
HAL Id: hal-03689791
https://centralesupelec.hal.science/hal-03689791

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

1.2 nW Neuromorphic Enhanced Wake-Up Radio
Zalfa Jouni, Thomas Soupizet, Siqi Wang, A. Benlarbi-Delai, Pietro Maris

Ferreira

To cite this version:
Zalfa Jouni, Thomas Soupizet, Siqi Wang, A. Benlarbi-Delai, Pietro Maris Ferreira. 1.2 nW Neuromor-
phic Enhanced Wake-Up Radio. 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits
and Systems Design (SBCCI), Aug 2022, Porto Alegre, Brazil. �10.1109/SBCCI55532.2022.9893247�.
�hal-03689791�

https://centralesupelec.hal.science/hal-03689791
https://hal.archives-ouvertes.fr


1.2 nW Neuromorphic Enhanced Wake-Up Radio

Zalfa Jouni, Thomas Soupizet, Siqi Wang, Aziz Benlarbi-Delai, Pietro M. Ferreira
Université Paris-Saclay, CentraleSupélec, CNRS, Lab. de Génie Électrique et Électronique de Paris, 91192, Gif-sur-Yvette, France.

Sorbonne Université, CNRS, Lab. de Génie Électrique et Électronique de Paris, 75252, Paris, France.
Email: zalfa@ieee.org

Abstract—Low-cost devices with ultra-low power radio ca-
pabilities are a major challenge in smart devices, while a
permanently-on receiver is required for smart communication.
This paper proposes a wake-up radio with a neuromorphic pre-
processing system both biased in weak inversion region. The
system is able to receive a 2.4 GHz signal, demodulate it, and
recognize bit patterns based on the spiking frequency of a neuron.
Significant performance is obtained with 1.2 nW of total power
consumption, which is at least three orders of magnitude less
than the conventional RF envelope detectors. Further, spiking
frequency responsiveness over input power suggests that the
proposed system can distinguish different signals at 2.4 GHz.
The proposed system achieves an energy efficiency of 1.2 pJ/bit
with a minimum detectable signal of -27 dBm.

Index Terms—envelope detector, neuromorphic sensor, IoT
devices, ultra-low power.

I. INTRODUCTION

The founding pillar of Internet of Things (IoT) concept
is the availability of low-cost devices with ultra-low-power
wireless communications capabilities [1]. A promising ap-
proach to dramatically reduce the power consumption is to
use a permanently-on ultra-low-power receiver, a.k.a wake-
up receiver. Whenever it detects a communication request, it
wakes up the main radio of high performance from deep sleep
to receive data. On-Off Keying (OOK) modulation is usually
adopted with simple RF envelope detection to achieve low-
power consumption. However, the minimum detectable signal
by the receiver is limited by the quadratic nonlinearity of such
detectors [2].

Furthermore, the approaching end of Moore’s law and the
increasing power demands limit traditional computing, such as
Von Neuman’s systems [3]. While Von Neuman architectures
suffer from energetic and speed bottlenecks, neuromorphic
systems come to achieve real-time performance and better
power efficiency. In contrast to digital neuromorphic systems,
analog solutions save significant power, thanks to their capa-
bility to faithfully mimic biological neural systems [4].

To explore the sensory processing in the brain, neuromor-
phic engineers have focused on mimicking the retina and
cochlea [5]. However, a smart vision or audition in IoT
requires an RF sensor system since IoT devices communicate
through electromagnetic waves. With the increasing number
of sensors and sensory systems in IoT, signal processing is
becoming a problem due to the data complexity and the large
number of devices. Thus, RF neuromorphic may drive a new
generation of bio-inspired signal processing.

This paper aims to implement a novel RF architecture using
neuromorphic sensing for IoT applications. The proposed
method paves an innovative way for brain-inspired applica-
tions and hardware AI to explore new paradigms for neuromor-
phic sensors. Figure 1 illustrates the proposed system, which
is designed in the BiCMOS SiGe 55 nm technology from
ST Microelectronics. It consists of a wake-up radio system
with a neuromorphic pre-processing system (comprising a
synapse and a neuron). The system detects the RF input signal
(VRF ), demodulates it (VED), and converts it into an excitation
current (Iex) connected to an artificial fast-spiking neuron
(FS eNeuron). The overall system can detect and identify bit
patterns of a 2.4 GHz OOK-modulated signal. Moreover, the
proposal can also observe the electromagnetic environment
and seize important informations. In this case, it is able to
recognize the RF input power based on the spiking frequency
( fspike) of eNeuron.

