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Abstract—Novel non-Von-Neumann solutions have raised
based on artificial intelligence (AI) such as the neuromorphic
spiking processors in either analog or digital domain. This
paper proposes to study the deep neural network feasibility
using ultra-low-power eNeuron. The trade-offs in terms of deep
learning capabilities and energy efficiency are highlighted. A
linear fit model is found in the region of high energy efficiency
of neuromorphic components. Thus, deep learning and energy
efficiency mutually exclusive if those neuromorphic components
are used.

Index Terms—neuromorphic circuits, spiking neural network,
deep learning, low power

I. INTRODUCTION

The advent of industry 4.0 and the Internet of Things have

pushed the requirements for smart processing capabilities in

electronics. Along this advance, the smartness is also in a high

energy efficient devices, which challenges common solutions.

Since the 90’s, neural networks and artificial intelligence

solutions answered such need of high processing capability,

and are thus widely implemented on classic computing [1].

Those implementations, however, tend to be power-hungry

using Von-Neumann architectures and cloud computing. While

reduced pace in Moore’s law has further disclosed architecture

limitations, demanded alternative solutions [2].

In this context, novel non-Von-Neumann solutions have

raised based on artificial intelligence (AI). One of the most

researched nowadays is the neuromorphic spiking processors

in either analog or digital domain [3]. In contrast of Von-

Neumann architecture, neuromorphic computing has appeared

as an exciting alternative which provides edge computing

capabilities for ultra-low-power applications [4]. Moreover,

software and hardware solutions have brought the compu-

tational complexity of neural networks on energy efficient

system with deep learning capabilities [5]. Both software and

hardware solutions have pointed to the most widely used

solution, which is the Feed-Forward Neural Networks (FNNs)

[4]. Software implementations of FNNs are often used along

with deep learning algorithms in order to solve highly complex

problems. However, recent neuromorphic hardware is often

single neuron circuits [6], [7], [8] or small neural networks [9],

[10]. It is thus natural to ask if FNNs algorithms are usable

on analog spiking neurons (eNeuron), to try and narrow the

gap between hardware and software AI.

This paper objective is to study the deep neural network

feasibility using ultra-low-power eNeuron. Previous published

eNeurons from [9], [10] have been redesigned using in-

house BiCMOS 55 nm technology from ST Microelectronics.

Literature synapses are revised to propose a simple, linear, and

weight reconfigurable one. Figure 1 illustrates the eNeuron

and synapse model build up in this work from post-layout

simulations. Further study of mathematical FNNs reveals set

necessary conditions for deep learning using spiking neural

networks. To the best of the author’s knowledge, the trade-offs

highlighted in terms of deep learning capabilities and energy

efficiency are first proposed in this paper.

This paper is organized as follows. Section II revises lit-

erature in both hardware and software point of view. Finally,

conclusions are drawn towards deep learning neural networks

using ultra-low-power eNeurons.

h Synapse
iex ƒspike isyn

g

Fig. 1: Model spiking eNeuron and synapse. A neuron convert

a current inputs to a spiking frequency. Synapse convert a

spiking input to an output current.

II. ANALOG SPIKING NEURAL NETWORKS

Neuromorphic hardware aims to faithfully mimic biological

systems in artificial neurons and synapses, illustrated in Fig.

1. Those devices have presented the best energy consumption

per unit of information (i.e.Ee f f in J/spike) and a competitive

area trade-off. In the other hand, FNNs have been dominant

in software AI research aiming deep learning capabilities

and interested in mathematical network properties. Following

subsections revise both hardware and software point of view.

A. Neurons

To design a neural network, one should first select a

mathematical model for the neurons. The eNeuron model sets

the degrees of complexity and biological accuracy as explained

in [4]. Many popular models have seen widespread use as

they offer different trade-offs among energy efficiency and

computational capabilities. The simplicity of McCulloch-Pitts
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Fig. 2: eNeuron circuits studied. By using low supply-voltages, low membrane capacitance, and subthreshold transistors, authors

have minimised power-consumption and surface area.

eNeurons makes them dominant in software implementations,

as they only use an activation function to associate an output

to the sum of their inputs.

