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Abstract

An adaptive observer is designed for online estimation of Hilbert-
Schmidt operators from online measurement of the state for some class
of nonlinear infinite-dimensional dynamical systems. Convergence is
ensured under detectability and persistency of excitation assumptions.
The class of systems considered is motivated by an application to kernel
reconstruction of neural fields, commonly used to model spatiotempo-
ral activity of neuronal populations. Numerical simulations confirm
the relevance of the approach.

1 Introduction

The problem of online estimation of unknown parameters in dynamical sys-
tems from measured state variables is a major issue in many control systems.
It can be addressed by means of adaptive observers, that are observers es-
timating the unmeasured part of the state and the unknown parameters si-
multaneously. The theory of adaptive observer design, well-known for linear
finite-dimensional systems (see, e.g., [19]), is still an active area of research
when it comes to nonlinear [3, 4, 18] and/or infinite-dimensional [9, 11, 12]
systems.

In this paper, we design an adaptive observer for a class of nonlinear
infinite-dimensional systems that allows the reconstruction of unknown lin-
ear operators appearing in the dynamics. These operators are estimated in
the Hilbert-Schmidt topology. Therefore, not only the state of the system
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is infinite-dimensional, but also the “parameters” (now, operators) to be
estimated.

The specific class of systems we consider is motivated by an applica-
tion to kernel reconstruction in neural fields. The offline estimation of
these kernels is now a classical issue in inverse problems for neuroscience
(see [1,17] and references therein), that can be addressed for instance using
a Tikhonov regularization. We instead rely on adaptive observer strategies
to address the online estimation problem. The crucial additional constraint
is that the reconstruction can only be based on past values of the measure-
ments and estimates. The recent work [6] considers a similar problem but
uses finite-dimensional conductance-based models (which differs from the
infinite-dimensional Wilson- Cowan type equation considered here), and es-
timate finite-dimensional parameters (while we reconstruct linear operators
on infinite- dimensional spaces).

Organization of the paper The class of infinite-dimensional nonlinear
systems under consideration and a precise formulation of the estimation
problem are given in Section 2. In Section 3, we show how this problem
may be applied to the issue of online reconstruction of kernels in neural
fields dynamics. An adaptive observer is proposed in Section 4, and its
convergence is proved under a persistency of excitation condition. Finally,
numerical simulations are provided in Section 5.

Notation Given a Hilbert space X, we denote by 〈·, ·〉X and ‖ · ‖X its
corresponding scalar product and norm. The identity operator over X is
denoted by IdX . If Y is a Hilbert space, we denote by L(X,Y ) the space of
bounded linear operators from X to Y . For all B ∈ L(X,Y ), we denote by
B∗ ∈ L(Y,X) its adjoint. If B ∈ L(X,X), we denote by Tr(B) the trace of
B if it exists. For any open interval I ⊂ R, Lp(I,X) and Wm,p(I,X) stand
for the usual Lebesgue and Sobolev spaces, endowed with their canonical
norms.

2 Problem statement

2.1 Functional setting

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two separable Hilbert spaces. Consider an
infinite-dimensional dynamical system of the following form:{

ẋ = A1(x) + ψ(y) + u1

ẏ = A2(y) +B1φ1(x) +B2φ2(y) + u2
(1)

where (x, y) is the state of the system lying in X × Y , u1 and u2 are inputs
respectively lying inX and Y , andA1 : D(A1)→ X andA2 : D(A2)→ Y are
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singled-valued m-dissipative operators (see [16] for a definition), respectively
defined on dense subsets D(A1) ⊂ X and D(A2) ⊂ Y , such that A1(0) = 0
and A2(0) = 0. The linear operators B1 ∈ L(X,Y ) and B2 ∈ L(Y, Y ) are
bounded, and ψ : Y → X, φ1 : X → X and φ2 : Y → Y are Lipschitz
continuous on any bounded set. According to [20, Chapter IV, Proposition
3.1], A1 and A2 are generators of nonlinear strongly continuous contraction
semigroups over X and Y respectively.