This paper is organized as follows. General background is
presented in Sec.II. Proposed system and each stage of it, with
mathematics modeling, are described in Sec.III. Results of
post-layout simulations are explored in Sec.IV to demonstrate
the spike-based signal processing. Finally, conclusions are
drawn in Sec.V.

Fig. 1. Proposed RF neuromorphic sensor system composed of four stages:
a matching network, an envelope detector, a synapse, and a fast-spiking
eNeuron. Stages are detailed in Sec. III.

II. BACKGROUND

A. Wake-up Receiver

IoT offers many opportunities in smart physical objects
combining artificial intelligence and signal processing in low-
cost context-aware devices. For many applications, IoT devices
may require low power consumption. To meet this require-
ment, a hardware solution composed of two receivers is often
used [1]. One is the main receiver with high performance and
it is kept in a deep sleep until it is needed. The other is the



wake-up receiver (WuR) with ultra-low power consumption.
The WuR is always on and asynchronous.

Most wake-up receivers implemented for sensor networks
use a 2.4 GHz carrier (FRF ) and OOK modulation. Energy
efficiency is defined as Ee f f = Prms/DR, where Prms is the re-
ceiver’s power consumption and DR is the data rate expressed
in kilo-bit-per-second (kbps). Cheng et al. have proposed a
wake-up receiver based on direct active RF detection [2]. At
the operating frequency of 2.4 GHz with DR = 200 kbps,
their RF detector achieves -50 dBm minimum detectable signal
(Pmds) while consuming 2.4 µW. Besides, their receiver has an
energy efficiency of 22.5 pJ/bit.

Recently, Kinget et al. have designed a wake-up receiver
with gate-biased self-mixers [6]. It consumes only 420 pW
with an interesting Pmds = -79.1 dBm. It achieves an Ee f f
= 4.2 pJ/bit. However, it operates at 434 MHz with DR =
0.1 kbps, which is a very low carrier and data rate for IoT
applications. At 0.9 GHz and for a DR = 1 kbps, Karami et
al. have proposed a wake-up receiver lately with a Pmds = -
26 dBm and a low Prms = 5.7 nW [7]. Based on that, 5.7 pJ/bit
of energy efficiency is obtained.

Since the envelope detector is the part of the wake-up radio
operating in RF, it is usually the main contributor to power
consumption. A simple demodulator can be considered for that
purpose, especially when the RF input is an OOK signal [8].
This paper proposes a simple envelope detector, as shown in
Fig. 2.

B. Neuromorphic Analog System

Neuromorphic computing appeared in the 90s as a com-
plementary architecture to Von Neuman systems [3]. It is
spread in analog and digital domains. Neuromorphic analog
systems take inspiration from biological neural systems and
their reliance on physical properties for computation. The
neuromorphic hardware approach consists of large-scale in-
tegration of silicon artificial synapses and neurons (eNeurons)
[3]. In widespread literature, neuromorphic analog systems use
circuitry that operates in the subthreshold mode for low power
properties [4], [9], [10].

One of the synapse implementations focuses on unsuper-
vised learning for synaptic weight updates through the spike-
timing-dependent plasticity rules [3]. To build plastic synapses,
emerging technologies such as memristors are used [11].
However, issues such as process variation and reliability are
presented for unconventional technologies. Danneville et al.
[9] have designed synapses using inverters to produce a long
synaptic current pulse. Indiveri et al. have been one of the
first to propose a silicon synaptic circuit in a spiking neural
network. They have designed complex synapse blocks as an
array implementation of current mirrors [12], where current
mirror gains represent the synaptic weight. In this paper, a
synapse model tends to be relatively simple, composed of two
current mirrors, as shown in Fig. 2.

Various eNeuron models are implemented in hardware due
to a trade-off between complexity and biological inspiration.
Moris-Lecar model (ML) has presented a simple eNeuron

while faithfully mimicking biological system [3]. Moving to a
less biologically realistic category, the leaky integrate-and-fire
model (LIF) has produced enough complexity in behavior to
be useful in spiking neural systems. Spiking eNeuron is often
compared in the state-of-the-art by its output spiking frequency
fspike, its power consumption Prms,N and its energy efficiency
Ee f f ,N = Prms,N/ fspike.

