1 un
théorème de Novak. Nous étudions ensuite, dans le cas p = 2, l’erreur maximale de deux
méthodes sans biais—une méthode fondée sur l’utilisation d’une variable de contrôle, et
la méthode de l’échantillonnage stratifié.

Mots-clés. Intégration monotone, Monte Carlo, échantillonnage stratifié, échantillon-
nage hypercube latin, variable de contrôle, complexité

Abstract. In this article we revisit the problem of numerical integration for monotone
bounded functions, with a focus on the class of nonsequential Monte Carlo methods. We
first provide new a lower bound on the maximal Lp error of nonsequential algorithms,
improving upon a theorem of Novak when p > 1. Then we concentrate on the case p = 2
and study the maximal error of two unbiased methods—namely, a method based on the
control variate technique, and the stratified sampling method.

Keywords. Monotone integration, Monte Carlo, stratified sampling, Latin hypercube
sampling, control variate, information-based complexity

1 Introduction

We address in this article the problem of constructing a numerical approximation of the
expectation E(g(Y )) =

∫

g(y) PY (dy), where Y is a real random variable with known
distribution PY , and g is a real function that is bounded and monotone. Such a problem
occurs naturally in applications where one is interested in computing a risk using a model
that provides an increasing conditional risk g(Y ) with respect to some random variable Y .
This situation occurs for instance in the field of food safety, with Y a dose of pathogen
and g(Y ) the corresponding probability of food-borne illness (see, e.g., Perrin et al., 2014).
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Assuming that the cumulative distribution function of Y is continuous, the problem
reduces after change of variable and scaling to the computation of S(f) = E(f(X)) =
∫ 1

0 f(x) dx, where X is uniformly distributed on [0, 1] and f belongs to the class F of
all non-decreasing functions defined on [0, 1] and taking values in [0, 1]. We work in
this article in a fixed sample-size setting, where the number n of evaluations of f to be
performed is chosen beforehand.

This problem was first studied by Kiefer (1957), who proved that considering regularly-
spaced evaluations at xi = i/(n+1), 1 ≤ i ≤ n, and then using the trapezoidal integration
rule assuming f(0) = 0 and f(1) = 1, is optimal in the worst-case sense among all
deterministic—possibly sequential—methods. The corresponding value of the maximal
error is 1/(2(n+1)). Novak (1992) later studied Monte Carlo (a.k.a. randomized) methods,
and established that sequential methods are better in this setting than nonsequential ones,
with a minimax rate of n−3/2 over F for the L1 error.

This article revisits the nonsequential setting with a focus on unbiased Monte Carlo
methods, which are a key building block for the construction of good (rate-optimal) se-
quential methods—as can be learned from the proof of Theorem 3 in Novak’s article.
Section 2 derives a lower bound for the maximal Lp-error of nonsequential methods, for
any p ≥ 1, which is a generalization of a result by Novak (1992) concerning the L1 error.
Sections 3 and 4 then study the maximal L2 error (variance) of two simple unbiased meth-
ods, based respectively on the control variate technique and on stratification. Section 5
concludes the article with a discussion.

2 A lower bound for the maximal Lp error

A nonsequential (also called non-adaptive) Monte Carlo method first evaluates the func-
tion at n random points X1, . . . , Xn in [0, 1], and then approximates the integral S(f)
using an estimator

Ŝn(f) = ϕ (f(X1), f(X2), . . . , f(Xn)) , (1)

where ϕ : R
n → R is a measurable function. A nonsequential method is thus defined

by two ingredients: the distribution of (X1, . . . , Xn) and the function ϕ. The worst-case
Lp error of such a method over the class F is

ep(Ŝn) = sup
f∈F

E

(
∣

∣

∣S(f) − Ŝn(f)
∣

∣

∣

p)1/p
. (2)

Remark 1. The class of nonsequential Monte Carlo methods as usually defined in the lit-
erature also allows Ŝn to be randomized (i.e., allows ϕ to be a random function). We have
not considered randomized estimators in our definition, however, since Rao-Blackwell’s
theorem implies that they do not help in this setting, for any convex loss function.
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Novak (1992) proved that for any nonsequential Monte Carlo method with sample
size n, the maximal L1 error e1(Ŝn) is greater or equal to 1/(8n). We generalize this
result to the case of the Lp error.

Theorem 2.1. For any nonsequential Monte Carlo methods with sample size n,

ep(Ŝn) ≥
(

1

2

)2+1/p 1

n
.

Observe that Novak’s lower bound is recovered for p = 1. Using Theorem 2.1 with
p = 2 we can deduce of lower bound for the variance of unbiased nonsequential methods.