It follows from [20, Chapter IV, Theorems 4.1 and 4.1A] that if u1 and
u2 are absolutely continuous over R+, then for all (x0, y0) ∈ D(A1)×D(A2),
there exists tmax ∈ (0,+∞] such that (1) admits a unique strong solution
(x, y) : [0, tmax) → X × Y , i.e., such that (x(0), y(0)) = (x0, y0), (x, y) is
absolutely continuous, satisfies (1) almost everywhere and lies in D(A1) ×
D(A2). Moreover, if (x, y) is bounded in X × Y over [0, tmax), then tmax =
+∞.

2.2 Problem formulation

In this paper, we consider the following online estimation problem.

Problem 2.1 From the knowledge of A1, A2, ψ, φ1, φ2 and the online
measurement of u1, u2 and y, estimate online x and the operators B1 and
B2.

In addition to the hypotheses made to ensure the well-posedness of the
system, we consider the following two main assumptions.

Assumption 2.2 (Strong dissipativity) The nonlinear operator A1 is
strongly dissipative, that is, there exists a positive constant α such that for
all (x1, x2) ∈ D(A1)2,

〈A1(x1)−A1(x2), x1 − x2〉X 6 −α‖x1 − x2‖2X . (2)

Since A1 is supposed to be m-dissipative, we already have that 〈A1(x1) −
A1(x2), x1−x2〉X 6 0, so that Assumption 2.2 is indeed a stronger dissipativ-
ity assumption. Assumption 2.2 implies that every solutions of ẋ = A1(x)
are exponentially converging to one another in X at exponential rate α.
Since y is supposed to be known online while x is unknown, Assumption 2.2
can be interpreted as a detectability hypothesis: the unknown part of the
state has a contracting dynamics. In the estimation strategy, this allows
to estimate x online simply by simulating a particular trajectory of the x-
subsystem (as all other solutions will eventually converge to it). Note that
the unmeasured state x can also be assumed of null dimension, in which
case the system (1) reduces to

ẏ = A2(y) +B2φ2(y) + u2.

All the results of the paper are still valid in that easier case.
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Assumption 2.3 (Hilbert-Schmidt operators) The linear bounded op-
erators B1 and B2 are Hilbert-Schmidt operators, that is, for any Hilbert
basis (e1

k)k∈N and (e2
k)k∈N of X and Y respectively,

‖B1‖2L2(X,Y ) :=
∑
k∈N
‖B1e

1
k‖2X = Tr(B∗1B1) < +∞,

‖B2‖2L2(Y,Y ) :=
∑
k∈N
‖B2e

2
k‖2X = Tr(B∗2B2) < +∞,

where B∗i denotes the adjoint operator of Bi for i ∈ {1, 2}.

We denote by (L2(X,Y ), ‖ · ‖L2(X,Y )) and (L2(Y, Y ), ‖ · ‖L2(Y,Y )) the Hilbert
spaces of Hilbert-Schmidt operators from X to Y and Y to Y , respectively.
Then, Problem 2.1 consists in finding B̂1(t) and B̂2(t) for all t > 0 such
that ‖B̂1(t) − B1‖L2(X,Y ) → 0 and ‖B̂2(t) − B2‖L2(Y,Y ) → 0 as t → +∞.
Such estimators must only depend on the knowledge of A1, A2, ψ, φ1, φ2,
u1(s), u2(s) and y(s) for s ∈ [0, t]. Note that the topology induced by the
Hilbert-Schmidt norm is finer than the one induced by the operator norm
since ‖ · ‖L 6 ‖ · ‖L2 .