Sourikopolous et al. [4] have innovated biomimetic and
simplified versions of the eNeuron model based on ML
implementation. They have first demonstrated a 4 fJ/spike
energy efficiency with a relatively constant period by reaching
a maximum fspike of 26 kHz. Danneville et al. have designed
a low-power LIF eNeuron in a small surface area [10]. Its
spiking frequency is 15.6 kHz and its energy efficiency is
2 fJ/spike. Recently, a fast-spiking (FS) eNeuron is designed
in the previous work [13]. This FS eNeuron spikes with a
higher firing rate to highlight a better energy efficiency trade-
off. A maximum fspike of 400 kHz and an Ee f f ,N equal to
1.95 fJ/spike are obtained. Based upon this previous work, an
FS eNeuron is redesigned from [13] to achieve a large band
of spiking frequency in the system. It is shown in Fig. 2.

C. Neuromorphic Signal Processing

Neuromorphic signal processing opens a wide range of
applications such as motion control, image recognition, and
sensory detection [3]. A neuromorphic hardware system for
visual pattern recognition is designed in [14]. It contains an
artificial photoreceptor, which converts an image into voltage
pulses, a memristor array for synaptic connections, and LIF
neurons. Cassidy et al. have designed a wireless address event
representation (AER) [15]. Cassidy’s neuromorphic impulse
radio introduced a distributed wireless cortex capability using
a digital neuromorphic system (i.e., FPGA) and discrete RF
components. In IoT applications, artificial sensing requires
novel RF architectures for signal classification and real-time
processing. However, RF architecture challenges in neuromor-
phic sensing are not addressed in the state-of-the-art.

III. PROPOSED RF NEUROMORPHIC SENSOR

The neuromorphic-enhanced WuR system level is illustrated
in Fig. 1, while transistor-level description is available in
Fig. 2. To address RF 2.4 GHz band, a 50 Ω matching
network is required (not represented in Fig. 2). It consists
of a capacitance and an inductance achieving a maximum
power transfer. Figure 2 presents the envelope detector (MCG)
followed by a low-pass filter (CLP, M1). Excitation current Iex
is delivered by the synapse (Fig. 2) to the FS eNeuron (Fig.
2).

All transistors are operating in weak inversion region to
take advantage of two things. First, an ultra-low-power con-
sumption is obtained by a supply voltage around of ±100 mV
(VDD = 100 mV and VSS = -100 mV). Secondly, in the ML
eNeuron model, the generation and propagation of a spike seek
an implementation of non-linear gating variables to control
the ionic channel currents. Such behavior requires transistors
operating in the subthreshold region [4].
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Fig. 2. Circuit level of the proposed system composed of an envelope detector, a synapse and an FS neuron (VDD = 100 mV and VSS = -100 mV)

A. Envelope Detector

RF envelope detector rectifies the incoming OOK signal
VRF and provides a baseband output VED equivalent to the
envelope of the original signal. Three popular forms of RF
envelope detector configurations are common drain, common
gate, and common source [2]. In this paper, the envelope
detector is a common gate transistor MCG since it can achieve
a maximal conversion gain [2]. The conversion gain of the
envelope detector (CGED) is obtained from the ratio between
the demodulated output signal VED and RF input signal VRF .
In common gate topology and for small-signal analysis, the
conversion gain of the envelope detector is expressed as:

CGED =
VED

VRF
=

ioro

VRF
=

IDroVRF

4φ 2
T

(1)

where ro is the intrinsic output impedance, and io is the output
demodulated current represented by the second-order term of
Taylor expansion as:

io =
(

∂ 2ID

∂V 2
S

)
V 2

S
2

(2)

and ID is the drain current expressed in the weak inversion
region as:

ID = Is · e(VG−VT 0)/ηφT
(

e−VS/φT − e−VD/φT
)

(3)

where Is is the specific current; VT 0 is the bias-independent
threshold voltage for VS = 0; η is the subthreshold slope factor
(η ≈ 1.34 for the 55nm BiCMOS technology, calculated based
on [16]); φT is the thermal voltage (kT/q ≈ 26 mV at 27 ◦C);
and VG, VS, VD the voltages on the gate, the source and the
drain of the transistor respectively.

