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Abstract: This paper proposes an overload management method based on Model Predictive
Control principles for electrical power network zones with Renewable Energies Sources (RESs).
The danger of sudden line disconnection represents a critical aspect of the operation and the
overload can only be tolerated within drastic duration and repetitiveness constraints. The first
contribution resides in the employment of temporal and logical variables as a part of the system
states to formulate supplementary bounds for the line power flow limits during the overload
tolerance. For the second contribution, the control problem is independent from the exogenous
overload trigger thanks to the feedback of these variables as the controller parameters. Lastly,
according to considered assumptions, a sequence of predicted maximal supplementary bounds is
used for the control design. With respect to classical additional temporal variables, these bounds
simplify the control design problem. The proposed method is validated through simulations on
an industrial study case.

Keywords: Power transmission network, constrained model predictive control, mixed logical
dynamical modeling

1. INTRODUCTION

Due to the need to integrate renewable power, the power
congestion management problem for electrical networks
is increasing in complexity (see Meyer et al. (2020)).
Indeed, the raising presence of renewable power multi-
plies the situations where the power production exceeds
the maximum allowed power on the transmission lines,
thus generating an overload (overcurrent). The overload
induces an increase of conductor temperature, a conductor
dilation which leads to a sag of the conductor which could
create flashovers with the neighboring objects. The ther-
mal phenomenon has an inertia, as described in Straub
et al. (2018b), and the maximum current limits usually
considered provide an aggregate admissible region for the
current evolution. These limits are inherited from the time-
domain evolution of the process and consequently the du-
ration of the overload plays a critical role, associated here
with a maximum allowed duration of constraint relaxation.
Based on these principles, the overloads are temporarily
tolerated, with strict limitations on their duration and
repetitiveness. If the power excess is not admissible, the
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lines with power congestion may be disconnected from the
network which possibly leads to a cascading lines tripping
or blackouts (Monforti-Ferrario and Blanco (2021)).

One of the innovative approaches employed by Trans-
mission System Operators (TSOs) to manage overloads
and reduce their impact on the lines is related to the
utilization of energy storage devices and renewable power
curtailment through model-based optimization. As a con-
sequence, approaches based on Model Predictive Control
(MPC) can be used to design congestion management
algorithms that target to limit the amount of power along
the lines while ensuring problem feasibility and prioritizing
the utilization of the available control actions (see Hoang
et al. (2021)). A typical situation is depicted in Straub
et al. (2018a) and Che et al. (2019), where the possibility
to temporarily increase the maximal allowed power values
is implemented by a change in the system of constraints
handled by a MPC optimization algorithm. This MPC
structure change was triggered by an independent supervi-
sory mechanism, which was able to activate/deactivate the
overload allowance and handle its duration by updating
the constraints.

The goal of the present paper is to include the overload
constraint updates within the MPC prediction mechanism.
The MPC strategy will be based on an enhanced mathe-
matical model and a set of state-dependent constraints.
The solution does not rely on an exogenous decision
making thus making the MPC mechanism self-consistent,



differently from Straub et al. (2018a) where the optimi-
sation problem resulted to have time-varying constraints
depending on exogenous signals. To implement the rule-
based adaptation of limitations, the adopted approach con-
siders the utilization of logic variables as in Bemporad and
Morari (1999), where the authors introduce a modeling
framework for Mixed Logical Dynamical (MLD) systems
that are composed by both real and logic variables and
suggest MPC-based solutions for corresponding optimal
control problems. The logic variables being defined via
binary (or integer) variables, the control problems related
to that modeling refer to mixed-integer programming. To
investigate pros and cons of the possibility to consider
a reduction of the number of binary variables, we avoid
the formalism of Signal Temporal Logic (see Raman et al.
(2014)), that usually implies the utilisation of tools that
generate automatically the needed binary variables and
are not customizable.