3 Kernel reconstruction of neural fields

3.1 Neural fields

Problem 2.1 is motivated by an application to kernel reconstruction of neural
fields. Neural fields are nonlinear integro-differential equations modeling the
spatiotemporal evolution of the activity of neuronal populations. They are
based on the seminal works [2, 23] and surveys on their extensive use in
mathematical neuroscience can be found in [5, 8]. Given a compact set
Ω ⊂ Rq (where, typically, q ∈ {1, 2, 3}) representing the physical support
of the population, the evolution of neuronal activity z(t, r) ∈ Rn at time
t ∈ R+ and position r ∈ Ω is modeled as

τ(r)
∂z

∂t
(t, r) = −z(t, r) +

∫
r′∈Ω

w(r, r′)S(z(t, r′))dr′

+ u(t, r), (3)

where τ(r) is a positive diagonal matrix of size n× n representing the time
decay constant of neuronal activity at position r, S : Rn → Rn is a nonlinear
activation function (typically, a sigmoid), w(r, r′) ∈ Rn×n defines a kernel
describing the synaptic strength between location r and r′ and u(t, r) ∈ Rn
is an input. We consider the problem of online reconstruction of the kernel
w from the measurement of the neuronal activity z.
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3.2 Application

Now we show how (3) fits into (1) and discuss the relevance of Assumptions
2.2 and 2.3 in this context. In order to ensure well-posedness, we make the
following usual assumptions on S and w:

• S is bounded, differentiable and has bounded derivative;

• w is square-integrable over Ω2.

These assumptions are standard in neural fields analysis. In particular, the
boundedness of S reflects the biological limitations of the maximal activity
that can be reached by the population.

We assume that the neuronal population can be decomposed into z(t, r) =
(z1(t, r), z2(t, r)) ∈ Rn−m×Rm where z1 corresponds to the unmeasured part
of the state and z2 to the measured part. Such a decomposition is natural
when the two considered populations are physically separated, as it happens
in the brain structures involved in Parkinson’s disease [7]. It can also be rel-
evant for imagery techniques that discriminate among neuron types within
a given population. Accordingly, we define τi, Si wij and ui of suitable
dimensions for each population i, j ∈ {1, 2} so that

τi(r)
∂zi
∂t

(t, r) = −zi(t, r)

+
2∑
j=1

∫
r′∈Ω

wij(r, r
′)Sj(zj(t, r

′))dr′ + ui(t, r). (4)

Denote by m the dimension of the measured activity z2(r, t). In order to fit
(4) in the form of (1), set X = L2(Ω;Rn−m), Y = L2(Ω;Rm), x = τ1z1, y =
τ2z2, Wij(zj) =

∫
r′∈Ωwij(·, r

′)zj(r
′)dr′, A1 = (− IdX +W11S1), D(A1) = X,

A2 = − IdY , D(A2) = Y , ψ = W12S2, φi = Si and Bi = W2i.
Since w is square-integrable, B1 and B2 are Hilbert-Schmidt integral

operators with kernels w21 and w22, hence Assumption 2.3 is satisfied. In
order to satisfy the detectability Assumption 2.2, we need to assume that z1

has a strongly dissipative dynamics, namely, that A1 is strongly dissipative.
Remark that due to the structure of A1, this is the case if

`1‖W11‖L(X,X) < 1 (5)

where `1 is the Lipschitz constant of S1. Indeed,

〈A1(x1)−A1(x2), x1 − x2〉X
= −‖x1 − x2‖2X + 〈W11(S1(x1)− S1(x2)), x1 − x2〉X
6 −α‖x1 − x2‖2X
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for α = 1− `1‖W11‖L(X,X). We stress that condition (5) is commonly used
in the stability analysis of neural fields [15] and ensures dissipativity even
in the presence of axonal propagation delays [13].

We thus assume that each population is either measured online (taken
into account in z2) or unmeasured but stable and with known kernels (taken
into account in z1). Problem 2.1 is now equivalent to online reconstruction
of w21 and w22 (in L2(Ω2)) from the online measurement of z2 and ui and
the knowledge of τi, w1i, Si for all i ∈ {1, 2}. Note that if the full state z is
measured (i.e. m = n), then no dissipative part z1 of the system is required,
hence the full kernel w is to be estimated.