Corollary 2.2. For any unbiased nonsequential Monte Carlo method with sample size n,

sup
f∈F

var
(

Ŝn(f)
)

≥
1

32n2
.

Proof of Theorem 2.1. Consider a nonsequential Monte Carlo methods with evaluation
points X1, . . . , Xn and estimator Ŝn. Divide the interval [0, 1] into 2n equal subintervals
of length 1/(2n): then at least one of the subintervals, call it I, will contain no evaluation
point with probability at least 1/2. Now construct two functions f1, f2 ∈ F that are
both equal to zero on the left of I, equal to one on the right, and such that f1 = 1
and f2 = 0 on I. Then S(f1) − S(f2) = 1/(2n), and Ŝn(f1) = Ŝn(f2) on the event
A = {{X1, X2, . . . , Xn} ∩ I = ∅}, since f1 and f2 coincide outside of I. It follows that

(

ep(Ŝn)
)p

≥ sup
f∈{f1,f2}

E

(

|S(f) − Ŝn(f)|p
)

≥
1

2

2
∑

j=1

E

(

|S(fj) − Ŝn(fj)|
p
)

≥
1

2

2
∑

j=1

E(|S(fj) − Ŝn(fj)|
p · 1A) =

1

2

2
∑

j=1

E(|S(fj) − T |p · 1A),

where T denotes the common value of Ŝn(f1) and Ŝn(f2) on A. We conclude that

(

ep(Ŝn)
)p

≥
1

2

|I|p

2p−1
P (A) ≥

(1

2

)2p+1
·

1

np
,

using the fact that, for any a, b, x ∈ R and p ≥ 1, |a − x|p + |b − x|p ≥ |a − b|p/2p−1.

3 Uniform i.i.d. sampling

The simple Monte Carlo method is the most common example of a nonsequential method:
the evaluation points X1, . . . , Xn are drawn independently, uniformly in [0, 1], and then
the integral is estimated by ŜMC

n (f) = 1
n

∑n
i=1 f(Xi). The estimator is clearly unbiased,
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and it follows from Popoviciu’s inequality—i.e., var(Z) ≤ 1/4 for any random variable Z
taking values in [0, 1]—that

(

e2

(

ŜMC
n

))2
= max

f∈F
var

(

ŜMC
n (f)

)

=
1

4n
.

The maximal error is attained when f is a unit step function jumping at x0 = 1/2. It
turns out that a smaller error can be achieved, for the same (uniform i.i.d.) sampling
scheme, using the control variate technique. More specifically, we consider the control
variate f̃(Xi) = Xi and set

Ŝcv
n (f) =

1

n

n
∑

i=1

(

f(Xi) − f̃(Xi)
)

+
1

2
.

Theorem 3.1. The estimator Ŝcv
n (f) is unbiased, and satisfies

(

e2

(

Ŝcv
n

))2
= max

f∈F
var

(

Ŝcv
n (f)

)

=
1

12n
.

The maximal error is attained for any unit step function.

Proof. The estimator is unbiased since E(f̃(Xi)) = 1/2, and therefore the mean-squared
error is equal to var(Ŝcv

n (f)) = 1
n

var(f(X) − X). For a unit step function f = 1[x0,1]

with a jump at x0 ∈ [0, 1], the random variable f(X) − X is uniformly distributed over
[−x0, 1 − x0], which yields var(Ŝcv

n (f)) = 1/(12n) as claimed. It remains to show that
var(f(X) − X) ≤ 1

12
for all f ∈ F .

Let Fm ⊂ F denote the class of all non-decreasing staircase functions of the form
f =

∑m
k=1 αk · 1( k−1

m
, k

m
], with 0 ≤ α1 ≤ α2 ≤ . . . ≤ αm ≤ 1. For any f ∈ F , consider the

piecewise-constant approximation fm ∈ Fm defined by averaging f over each subinterval of
length 1/m. Then, E(fm(X)) = E(f(X)) and |var (fm(X) − X) − var (f(X) − X)| ≤ 1

m
.

Thus,
sup
f∈F

var (f(X) − X) = lim
m→∞

sup
f∈Fm

var (f(X) − X) . (3)

Let us now show that var (f(X) − X) is maximized over Fm when f is a unit step
function. Pick any f =

∑m
k=1 αk·1( k−1

m
, k

m
] ∈ Fm. Set α0 = 0 and αm+1 = 1. If f is not a unit

step function, then there exist k1, k2 ∈ {1, . . . , m} such that k1 ≤ k2 and αk1−1 < αk1
=

. . . = αk2
< αk2+1. Denote by fu ∈ Fm the function obtained by changing the common

value of αk1
, . . . , αk2

in f to u ∈ [αk1−1, αk2+1]. The variance var(fu(X) − X) is a convex
function of u, since it can be expanded as au2 + bu + c with a = k2−k1+1

m
(1 − k2−k1+1

m
) > 0.