The proposed preliminary overload management controller
is capable to adapt the power limitations to the current
situation of the overload, thus imposing the end of the
relaxation for the bounds in case the overload is over.
Moreover, the controller is able to target to reduce the
extra power on the lines according to selected power
references, as according to a desired maximum overload
duration. Finally, with or without overloads, the suggested
MPC algorithm preserves the same structure. Indeed, in
the considered modeling, temporal and logical variables
are part of the system state, and describe the overload
duration and the history of its tolerances. Their values
carry the information needed to obtain a model-based con-
trol formulation that is independent of the unpredictable
appearance of overloads. With respect to Straub et al.
(2018a), the values of time-dependent constraints triggered
by exogenous signals is replaced by a sequence of maximal
predicted supplementary bounds for the power lines, thus
facilitating the MPC formulation.

The paper is organized as follows. Section 2 recalls the
MPC design in Hoang et al. (2021). Section 3 describes
the control design for the overload management. Section
4 validates the method through simulations. Section 5
concludes the paper and presents future work directions.

2. CONGESTION MANAGEMENT VIA MPC

This section recalls the model and controller that are de-
veloped in Iovine et al. (2021) and Hoang et al. (2021), re-
spectively, for the possibility to use a MPC-based approach
that considers partial curtailment for congestion manage-
ment of a power network zone, based on the concept of
Power Transfer Distribution Factor (PTDF) in Cheng and
Overbye (2005) (see Figure 2 for a zone example).

2.1 Modeling

Let nN , nC , nB , nL ∈ N denote the number of nodes
in the considered zone, the number of nodes where the
curtailment of the generated power is allowed, the number
of nodes with a battery and the number of power lines
in the zone, respectively. The state variables in a power
network zone includes the line power flows, curtailment
power, discharged battery power, battery energy, gener-

Fig. 1. The considered zone (blue nodes) and its neighbor-
hood (red nodes) in Iovine et al. (2021).

ated power and available renewable power which are de-

noted by F (t) ∈ RnL

, PC ∈ RnC

, PB ∈ RnB

, EB ∈ RnB

,

PG ∈ RnC

and PA ∈ RnC

, respectively. The disturbance
vector of the zone w(t) gathers the generation power vari-

ation ∆PG(t) ∈ RnC

, the external interaction ∆PT (t) ∈
RnL

and the available power variation ∆PA(t) ∈ RnC

,

i.e., w(t) = [∆PT (t) ∆PG(t) ∆PA(t)]> ∈ RnN+2nC

. The
variations of the curtailment power ∆PC(t) and of the
battery power ∆PB(t) are chosen as the control vector

u(t), i.e., u(t) = [∆PC(t) ∆PB(t)]> ∈ RnC+nB

. Notice
that the control actions are delayed with the operational
time delays d ≥ 1 and τ ≥ 1 for the battery power
output and the generator power curtailment, respectively.
The battery acts faster with respect to the renewable
power curtailment, i.e., τ ≥ d. To deal with this known
actuator delays, the system state vector x(t) is defined as
x(t) = [F (t) PC(t) PB(t) EB(t) PG(t) PA(t) ∆PC(t −
τ) . . . ∆PC(t − 1) ∆PB(t − d) . . . ∆PB(t − 1)]> ∈
RnL+(3+τ)nC+(2+d)nB

. Consequently, the resulting not-
delayed system dynamics are:

x(t+ 1) = Ãx(t) + B̃u(t) + D̃w(t), (1)

where the matrices Ã, B̃ and D̃ are:
A BC 0 BB 0
0 0 I 0 0
0 0 0 0 0
0 0 0 0 I
0 0 0 0 0


︸ ︷︷ ︸

Ã

,


0 0
0 0
I 0
0 0
0 I


︸ ︷︷ ︸

B̃

,


D
0
0
0
0


︸ ︷︷ ︸

D̃

, (2)

with the matrices A, BC , BB and D defined as:
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 −Ab I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


︸ ︷︷ ︸

A

,


Mt Mc 0
0 0 0
0 0 0
0 0 0
0 I 0
0 0 I


︸ ︷︷ ︸

D

,


Mb

0
I
−Ab
0
0


︸ ︷︷ ︸

BB

, (3a)