An example of a common gate transistor is studied in Fig. 3
to observe the behavior of its conversion gain as a function of
its operating region. Figure 3 shows two curves: the blue line
presents the conversion gain calculated from 1 and the red line
presents the conversion gain obtained from PSS simulation.
CGED is maximized for a gm/ID ≈ 26 1/V . It corresponds
to a transistor operating in the weak inversion region, thus
achieving low power consumption. Therefore, MCG is designed
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Fig. 3. Conversion Gain of the envelope detector as a function of gm/Id for
a common gate transistor: the blue line is the calculated one and the red line
is the simulated one.

on this region with a bias voltage Vbias = 300 mV, a length =
0.06 µm and a width = 0.13 µm.

Then, a low pass filter (LP) at the output of the envelope de-
tector removes the high-frequency components. It is composed
of a capacitance CLP and a diode-connected transistor M1. To
reduce the silicon area of the system, the chosen capacitance
is the smallest varicap-based presented on the BiCMOS 55nm
technology. Dimensions are presented in Tab. I.

B. Synapse

In literature, the synapse is used in neural systems to
translate pre-synaptic voltage pulses from a pre-neuron into
post-synaptic currents to excite a post-neuron [9], [12]. In this
paper, an excitatory synapse is implemented to generate the
current Iex. Thus, Iex will excite the FS eNeuron differently
according to the input power levels of RF signal. As shown
in Fig. 2, the synapse consists of two current mirrors NMOS
and PMOS. The purpose is to copy the output current of the
filter through the active device and keep the output current Iex
constant regardless of the loading. Synapse sizing is shown in
Tab. I.



C. FS eNeuron

Finally, an FS eNeuron based on ML model is connected to
the system and is shown in Fig. 2. This biomimetic eNeuron
has been redesigned from [13] with a high firing rate to
increase the system’s dynamic range. Optimized FS sizing is
presented in Tab. I.

Briefly, when the FS eNeuron is excited by an Iex current,
the membrane capacitance Cm is charged through MPNa and
discharged through MNK . This causes a large but brief change
in membrane potential (Vm), which is referred to as action
potentials (spikes) [4]. Indeed, transistors MPNa and MNK
mimic the continuous exchange of Na-in and K-out ions
through the cell membrane in brain activity. Two cascaded
inverters MP2/MN2 and MP3/MN3 with MNK implement a
negative feedback loop and inverter MP1/MN1 with MPNa
implement a positive feedback loop.

TABLE I
CIRCUIT SIZING IN W X L FOR TRANSISTORS AND NUMBER OF CELL X

UNITY FOR CAPACITANCES

M1 135 nm x 60 nm CLP 1 x 8.5 fF
M2 405 nm x 60 nm M3 135 nm x 60 nm
M4 135 nm x 60 nm M5 135 nm x 60 nm
MP1 135 nm x 60 nm MN1 200 nm x 60 nm
MP2 1200 nm x 60 nm MN2 135 nm x 60 nm
MP3 200 nm x 60 nm MN3 135 nm x 60 nm
MPNa 800 nm x 60 nm MNK 1500 nm x 60 nm
Cm 1 x 9.83 fF CK 1 x 5.53 fF

IV. RESULTS AND DISCUSSION

A layout of the proposed RF neuromorphic sensor was
designed in the BiCMOS SiGe 55 nm technology from ST
Microelectronics, shown in Fig. 4. The image rendering tool
described in [17] is used for a high-quality layout illustration.
The proposed system occupies 9.8 x 22 µm2 of silicon
area and consumes 1.2 nW of power from a supply voltage
±100 mV. In this work, transmission lines and RF connections
are not included in the reported area. Post-layout simulation
(PLS) results of the proposal are then presented. Thus, the
system performance is validated using PSS combined with
PAC, PNOISE, and PSP Virtuoso Spectre simulations.

FS eNeuron

Envelope Detector + Synapse

VmVRF

VED

Iex

VSS

VDD

Fig. 4. The neuromorphic sensor layout (9.8 x 22 µm2) presenting envelope
detector, synapse, and FS eNeuron.

The analysis of the proposed system is divided into three
parts. Firstly, to validate the functionality of the system, VRF ,
VED, Iex, and fspike are shown from a transient noise PLS.
Secondly, the dependency of VED and then Iex on the input
power levels PRF are extracted from PLS. Therefore, the rela-
tion between input power levels and spiking frequencies of the
eNeuron is deduced for both bits [0,1]. Finally, the system’s
specifications are defined: the gain, the power consumption,
and the energy efficiency.