More biologically inspired models mimic the spiking behav-

ior of biological neurons. Among them, the (Leaky) Integrate-

and-Fire (LIF), and Morris Lecar (ML) models stand out due

to their widespread adoption in the literature. LIF eNeuron

offers a spiking behavior at a low complexity by modeling

the charge of a neuron. Figure 2(a) illustrates a LIF eNeuron

proposed by Danneville et al., which is an Axon-Hillock

topology. By using parasitic capacitors as the membrane

capacitance (Cm), Danneville’s eNeuron achieved both low

energy consumption and low surface area, which could lead

to the design being used in SNNs [8]. The LIF eNeuron has

a mathematical model described in the literature as

Vm =
1

Cm

∫
iex

(
e

VDD−Vm
ηφt − e

−2Vm
ηφt

)
dt, (1)

where Vm is the spiking voltage signal; iex is the input

excitation current; VDD is the eNeuron supply voltage; η is

the subthreshold slope; φt is the thermal voltage (kbT/q). A

detailed modeling is presented in [11].

The ML model provides behavior close to biological neu-

rons by using multiple complex non-linear differential equa-

tions. Such eNeuron has recently been used to implement

artificial neural networks, achieving tasks such as edge recog-

nition [9] and audio signal processing [10]. Two common con-

cerns in such edge computing applications are circuit surface

and energy consumption. The popular figure of merit Ee f f
is used to assess the later. The Ee f f is depicted considering

the spike as a unit of information. State-of-the-art eNeurons

[9], [10] are most efficient when they function at high spiking

frequency, and they become increasingly Ee f f -inefficient as

spiking frequency lowers. ML eNeuron has a mathematical

model described in the literature, being a non-linear function

Vm =−VDD · tanh

(
GL ·∑ iex

ηφt
+

1

2
ln

(
GN

GP

))
, (2)

where GL is the equivalent conductance between eNeuron

membrane and ground; GN/GP are the transistors’ aspect ratio

(NMOS conductance over PMOS conductance). A detailed

modeling is presented in [7].

To address large-scale applications where energy dissipation

is critical, Sourikopoulos et al. have proposed a simplified ML

eNeuron illustrated in Fig. 2(b). By minimizing supply voltage

and membrane capacitance, the authors achieved both low

power consumption and high-spiking frequency to a high Ee f f
[7]. As a step towards SNNs, Ferreira et al. have implemented

a Neuromorphic Analog Spiking-Modulator, which translated

a sample input into a spiking output. The output layer is

composed of two neurons with different spiking behavior,

named ’LTS’ and ’FS’ eNeuron. Figure 2(c) illustrates both

eNeuron, which are differentiated by the additional branch

in blue, only present in the ’LTS’ one. Recent ML eNeuron

implementations notably make use of subthreshold transistors

to reduce surface and power consumption [7], [10].

Literature results highlight the widely different perfor-

mances in different areas and fspike. For this reason, eNeurons

depicted in Fig. 2 shall be implemented, in this work, with

in-house tools. Thus, this work may propose a mathematical

model from post-layout simulations. Moreover, the use of the

same technology and simulator for eNeurons will prevent the

result from being skewed by technology improvements, which

will make the comparison between eNeuron models fairer.

B. Synapses

In spiking neural networks, neuron input (post-synaptic

signals) and output (pre-synaptic signals) do not have the same

dimensions. It is thus necessary to link neurons using synapses,

which convert spiking information in isyn post-synaptic signal.

Bartolozzi and Indiveri have proposed a synapse design

adequate for VLSI implementation. By using transistors oper-

ating in subthreshold, the proposed differential pair integrator

synapse response is

Isyn(t) = I0 · e
Vsyn(t)−VDD

ηφt , (3)

where I0 is the leakage current; Vsyn is the pre-synaptic signal

; Isyn is the post-synaptic signal. This model fits closer to

the Destexhe mathematical model for synapses [12]. It is

remarkable that the mean current output of the synapse is a

linear function of the pre-synaptic fspike [13].

In order to build an SNN, Danneville et al. have proposed

two new synapses in [9]. The first proposition uses inverters

along with a transimpedance amplifier and a transistor biasing
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to generate the post-synaptic current. The second proposition

implements an RC filter with two additional inverters. Those

additional inverters extend the duration of the pre-synaptic

pulse to produce a longer post-synaptic current pulse. The

transimpedance is thus controlled by steep voltage pulses

generated by the output of the inverters having an amplitude

of 2 ·VDD.

Aforementioned synapses will serve as inspiration for this

work. Figure 3 illustrates the synapses under study. Such

synapse is composed of an RC filter, followed by a tran-

simpedance, a current mirror, and a diode-connected transistor.

Studied synapse shall attempt to balance advantages and draw-

backs between Destexhe mathematical model agreement, ultra-

low power, and plasticity. Plasticity is found in the current

mirror architecture from [6], where current gain is a weighted

bias signal. Ultra-low power is observed in the choice of

passive RC filter from [9]. However, one can observe that

eNeurons already have two inverters introduced in [9], which

could be reused for further reduction in power consumption.