BC =
(
−Mc I 0 0 −I 0

)>
. (3b)

Ab, Mc, Mb and Mt are composed by the elements of the
PTDF matrix as described in Iovine et al. (2021). The
matrices I and 0 have appropriate dimensions with respect
to the state x size, and to the delays τ and d. Particularly,
the term ∆PG(t) is defined as:



∆PG(t) = min
(
fG(t), gG(t)

)
, (4a)

fG(t) = PA(t) + ∆P̂A(t)− PG(t) + ∆P̂C(t− τ), (4b)

gG(t) = P
G − PC(t)− PG(t), (4c)

where P
G ∈ RnC

+ is constant representing the maximum

power that can be generated, ∆P̂A(t) and ∆P̂C(t− τ) are
pre-computed variables. The system model (1) is used for
the control design in the next subsection.

2.2 Control design

Fig. 2 illustrates the control strategy, that is composed
by forecasting, disturbance estimation, overload modeling
and MPC. With respect to the strategy adopted in Hoang
et al. (2021), the contribution of the present paper is
highlighted in red, i.e. the overload modeling and related
impact on the MPC strategy, and will be presented in the
next section. In the sequel of the paper, the prediction
horizon is N . Moreover, the predicted or estimated value
of g(.) at the sampling t+k given the available information
at the sampling t is denoted as g(k|t).

Fig. 2. Control scheme.

The Forecasting procedure predicts the variation of the
available generator power ∆PA(k|t) and the external inter-
action ∆PT (k|t) over the prediction horizon. For robust-

ness, the profile of ∆P̂A(k|t) is considered to be constant
∀ k ∈ [0, . . . , N − 1]. In the same vein, there are multiple
approaches for the prediction of ∆PT (k|t). These choices
can be integrated easily in the present control design. The
performance of the disturbance estimation is not in the
scope of the present work, and thus we will consider the
simple one such as ∆PT (k|t) = 0.

The Disturbance estimation procedure evaluates the vari-
ation of the generated power ∆PG(k|t) over the prediction

horizon using the forecasting on ∆P̂A(k|t), the estimation

of ∆P̂C(k|t) and (4). ∆PC(k|t) will be given by the control

design, and thus, the estimation is based on ∆P̂C(k|t) = 0.

The MPC procedure determines the control signals u(t)
using the predicted disturbance sequences w(k|t) and

the state feedback x(t). Let L ∈ RnL

+ , P
G ∈ RnC

+ ,

and P
B
, E

B ∈ RnB

+ , denote the upper bounds of line
power, generated power, battery power and battery energy,

respectively; PB ∈ RnB

− and EB ∈ RnB

+ denote the
lower bounds of battery power and energy, respectively. To
ensure the control problem feasibility, soft constraints are

imposed to the flow on the power lines F (k|t) for k ∈ [d, τ−
1] using the softening slack variables ε(k|t) ∈ RnL

such as
ε(k|t) > 0, ∀k ∈ [d, τ − 1], and ε(k|t) = 0, otherwise.
Therefore, the constraints for the state x and for the
control signal u are:

xmin(k|t) ≤ Cx(k|t) ≤ xmax(k|t), ∀k ∈ [d,N ], (5a)

umin ≤ u(k|t) ≤ umax, ∀k ∈ [0, N − 1], (5b)

where C = [InL+2nC+2nB 0], and

xmin(k|t) = [−L− ε(k|t) 0 PB EB 0]>, (6a)

xmax(k|t) = [ L+ ε(k|t) P
G

P
B

E
B

P
G

]>, (6b)

umin = [0 PB − PB ]>, (6c)

umax = [P
G

P
B − PB ]>. (6d)

A cost function considering actuator delays is defined as:

J(t) =

N∑
k=1

[
‖x(k|t)− xr‖2Q + ‖u(k − 1|t)‖2R + ‖ε(k|t)‖2β

]
, (7)

where Q and R are positive semi-definite matrices; β is a
positive scalar; xr is the state reference. Thus, the MPC
optimization problem is defined as:

O0 = argmin
{u(0|t),...,u(N−1|t)}

J(t) in (7)

s.t. (1), (5), (6). (8)

Notice that an estimation of the disturbance w(k|t) over
the prediction horizon is proposed through two previous
control procedures based on hypotheses about the avail-
able and curtailment power. Then, the first control actions
∆PC(0|t) and ∆PB(0|t) will be applied to the power
networks at the instants t+ τ and t+ d, respectively.