4 Online estimation of hilbert-schmidt operators

4.1 Adaptive observer design

In order to solve Problem 2.1, we propose to considerB1 andB2 as additional
constant variables to system (1), so that the resulting state space is the
Hilbert space H := X × Y × L2(X,Y ) × L2(Y, Y ). Set also D := D(A1) ×
D(A2)×L2(X,Y )×L2(Y, Y ) ⊂ H. Inspired by the estimator proposed in [3]
for finite-dimensional nonlinear systems, we consider the following observer
over H: 

˙̂x = A1(x̂) + ψ(y) + u1

˙̂y = A2(y) + B̂1φ1(x̂) + B̂2φ2(y) + u2 − β(ŷ − y)

˙̂
B1 = −γ1(ŷ − y)φ1(x̂)∗

˙̂
B2 = −γ2(ŷ − y)φ2(y)∗

(6)

where β, γ1, and γ2 are positive constants, called observer gains, that need
to be appropriately tuned to guarantee the convergence of the observer state
to the real state. Note that for any v in Y and any w in X (resp. in Y ), vw∗

lies in L2(X,Y ) (resp. in L2(Y, Y )) and ‖vw∗‖L2(X,Y ) = ‖v‖Y ‖w‖X (resp.
‖vw∗‖L2(Y,Y ) = ‖v‖Y ‖w‖Y ). Reasoning as in Section 2.1, one can show that
the cascade system (1)-(6) is well-posed.

4.2 Main result

Our main result, proved in Section 4.3, relies on the notion of persistence of
excitation.

Definition 4.1 (Persistence of excitation) A signal g : R+ → V is per-
sistently exciting over the Hilbert space V if there exists positive constants
T and κ such that ∫ t+T

t
g(τ)g∗(τ)dτ > κ IdV , ∀t > 0. (7)
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We now provide sufficient conditions for the convergence of the observer
(6) to the state of system (1), thus solving Problem 2.1.

Theorem 4.2 (Observer convergence) Suppose that Assumptions 2.2 and 2.3
are satisfied. Assume moreover that the functions φ1 and φ2 are bounded and
that φ1 is globally Lipschitz continuous with constant `1. Pick the observer
gains β, γ1, γ2 such that γ1, γ2 > 0 and

4αβ > `21‖B1‖2L(X,Y ). (8)

Then, for any absolutely continuous u1 and u2 and any solution of (1)
defined over R+, any solution of (6) satisfies

lim
t→+∞

‖x̂(t)− x(t)‖X = 0, lim
t→+∞

‖ŷ(t)− y(t)‖Y = 0,

and ‖B̂1 −B1‖L2(X,Y ) and ‖B̂2 −B2‖L2(X,Y ) remain bounded.
Moreover, if t 7→ (φ1(x(t)), φ2(y(t))) is persistently exciting over X × Y

and if φ1 and φ2 are differentiable with bounded derivatives, then

lim
t→+∞

‖B̂i(t)−Bi‖L2(X,Y ) = 0, ∀i ∈ {1, 2}.

It is worth noting that the observer gains γ1 and γ2 play no qualitative
role in the observer convergence. Also, β can always be picked sufficiently
large to fulfill (8). The main requirement therefore lies in the persistence of
excitation requirement, which is a common hypothesis to ensure convergence
of adaptive observers (see for instance [3, 14, 19] in the finite-dimensional
context and [10, 12] in the infinite-dimensional case). Roughly speaking,
it states that parameters to be estimated are sufficiently “excited” by the
system dynamics. However, this assumption is difficult to check in practice
since it depends on the trajectories of the system itself. In Section 5, we
choose in numerical simulations a persistently exciting input (u1, u2) in or-
der to generate persistence of excitation in the signal (φ1(x), φ2(y)). This
strategy seems to be numerically efficient, but the theoretical analysis of
the link between the persistence of excitation of (u1, u2) and (φ1(x), φ2(y))
remains an open question, not only in the present work but also for general
classes of adaptive observers.