Consequently, we have var(fu(X) − X) > var(f(X) − X) at one of the two endpoints
of [αk1−1, αk2+1]. Note that the corresponding staircase function fu has one fewer step
than f . Iterating as necessary, we conclude that for any f ∈ Fm there exists a unit
step function g ∈ Fm such that var (f(X) − X) ≤ var (g(X) − X) = 1

12
. Therefore

supf∈Fm
var (f(X) − X) = 1

12
, which completes the proof.
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4 Stratified sampling

Consider now a stratified sampling estimator with K strata:

Ŝstr
n (f) =

K
∑

k=1

wk ·
1

nk

nk
∑

i=1

f (Xk,i) , (4)

where the k-th stratum is Ik = [xk−1, xk], 0 = x0 < x1 < · · · < xK−1 < xK = 1, the weight
wk = |xk−1 − xk| is the length of the k-th stratum, the allocation scheme (n1, . . . , nK) is
such that nk ≥ 0 for all k and

∑

k nk = n, and the random variables Xk,i are independent,
with the Xk,is uniformly distributed in Ik. Note that the sampling points are no longer

identically distributed here. The estimator Ŝstr
n (f) is unbiased, with variance

var
(

Ŝstr
n (f)

)

=
K

∑

k=1

w2
k

nk

var (f (Xk,1)) . (5)

Theorem 4.1. For any K ≤ n, any choice of strata and any allocation scheme, the
stratified sampling estimator (4) satisfies

(

e2

(

Ŝstr
n

))2
= max

f∈F
var

(

Ŝstr
n (f)

)

=
1

4
max

k

w2
k

nk

, (6)

The maximal error is attained for a unit step function with a jump at the middle of Ik∗,
where k∗ ∈ argmax w2

k/nk. The minimal value of the maximal error (6) is 1
4n2 , and is

obtained with K = n strata of equal lengths (wk = n−1 and nk = 1 for all k).

The optimal stratified sampling method can be seen as a one-dimensional special case
of the Latin Hypercube Sampling (LHS) method (McKay et al., 1979). Novak (1992)
relies on this method as a building block for the construction of a rate-optimal sequential
method. (On a related note, McKay et al. (1979) prove that, in any dimension, the LHS
method is preferable to the simple Monte Carlo method if the function is monotone in
each of its arguments.)

Proof. For all K ∈ N
∗, let ∆K =

{

(∆1, . . . , ∆K) ∈ R
K
+ |

∑K
k=1 ∆k ≤ 1

}

. For a given
stratified sampling method with K strata, for all ∆ ∈ ∆K , define

F∆ =
{

f ∈ F
∣

∣

∣ ∀k ∈ {1, . . . , K}, f(xk) − f(xk−1) = ∆k

}

.

Then it follows from (5) and Popoviciu’s inequality that

max
f∈F∆

var
(

Ŝstr
n (f)

)

=
1

4

K
∑

k=1

w2
k∆2

k

nk
, (7)

where the maximum is attained for a non-decreasing staircase function with jumps of
height ∆k at the middle of the strata. Note that

∑K
k=1 ∆2

k ≤
∑K

k=1 ∆k ≤ 1. Therefore, the
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right-hand side of (7) is upper-bounded by 1
4

maxk w2
k/nk, which is indeed the value of

the variance (5) when f is a unit step function with a jump at the middle of the stratum
where w2

k/nk is the largest.
In order to prove the second part of the claim, observe first that any stratum such

that nk ≥ 2 can be further divided into nk sub-strata of equal lengths without increasing
the upper bound. Considering then the case where K = n and nk = 1 for all k, the
upper bound reduces to 1

4
maxk w2

k, which is minimal when w1 = · · · = wn = n−1 since
∑

k wk = 1.

5 Discussion

The stratified sampling (LHS) method provides the best-known variance upper bound over
the class F for an unbiased nonsequential method as soon as n ≥ 3, but is outperformed
by the control variate method of Section 3 when n ≤ 2. We do not know at the moment
if these results are optimal in the class of unbiased nonsequential methods. (The ratio
between the best variance upper bound and the lower bound of Corollary 2.2 is 8

3
≈ 2.67

for n = 1, 16
3

≈ 5.33 for n = 2 and 8 for n ≥ 3.)
Relaxing the unbiasedness requirement, it turns out that both methods are outper-

formed for all n by the (deterministic) trapezoidal method discussed in the introduction,
which has a worst-case squared error of 1/(4(n + 1)2). The ratio of worst-case mean-
squared errors, however, is never very large—at most 16

9
≈ 1.78—and goes to 1 when n

goes to infinity.
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