3. OVERLOAD MANAGEMENT VIA MPC

This section firstly introduces additional state variables to
describe the overload tolerance, and then, shows how they
are integrated to the MPC design.

3.1 Additional states

Overloads in electrical power networks happen when the
temperature of transmission lines exceeds predefined lim-
its. These thermal limits are represented in this work by
upper and lower bounds for the power flow on the lines.
During the overload tolerance, non-negative supplemen-

tary bounds ∆
up/low
j (t) are used for the power flow on line

j of the set ZL of transmission lines in the zone. Hence,
the alternative line power limits are described as:

−Lj −∆low
j (t)− εj(t) ≤ Fj(t) ≤ Lj + ∆up

j (t) + εj(t), (9)

where Lj , εj(t) and Fj(t) are the elements corresponding

to the line j of the vectors L, ε(t) and F (t) in (5)-
(6d), respectively. Due to physical characteristics of the
power line, ∆low

j (t) and ∆up
j (t) must be bounded when

the overload happens at the instant to (see Fig. 5):

∆
low/up
j (t) ≤

 αS , ∀t ∈ [to, to + TSon),
αL, ∀t ∈ [to + TSon, to + TLon),

0, else,
(10)

where αS , αL ∈ R+, TSon and TLon ∈ N are thresholds
determined from the operation of the real system with
0 < αL < αS and 0 < TSon < TLon. The present paper
considers the following assumptions:



(A1) on each line, only one of the upper and lower extra
bound is allowed during an overload;
(A2) the time interval between two allowed overloads is
greater than a predefined duration Toff ;
(A3) the overload is not predictable;
(A4) in the MPC formulation, as soon as the overload is
over, its tolerance is ended;
(A5) if there is no feasible solution for the control law, the
overloaded line is opened;
(A6) the maximal supplementary bounds defined in (10)
are used until the overload is over.

For mathematical modeling purposes, a temporal variable
taj (t) ∈ N is added to the system states for representing
the overload duration, and thus, indicating the maximal
value of supplementary bounds in (10) to be taken into
account at each time instant. It is zero during the normal
operation, and linearly increases during the overload. On
the other hand, two logical variables δupj (t) and δlowj (t)
are added to the system states to manage the overload
moments. They are equal to 1 if and only if the overload
is admissible or the supplementary bounds are positive.
Hence, the dynamics of taj (t) ∀j ∈ ZL is given as:

taj (t) =
[
taj (t− 1) + 1

] [
δupj (t− 1) + δlowj (t− 1)

]
. (11)

An overload is admissible only in two following cases:

• Case 1: the overload tolerance is activated at the current
time, i.e., δ

up/low
j (t − 1) = 0 and Fj(t) > Lj (or Fj(t) <

−Lj), and the previous overload happened long time ago,

i.e.,
∑Toff

i=1

[
δupj (t− i) + δlowj (t− i)

]
= 0.

• Case 2: the overload is happening, i.e., δ
up/low
j (t−1) = 1

and Fj(t) > Lj (or Fj(t) < −Lj), and it is still admissible,
i.e., taj (t) ≤ TLon − 1.

Consequently, the dynamics of δ
up/low
j (t) are given as:

δ
up/low
j (t) = 1⇔




Fj(t) ≥ Lj + γ︸ ︷︷ ︸

up

(or Fj(t) ≤ −Lj − γ︸ ︷︷ ︸
low

),

Toff∑
i=1

δupj (t− i) + δlowj (t− i) = 0,


Fj(t) ≥ Lj + γ︸ ︷︷ ︸

up

(or Fj(t) ≤ −Lj − γ︸ ︷︷ ︸
low

),

δ
up/low
j (t− 1) = 1,

taj (t) ≤ TLon − 1.