A. System Validation

A 2.4 GHz signal with different input powers (PRF , in dBm)
was connected to the system, and the output signal at each
stage was observed. The RF input VRF is an OOK modulated
signal with a data rate (DR) of 1 kbps.

Figure 5 validates the system functionality where an av-
erage over eight transient noise simulations is considered. It
illustrates the behavior of the system at different stages for a
-10 dBm input signal. Simulations are carried out for three bits
[0,1,0] in a window of 3 ms. That means a signal with zero
voltage for bit=0 and a sinusoidal signal with an amplitude
VRF = ±90 mV for bit=1. For the sake of better illustration,
Fig. 5 presents the results in a limited range of time [0.5 ms
: 1.5 ms] for two half bits [0,1].
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Fig. 5. Transient simulation that shows the response of the system for two
half bits [0,1] at different stages: -10 dBm input signal VRF , detected signal
VED, excitation current Iex, and membrane voltage Vm in respect to the time.
A closer view is added for VRF and Vm to clarify the sinusoidal and spiking
behaviors respectively.

Two voltage levels of the demodulated signal VED are shown
in Fig. 5: one for the bit zero data (VED,bit0 = 6 µV, near-
zero and constant for any input power) and another for the
bit one data (VED,bit1 = -36 mV, and varies with input power).
Therefore, the excitation current is constant for the bit zero
(Iex,bit0 = 540 pA) and presents an average value for the bit
one that differs with the input power. The spiking behavior of
the membrane voltage Vm shown in Fig. 5 can be identified
by fspike. Besides, the spiking frequency of the eNeuron is
obtained from the number of spikes in respect to the time (in
this case, time of a bit is 1 ms). For -10 dBm input signal
example, and for the bit one, fspike,bit1 = 177 kHz. This value



varies with the input power as verified later in Sec. IV-D.
However, for the bit zero and for any PRF , the eNeuron spikes
with a constant frequency equal to fspike,bit0 = 254 kHz.

B. Envelope Detector

In order to assess the performance of the envelope detector
presented in Sec. III-A , the minimum detectable signal Pmds
(i.e., the sensitivity of the envelope detector) can be expressed
as a function of the input power in dBm as:

Pmds = NFtot +10logB−174+SNRmin (4)

where NFtot is the overall noise figure of the circuit, B is the
bandwidth of the envelope detector, and SNRmin is the min-
imum signal-to-noise ratio required by the OOK modulation
for reliable detection. In this case, SNRmin = -12 dB and B =
10 MHz are considered.

As shown in Fig. 6, the sensitivity of the envelope detector is
obtained from the intersection between the input power (PRF ,
blue line) and the minimum detectable signal from 4 (Pmds, red
line). The envelope detector presents a sensitivity of -27 dBm.
Therefore, this value limits the gain of the overall system, as
demonstrated later in Sec. IV-E.
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Fig. 6. Sensitivity of the envelope detector: the blue line is the RF input
power PRF and its cross with the red line is the minimum detectable signal
Pmds.

A 31-point PRF sweep is considered from -30 to 0 dBm for a
2.4 GHz input sinusoidal signal in Fig. 7. It illustrates the gain
at each stage of the system: VED, Iex, and fspike versus PRF .
Indeed, Fig. 7(a) represents the variation of the demodulated
voltage VED for a PRF that varies from -30 dBm to 0 dBm for
the bit one. One may notice that the PRF sweep highlights the
Pmds = -27 dBm.

C. Synapse

The exponential relation of VED with the input power PRF
shown in Fig. 7(a) for the bit one, in addition to the two current
mirrors, lead to a decrement dependency of the excitation
current Iex on the power level as shown in Fig. 7(b). While
PRF increases from -30 dBm to 0 dBm, Iex decreases from
420 pA to 12 pA.

D. FS eNeuron

When an FS eNeuron is connected to the system and excited
by Iex, its fspike depends on the bit value and the input power.
As the excitation current for bit zero is the maximum current
delivered by the system to the eNeuron (Iex,bit0 = 540 pA),
its spiking frequency is considered the highest ( fspike,bit0 =
254 kHz). The reason behind that is to get the best energy
efficiency of the eNeuron (in fJ/spike) for the bit zero as
demonstrated in [13]. However, for the bit one, its spiking
frequency varies proportionally with the excitation current in
function of the input power. Figure 7(c) shows that fspike
decreases from 254 kHz to 25 kHz when PRF increases from
-30 dBm to 0 dBm. As expected, the eNeuron is always firing
at fspike,bit1 = 254 kHz for PRF below -30 dBm, which is equal
to fspike,bit0.