As developed in Section 3.2, Theorem 4.2 directly applies to the neural
fields context. With the notations of Section 3.2, the adaptive observer takes
the form 

τ1
˙̂z1 = −ẑ1 +W11S1(ẑ1) +W12S2(z2) + u1

τ2
˙̂z2 = −z2 + Ŵ21S1(ẑ1) + Ŵ22S2(z2) + u2

− β(ẑ2 − z2)

˙̂
W21 = −γ1(ẑ2 − z2)S1(ẑ1)∗

˙̂
W22 = −γ2(ẑ2 − z2)S2(z2)∗.

(9)
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Then, we have the following, which immediately follows from Theorem 4.2
for this particular system.

Corollary 4.3 (Neural fields estimation) Suppose that S1 (resp. S2) is
bounded, differentiable, and that its derivative is bounded by some `1 > 0
(resp. `2 > 0), and that w is square-integrable over Ω2. Assuming that (5)
is satisfied, pick the observer gains in such a way that γ1, γ2 > 0 and

4(1− `1‖W11‖L(X,X))β > `21‖B1‖2L(X,Y ). (10)

Consider any solution of (4) defined over R+ for some absolutely continuous
inputs u1 and u2. Then any solution of (9) satisfies

lim
t→+∞

‖ẑ1(t)− z1(t)‖X = 0, lim
t→+∞

‖ẑ2(t)− z2(t)‖Y = 0

and ‖Ŵ21 −W21‖L2(X,Y ) and ‖Ŵ22 −W22‖L2(X,Y ) remain bounded.
Moreover, if t 7→ (S1(z1(t)), S2(z2(t))) is persistently exciting over X×Y ,

then

lim
t→+∞

‖Ŵ2i(t)−W2i‖L2(X,Y ) = 0, ∀i ∈ {1, 2}.

Here again, provided that condition (5) holds, β can always be picked
large enough to fulfill (10).

4.3 Proof of Theorem 4.2

Consider a solution (x, y) of (1) defined on R+ and the corresponding solu-
tion (x̂, ŷ, B̂1, B̂2) of (6). The estimation error (x̃, ỹ, B̃1, B̃2) := (x̂, ŷ, B̂1, B̂2)−
(x, y,B1, B2) is ruled by:

˙̃x = A1(x̂)−A1(x)

˙̃y = B̂1φ1(x̂)−B1φ1(x) + B̃2φ2(y)− βỹ
˙̃B1 = −γ1ỹφ1(x̂)∗

˙̃B2 = −γ2ỹφ2(y)∗.

(11)

4.3.1 Proof that (x̃, ỹ)→ 0

We endow H with the squared norm ‖ · ‖2H = ‖ · ‖2X +‖ · ‖2Y + 1
γ1
‖ · ‖2L2(X,Y ) +

1
γ2
‖·‖2L2(Y,Y ), which is equivalent to the squared norm induced by the Carte-

sian product H = X × Y × L2(X,Y ) × L2(Y, Y ). Given any initial state,
denote by tmax ∈ (0,+∞] the maximal time of existence of (x̃, ỹ, B̃1, B̃2).
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Using B̂1φ1(x̂) − B1φ1(x) = B̃1φ1(x̂) + B1(φ1(x̂) − φ1(x)), we have almost
everywhere on [0, tmax)

d

dt
‖(x̃, ỹ, B̃1, B̃2)‖2H

= 〈A1(x̂)−A1(x), x̃〉X − β‖ỹ‖2Y + 〈B̃2φ2(y), ỹ〉Y
+ 〈B̃1φ1(x̂), ỹ〉Y + 〈B1(φ1(x̂)− φ1(x)), ỹ〉Y

− 〈ỹφ1(x̂)∗, B̃1〉L2(X,Y ) − 〈ỹφ1(y)∗, B̃2〉L2(X,Y ).