(12)

∀j ∈ ZL, where γ ∈ R is a small tolerance value.
According to Assumption (A6), the supplementary bounds

∆
up/low
j in (9) are formulated as:

∆
up/low
j (t) = α

(
taj (t)

)
δ
up/low
j (t), ∀j ∈ ZL. (13)

where α
(
taj (t)

)
is predefined as:

α
(
taj (t)

)
=

{
αS , if 0 ≤ taj < TSon,

αL, if TSon ≤ taj < TLon,

0, else.

(14)

3.2 Feedback policy

An implementation in the MPC formulation of the addi-
tional state dynamics and of the supplementary bounds

defined in (11)-(14) requires a complex MLD modelling.
Fortunately, we show through the following proposition
that this complexity can be simplified.

Proposition 1. If the Assumptions (A1), (A3), (A4) and
(A5) are respected, the implementation of (11)-(13) in the
MPC design is for all k equivalent to:

δ
up/low
j (k|t) = 1⇔


Fj(k|t) ≥ Lj + γ︸ ︷︷ ︸

up

(or Fj(k|t) ≤ −Lj − γ︸ ︷︷ ︸
low

)

δ
up/low
j (k − 1|t) = 1

,

(15)

∆
up/low
j (k|t) = α(taj (0|t) + k) δ

up/low
j (k|t). (16)

Proof. i) [(15)] First, (A3) and (A4) imply that:

δ
up/low
j (k|t) ≤ δup/lowj (k − 1|t), ∀k ∈ [1, N ]. (17)

Moreover, the temporal constraint taj (k|t) ≤ TLon− 1 is not
necessary since it is implicitly defined in the formulation
of α in (14) with the constraints (9) and (13). Therefore,
from (12) and (17), we obtain the simplified dynamics of

δ
up/low
j (k|t) in (15). Notice that this is not the case for the

real system, where (11)-(12) are applied, since the values
of δup/low(t) are not influenced by α(t).

ii) [(16)] If δ
up/low
j (k|t) = 0, (16) trivially holds. If

δ
up/low
j (k|t) = 1, δ

up/low
j (j|t) = 1, ∀j ∈ [0, . . . , k], and

δ
low/up
j (k|t) = 0, ∀k ∈ [0, . . . , N ] thanks to (17) and (A1).

Hence, ta(k|t) = ta(0|t) + k according to (11), and thus,
(16) holds. Consequently, the explicit description of the
dynamics of ta(t) in (11) is not necessary anymore within
the prediction mechanism of the MPC. 2

With respect to (12), the dynamics (15) are much simpler.
Moreover, from (16), instead of the temporal state feed-
back taj (t) with the complex formulations defined in (11)
and (13)-(14), a sequence α̂j(t) gathers N + 1 predicted
maximal supplementary bounds over the prediction hori-
zon computed from taj (t) and (14) is used in the MPC
design Finally, the current values of the logical state vari-

ables δ
up/low
j (t) and the prediction sequence α̂j(t) are fed

to the MPC controller as described in Fig. 2.

3.3 Modified MPC design

To gather the logical variables and supplementary bounds

for all lines in the zone, we denote δup/low = col
[
δ
up/low
j

]
,

∆up/low = col
[
∆
up/low
j

]
, ∀j ∈ ZL. Hence, the dynamics

of δup/low(k|t) in (15) are described using the big-M
reformulation (Bemporad and Morari (1999)) as:

−Mδδ
up(k|t) ≤ L+γ1− F (k|t) +Mx(1− δup(k − 1|t))

≤Mδ(1− δup(k|t)), ∀k ∈ [1, N ], (18a)

−Mδδ
low(k|t) ≤ L+γ1 + F (k|t) +Mx(1− δlow(k − 1|t))