E. System Performance

Assuming an uncertainty of 1 kHz spiking frequency be-
tween bit=0 (where fspike,bit0= 254 kHz) and bit=1 in a window
of 1 ms, the functionality of the system is validated until PRF
= -27 dBm where fspike,bit1 = 253 kHz. As said before, the
system’s performance is limited by the Pmds of the envelope
detector. Therefore, the system can distinguish signals at
2.4 GHz with input power levels between -27 dBm < PRF
< 0 dBm. Thus, the dynamic range is equal to 27 dB with a
resolution of 1 kHz.

The overall system consumes 1.2 nW for the bit zero. The
power consumption Prms stays at an average of 1.2 nW for
the bit one when PRF is between -30 and -7 dBm. However,
it increases until 11.2 nW for a 0 dBm signal power. The
implemented FS eNeuron achieves an energy efficiency Ee f f ,N
between 2.5 and 5 fJ/spike depending on PRF . Maximum
fspike achieved depends on the delivered Iex. Such results are
compared with the state-of-the-art of eNeuron in Tab. II.

State-of-the-art of envelope detector circuits target narrow-
band matching for low-noise circuitry, which leads to a low
Pmds ≈ -50 dBm for high DR [2]. Besides, a low Pmds is
demonstrated in spent of µW-range power consumption. Pro-
posed neuromorphic sensor system achieves a Pmds = -27 dBm
for only 1.2 nW of total power consumption. A better Pmds
could be obtained if a narrowband off-chip matching network
is chosen. The system presents a remarkable improvement in
energy efficiency (Ee f f = 1.2 fJ/bit) due to the neuromorphic
enhancement. Table. II summarizes a literature comparison of
envelope detectors.

It can also be noticed that the spiking detection was eval-
uated for one bit in an observation window of 1 ms and for
a DR = 1 kbps. If a higher DR is chosen, one may reduce
the observation window to 0.1 ms (DR = 10 kbps) or 0.01 ms
(DR = 100 kbps) with no power consumption drawback. It is
not the case in the state-of-the-art where a low Prms and an
interesting Pmds are achieved but only for a low DR [6].

V. CONCLUSION

RF neuromorphic sensor system remains a challenging issue
for smart IoT devices. This paper proposed a neuromorphic
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Fig. 7. Post-layout Simulations obtained for bit=1 for (a) the demodulated signal VED in mV, (b) the excitation current Iex in pA, and (c) the spiking frequency
fspike in kHz in function of the input power PRF varying from -30 dBm to 0 dBm.

TABLE II
ENVELOPE DETECTOR AND NEURON PERFORMANCE COMPARISON

Envelope Detector Performance
Ref. Techn. FRF Prms Pmds Ee f f

(nm) (GHz) (W) (dBm) (pJ/bit)
This Work 55 2.4 1.2 n -27 1.2
[8] 130 2.4 120 n -48.5 48
[2] 180 2.4 2.4 µ -50 22.5
[6] 65 0.434 420 p -79.2 4.2
[7] 130 0.9 5 n -26 5

Literature eNeuron Performance
Ref. Model Techn. Area fspike Ee f f ,N

(nm) (µm2) (kHz) (fJ/spike)
This Work ML∗ 55 103 457 2.5
[9] LIF 65 31 15.6 2
[4] ML† 65 200 1.2 78.3
[4] ML‡ 65 35 25 4
[13] ML∗ 55 98.61 420 1.95
∗ fast-spiking † biomimetic ‡ simplified

enhanced wake-up radio as an innovative way for brain-
inspired applications. It can identify bit patterns of a 2.4 GHz
OOK-modulated signal and seize important information from
electromagnetic environement. Thus, the system is able to dis-
tinguish different input powers based on the spiking frequency
of the neuron. It occupies 9.8 x 22 µm2 of silicon core area
and consumes only 1.2 nW of power from a supply voltage
±100 mV. Lastly, the system achieves a significant energy
efficiency of 1.2 pJ/bit with a minimum detectable signal of
-27 dBm.
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