By Assumption 2.2, 〈A1(x̂) − A1(x), x̃〉X 6 −α‖x̃‖2X . By definition of the
Hilbert-Schmidt scalar product,

〈ỹφ1(x̂)∗, B̃1〉L2(X,Y ) = Tr(φ1(x̂)ỹ∗B̃1) = Tr(ỹ∗B̃1φ1(x̂))

= 〈B̃1φ1(x̂), ỹ〉Y
and, similarly,

〈ỹφ2(y)∗, B̃2〉L2(X,Y ) = 〈B̃2φ2(y), ỹ〉Y .
Hence

d

dt
‖(x̃, ỹ, B̃1, B̃2)‖2H

6 −α‖x̃‖2X − β‖ỹ‖2Y + 〈B1(φ1(x̂)− φ1(x)), ỹ〉X .

By Cauchy-Schwartz inequality, for all ε > 0,

〈B1(φ1(x̂)− φ1(x)), ỹ〉X

6 `1‖B1‖L(X,Y )

(
ε

2
‖x̃‖2X +

1

2ε
‖ỹ‖2X

)
where `1 is the Lipschitz constant of φ1. Pick ε = α

`1‖B1‖L(X,Y )
+
`1‖B1‖L(X,Y )

4β >

0. Using condition (8), we get that µ1 := α − `1‖B1‖L(X,Y )ε/2 > 0 and
µ2 := β − `1‖B1‖L(X,Y )/2ε > 0. Then

d

dt
‖(x̃, ỹ, B̃1, B̃2)‖2H 6 −µ1‖x̃‖2X − µ2‖ỹ‖2Y .

Thus (x̃, ỹ, B̃1, B̃2) remains bounded. Hence according to [20, Chapter IV,
Theorems 4.1], we obtain tmax = +∞ i.e. the state (x̂, ŷ, B̂1, B̂2) is defined
over R+. Moreover, we have d

dt‖x̃‖
2
X 6 0 and

d

dt
‖ỹ‖2Y 6 −β‖ỹ‖2Y + 〈B̃2φ2(y), ỹ〉Y

+ 〈B̂1φ1(x̂), ỹ〉Y − 〈B1φ1(x), ỹ〉Y

which is bounded since (x̃, ỹ, B̃1, B̃2) is bounded, B1 is constant, and φ1 and
φ2 are bounded. Hence, according to Barbalat’s lemma, (x̃(t), ỹ(t))→ 0 as
t→ +∞.
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4.3.2 Proof that (B̃1, B̃2)→ 0

Now assume that t 7→ (φ1(x(t)), φ2(y(t))) is persistently exciting over X×Y
and that φ1 and φ2 are differentiable with bounded derivatives. Note that
B̂1φ1(x̂)−B1φ1(x) = B̂1(φ1(x̂)−φ1(x))+B̃1φ1(x). Hence the error dynamics
(11) can be written as

˙̃y(t) = B̃1(t)g1(t) + B̃2(t)g2(t) + f0(t)

˙̃B1(t) = f1(t)

˙̃B2(t) = f2(t),

(12)

where f0(t) := B̂1(φ1(x̂(t)) − φ1(x(t))) − βỹ, f1(t) := −γ1ỹ(t)φ1(x̂(t))∗,
f2(t) := −γ2ỹ(t)φ2(y(t))∗, g1(t) := φ1(x(t)) and g2(t) := φ2(y(t)) for all
t > 0. Since (x̃(t), ỹ(t)) → 0 as t → +∞, B̂1 is bounded, φ1 is globally
Lipschitz and φ1 and φ2 are bounded, we get that fi(t) tends toward 0 as
t goes to +∞ for all i ∈ {0, 1, 2}. Set g := (g1, g2) : R+ → X × Y and
f1,2, B̃ : R+ → L2(X × Y, Y ), defined by f1,2(t)(ζ, ξ) = f1(t)ζ + f2(t)ξ
B̃(t)(ζ, ξ) = B̃1(t)ζ + B̃2(t)ξ for all (ζ, ξ) ∈ X × Y and all t > 0, so that
˙̃y(t) = B̃(t)g(t) + f0(t). Remark that ‖B̃(t)‖2L2(X×Y,Y ) = ‖B̃1(t)‖2L2(X,Y ) +