≤Mδ(1− δlow(k|t)), ∀k ∈ [1, N ], (18b)

respectively, where Mx and Mδ are sufficiently large num-
bers. Based on (9) and (16), the limits (6a)-(6b) are mod-
ified as:

xmin(k|t) = [−L−∆low(k|t)− ε(k|t) 0 PB EB 0]>, (19a)

xmax(k|t) = [ L+ ∆up(k|t) + ε(k|t) PG P
B
E
B
P
G

]>. (19b)



Finally, the optimization problem (8) is modified such as:

O1 = argmin
{u(0|t),...,u(N−1|t)}

J(t) in (7)

s.t. (1), (5), (6c), (6d), (16), (18), (19). (20)

The presented control design will be validated through
simulations on a specific study case of industrial interest.

3.4 Discussion

This subsection addresses two possible improvements for
the presented MPC formulation (20):

• reduction of the number of binary variables,
• early and soft decision of the generators curtailment.

The first objective can be achieved by assuming that the
overload is admissible over the prediction horizon if it

is currently admissible, i.e., δ
up/low
j (k|t) = δ

up/low
j (0|t).

This also implies that multiple overloads are allowed in
the MPC formulation, and thus, the assumption (A4) is
relaxed. Therefore, the constraints (18) are not necessary,
and the supplementary bounds in (16) are modified as:

∆
up/low
j (k|t) = α(taj (0|t) + k) δ

up/low
j (t), ∀j. (21)

The resulted MPC optimization problem is defined as:

O2 = argmin
{u(0|t),...,u(N−1|t)}

J(t) in (7)

s.t. (1), (5), (6c), (6d), (19), (21). (22)

Consequently, the number of binary variables of O2 in (22)
is N times smaller with respect to O1 in (20), and 4nLN
constraints in (18) are eliminated. However, this control
design reduces the control effort to deal with the overload.

On the other hand, in (20), the curtailment decision
is postponed as late as possible with sudden and great
variations. To obtain an early and soft decision, we can
penalize in the cost function (7) the surplus amount of
line power flows during the overload such that:

J3(t) = J(t) + φ

N∑
k=1

[(
C3x(k|t)− L

)>
δup(k|t)+(

−C3x(k|t)− L
)>

δlow(k|t)
]
,

(23)

where C3 = [InL 0], φ ∈ R is a chosen weight. Thus, the
corresponding MPC optimization problem is defined as:

O3 = argmin
{u(0|t),...,u(N−1|t)}

J3(t) in (23)

s.t. (1), (5), (6c), (6d), (16), (18), (19). (24)

This nonlinearity in the cost function can be solved us-
ing numerical optimization toolboxes, but increases the
complexity of the optimization problem. Moreover, the
curtailment moment is sensitive to the choice of φ.

4. SIMULATIONS

This section presents closed-loop simulations for a zone
of power networks which has six nodes, seven lines, four
generators and one battery, as illustrated in Fig. 2. The
parameters of zone model, control algorithm and sim-
ulations are presented in Table 1. The simulations are
implemented in MATLAB; the control algorithms are pro-
grammed by using YALMIP in Löfberg (2004); the MPC
optimization problems are solved by using GUROBI solver

Table 1. Parameters.

Parameter Value

Number of nodes nN and of lines nL 6 and 7
Number of curtailed generators nC 4
Number of batteries nB 1
Line power limit Lj [MW] 45
Generators power limits P̄G [MW] [78 66 54 10]>

Battery power limits [PB P̄B ] [MW] [-10 10]
Battery delay d [s] 5
Curtailment actuator delay τ [s] 35
Extra bound amplitudes αS and αL [MW] 45 and 20
Extra bound durations TSon and TLon [s] 120 and 360
Two overloads’ interval Toff [h] 12
Prediction horizon N 10
State weight matrix Q diag{07×7 I4

10−3 034×34}
Input weight matrix R I5
Parameter Mx [MW] in (18) 200
Sampling time T [s] 5
Simulation time [s] 600

in Gurobi Optimization (2021). A suitable value of Mδ in
(18) is chosen using the function implies in YALMIP.

Three simulation Scenarios are considered, where the three
optimisation problems O1 in (20), O2 in (22), and O3 in
(24) are implemented via MPC. With the MPC design O0

in (8), a violent curtailment of renewable power is decided
as soon as the overload appears (see Hoang et al. (2021)
for more details), which is not the case of the present work.
The real power transmission network is emulated in these
simulations through the implementation of the function
runpf in MATPOWER toolbox for the whole French
transmission network including around 6000 buses (Josz
et al. (2016)). During the simulations, two independent
disturbances are directly injected into the lines (1445,2745)
and (2076,2135) (see Fig. 2) as:

η1(t) =

{
30 [MW ], if t ≥ 30s,
0 [MW ], else,

(25a)

η4(t) =

{
−30 [MW ], if 300s ≤ t ≤ 350s,

0 [MW ], else.
(25b)

With respect to the first scenario describing problem O1

in (20), Fig. 3 illustrates the curtailment power variations.
We see that the generator power is not curtailed when the
overload happens at t = 50s on the line 1. The curtailment
is postponed until t = 135s, i.e., τ = 35s before the smaller
extra bound for this line power flow is applied at t = 170s
(see Fig. 4). At t = 375s, the curtailment is decided for
the application at t = 410s because the overload on the
line (1445,2745) will not be allowed from t = 410s.

In scenario 2 related to problem O2 in (22), Fig. 5 illus-
trates the power flow profile of line 1. In principle, it shows
that the control law leads to the same curtailment policy
obtained by O1 in (20) (Fig. 4). However, this similarity in
the closed-loop behaviour may not be generally true and
the equivalence conditions deserve further study.

In Scenario 3 corresponding to problem O3 in (24), Fig.
6 illustrates the power flow profile of line 1. We can see
that the generator power is softly curtailed with a delay of
τ = 35s after the overload appearance. The first remark for
the parameter tuning is that the input weight R and the
additional term weight φ must be of the same amplitude
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Fig. 3. Curtailment power variation in Scenario 1.
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Fig. 4. Power flows of lines 1 (upper) and 4 (lower) in
Scenario 1.
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Fig. 5. Power flow of line 1 in Scenario 2.

order. Another remark indicates that to increase these
weight reduces the overload duration.
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Fig. 6. Power flow of line 1 in Scenario 3 with R = 102I5
and φ = 3× 102.

5. CONCLUSIONS

This paper proposed an approach for overload manage-
ment in transmission power networks via MPC with a
model composed of both real and logical variables. The re-
sulting mixed-integer optimisation problem is independent
of the exogenous overload trigger, and therefore does not
suffer of feasibility problems. Moreover, the proposed ap-
proach deals with the unfortunate event of having multiple
overloads. Important aspects as reduction of the number
of binary variables or the possibility to partially act on the

overload during the transient time are considered in two
other optimisation problems, based on the same modeling.
The proposed method has been validated through simula-
tions on an industrial study case. The short term future
work focuses on a linear modeling of the renewable gener-
ator power using the signal temporal logic formulation.
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Raman, V., Donzé, A., Maasoumy, M., Murray, R.M.,
Sangiovanni-Vincentelli, A., and Seshia, S.A. (2014).
Model predictive control with signal temporal logic
specifications. In 53rd IEEE Conference on Decision
and Control, 81–87.

Straub, C., Olaru, S., Maeght, J., and Panciatici, P.
(2018a). Zonal Congestion Management Mixing Large
Battery Storage Systems and Generation Curtailment.
In 2018 IEEE Conference on Control Technology and
Applications (CCTA), 988–995.

Straub, C., Olaru, S., Maeght, J., and Panciatici, P.
(2018b). Robust MPC for temperature management
on electrical transmission lines. IFAC-PapersOnLine,
51(32), 355–360. 17th IFAC Workshop on Control
Applications of Optimization CAO 2018.