‖B̃2(t)‖2L2(Y,Y ), so that it remains to show that ‖B̃(t)‖L2(X×Y,Y ) → 0 as
t → +∞ to conclude. Applying twice Duhamel’s formula, we have for all
t, τ > 0:

ỹ(t+ τ) = ỹ(t) + B̃(t)

∫ τ

0
g(t+ s)ds

+

∫ τ

0

∫ s

0
f1,2(t+ σ)g(t+ s)dσds+

∫ τ

0
f0(t+ s)ds.

Define O(t, T ) :=
∫ T

0 ‖ỹ(t+τ)‖2Y dτ for any T > 0 and t > 0. Since ỹ(t)→ 0,
O(t, T )→ 0 as t→ +∞. Moreover,

O(t, T ) =

∫ T

0

∥∥∥ỹ(t) +

∫ τ

0

∫ s

0
f1,2(t+ σ)g(t+ s)dσds

+

∫ τ

0
f0(t+ s)ds

∥∥∥2

Y
dτ +

∫ T

0

∥∥∥B̃(t)

∫ τ

0
g(t+ s)ds

∥∥∥2

Y
dτ

+

∫ T

0

〈
ỹ(t) +

∫ τ

0

∫ s

0
f1,2(t+ σ)g(t+ s)dσds

+

∫ τ

0
f0(t+ s)ds, B̃(t)

∫ τ

0
g(t+ s)ds

〉
Y

dτ.

Since ỹ(t) and fi(t) tends toward 0 as t goes to +∞ for all i ∈ {0, 1, 2} and
g and B̃ are bounded, we get that

lim
t→+∞

∫ T

0

∥∥∥B̃(t)

∫ τ

0
g(t+ s)ds

∥∥∥2

Y
dτ = 0. (13)
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For all t > 0, define h(t, τ) = B̃(t)
∫ τ

0 g(t+s)ds. By (13), ‖h(t, ·)‖L2((0,T );Y ) →
0 as t→ +∞. Note that ∂h

∂τ (t, τ) = B̃(t)g(t+τ) hence h(t, ·) ∈W 1,2((0, T );Y )

since g is bounded. Moreover, ˙̃y is bounded since B̃i and gi are bounded
for i ∈ {1, 2} and ˙̃x = A1(x̂) − A1(x) is bounded since A1 is m-dissipative
(see [16, Corollary 3.7 and Theorem 4.20]). Hence, if φ1 and φ2 are dif-
ferentiable with bounded derivatives, then so is g. Therefore, for all t > 0,
h(t, ·) ∈W 2,2((0, T );Y ) and ‖h(t, ·)‖W 2,2((0,T );Y ) 6 C1 for some positive con-
stant C1 independent of t. According to the interpolation inequality (see,
e.g., [21, Section II.2.1]),

‖h(t, ·)‖2W 1,2((0,T );Y ) 6 C2‖h(t, ·)‖L2((0,T );Y )

for some positive constant C2 independent of t. Thus ‖∂h∂τ (t, τ)‖L2((0,T );Y ) →
0, meaning that

lim
t→+∞

∫ T

0

∥∥∥B̃(t)g(t+ τ)ds
∥∥∥2

Y
= 0. (14)

Now, let (ek)k∈N be a Hilbert basis of Y . Then

‖B̃(t)‖2L2(X×Y,Y ) = ‖B̃∗(t)‖2L2(Y,X×Y )

=
∑
k∈N
‖B̃(t)∗ek‖2Y .

Since g is persistently exciting, we have, for some T, κ > 0,∫ T

0
|〈g(t+ τ), v〉X×Y |2dτ > κ‖v‖2X×Y , ∀t > 0,

for all v ∈ X × Y . Then,

κ‖B̃(t)‖2L2(X×Y,Y ) 6
∑
k∈N

∫ T

0
|〈g(t+ τ), B̃(t)∗ek〉X×Y |2dτ

=
∑
k∈N

∫ T

0
|〈B̃(t)g(t+ τ), ek〉Y |2dτ

=

∫ T

0

∑
k∈N
|〈B̃(t)g(t+ τ), ek〉Y |2dτ

=

∫ T

0

∥∥∥B̃(t)g(t+ τ)
∥∥∥2

Y
dτ.

Thus, by (14), ‖B̃(t)‖L2(X×Y,Y ) → 0 as t→ +∞, which concludes the proof.
�
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5 Numerical simulation

We provide a numerical simulation of the adaptive observer (6) in the case
of a two-dimensional neural field (namely, n = 2 and m = 1 in Section 3.2)
over the unit circle Ω = S1. We set parameters of the system and ob-
server as in Table 1, so that all assumptions of Corollary 4.3 are satisfied.
Initial conditions are given by z1(0) = z2(0) = 1, ẑ1(0) = ẑ2(0) = 0 and
B̂1(0) = B̂2(0) = 0. Kernels are given by Gaussian functions depending
on the distance between r and r′, as it is frequently assumed in practice
(see [7]): wij(r, r

′) = ωijg(r, r′)/‖g‖L2(Ω2;R), g(r, r′) = exp(−σ|r − r′|2) for
constant parameters σ and ωij given in Table 1. The inputs ui are cho-
sen as spatiotemporal periodic signals with irrational frequency ratio, i.e.,
ui(t, r) = 103 sin(λitr) with λ1/λ2 irrational. This choice is made to ensure
persistency of excitation of the input (u1, u2), which in practice seems to be
sufficient to ensure persistency of excitation of (S1(z1), S2(z2)). Note that
for u1 = u2 = 0, the persistency of excitation assumption seems to be not
guaranteed, hence the observer does not converge. However, in practice,
such a persistent input is likely to occur due to exogenous signals coming
from other unmodeled neuronal populations.

In numerical simulations, the system is spatially discretized over Ω with
a constant space step ∆r = 1/20, and the resulting ordinary differential
equation is solved with an explicit Runge-Kutta (4, 5) method.

Si(z) = tanh(z) τi = 1 λ1 = 1 λ2 =
√

2

ω11 = 0.1 ω12 = 2 ω21 = −2 ω22 = 2

β = 1 γ1 = 100 γ2 = 100 σ = 60

Table 1: System and observer parameters for the numerical simulation of
Figures 1 and 2

In Figure 1, the convergence of the observer, that is proved in Corol-
lary 4.3, is numerically verified. In Figure 2, we illustrate some iterations of
the reconstructed kernel ŵ22(t) of B̂2(t), which converges to the kernel w22

of B2.

6 Conclusion

In this paper, we have shown that an observer can be designed to estimate
online linear operators arising in some nonlinear infinite-dimensional dynam-
ical systems from the measurement of the state. This estimation problem is
motivated by an application to kernel reconstruction for neural fields equa-
tions. The main assumption is the persistence of excitation of the system
along its trajectories. Our simulations suggest that this requirement can be
ensured using appropriate exogenous inputs. In future works, we wish to
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Figure 1: Evolution of the estimation errors ‖B̂1(t)−B1‖L2(X,Y ), ‖B̂2(t)−
B2‖L2(X,Y ), ‖x̂(t) − x(t)‖X and ‖ŷ(t) − y(t)‖Y , for system and observer
parameters given in Table 1.

investigate this hypothesis by either designing inputs ensuring persistence,
or designing observers that do not rely on this assumption (see, e.g., [22]).
Moreover, the use of this estimator in closed-loop to stabilize the systems
by means of dynamic output feedback will be investigated. Finally, delayed
neural fields in the form of [7] could be considered, as they do not fit into
the functional setting of the present paper although capturing meaningful
biological processes such as non-instantaneous axonal propagation.
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