VDD

isyn

VPre
C

VDD

VSSVSS

VPost

MNTrans

MPR

MP1 MP2

Fig. 3: Studied Synapse Circuit

C. Neural Networks

As early as 1989, it was demonstrated that a combination

of a single non-linear function and affine functional can

approximate an extensive range of functions [14]. This proved

that FNNs with a nonlinear activation function and a hidden

layer could solve a wide range of problems. Thus, the potential

of deep-learning algorithms has been revealed, and more

advanced neural networks have been implemented since then.

Because of their simplicity and performance, FNNs have

been dominant in software AI research. They are structured

in layers of neurons, which are only connected to neurons of

the next layer. The input of a layer is therefore the output of

the previous layer. This simplicity has led to more complex

structures, which use different types of connections, such as

convolution layers, or max-pooling layers [15].

By contrast, analog neural networks have focused on an

optimal Ee f f by an increasing fspike [9], [10]. Observing (1)

and (2), one may find that eNeuron models are sufficiently

non-linear as required in software AI research literature.

Concluding that deep-learning algorithms are an easy effort

of implementation, without considering recent eNeurons, is at

least unwise. Recent research focus has led to highly optimized

eNeurons and synapses, but a lower interest is presented

in global network properties. When networks are built, the

main figure of interest remains power consumption and the

information is coded in a spiking occurrence [9]. Equations

(1) and (2) are non-linear functions of voltage and current

signal relationship, which does not assure a non-linear relation

between fspike and iex represented in Fig. 1. Besides, the usual

design choice on transistor-based synapses modeled by (3)

only reinforces the linear dependency of function and affine

functionals.

III. DEEP NEURAL NETWORK FEASIBILITY ANALYSIS

While mathematical properties of analog neural networks

are rarely a priority, Ee f f of advanced software neural network

architectures is rarely studied [4]. The tools used for software

neural networks could be most useful in implementing deep

learning for analog neural networks as [9]. Thus, it is important

to bridge the gap between software AI, and analog neural net-

work research subjects. To the best of the author’s knowledge,

the deep-learning feasibility in analog spiking FNNs has never

been studied. Moreover, the trade-off between best Ee f f and

sufficient non-linearity has never been revealed. Answer those

questions is the subject developed in this section.

A. Analysis of software neural networks

Literature has been interested by FNNs. Such networks have

an input and an output layer, linked together by one or more

hidden layers. An example network is depicted in Fig. 4(a),

displaying a hidden layer N2k. Neurons of a given layer only

have the output of the previous layer as an input, hence the

name Feed Forward. The output of a given layer is thus only

dependent on the output of the previous layer.

A neuron model takes an input i and provides an output f .

The relation between input and output can be described with

an activation function h, which provides the relation f = h(i).
Given that in an FNN, neurons are organized in layers (see Fig.

4), one may describe the inputs and outputs of every neuron

as vectors for the layer as

I = (i1, i2, . . . , in)T

F = ( f1, f2, . . . , fn)
T

F = (h1(i1),h2(i2), ...,hn(in))T

F = H(I). (4)

Furthermore, as the input of the neurons are a linear com-

bination of the output of the previous layer, we can define a

matrix Ck such that, with Fk as the output of a given layer,∀k ∈
[1,n], Fk =Hk(Ck ·Fk−1). Let us assume that Hk is linear. It can

thus be expressed as the matrix Hk = diag(hk1,hk2, ...,hkM),
with M the number of neurons in the layer. Fk can thus be

expressed as a matrix product of Fk−1, where Fk = HkCk ·Fk−1.

This leads by induction to the mathematical property of FNNs

[5]

FN =
N

∏
k=1

HkCk · I0. (5)
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(b) An equivalent two layer neural network.

Fig. 4: Feed-Forward Neural Networks. In the case of linear activation functions, a network with no hidden layer such as (b)

can be found with the same transfer function as any (a).

The output FN of the FNN is given by a linear combination

of the input I0. It is possible to find an equivalent two

layers neural network, as represented in Fig. 4(b), where

those two FNNs are equivalent. Having a linear activation

functions, it thus hinders FNN to have the properties of a

deep neural network, even with multiple hidden layers. For

deep learning purposes, a non-linear activation function is

needed. In literature, the non-linear functions ReLU and tanh
are often used as activation functions. The latter is often related

to eNeuron models (1) and (2).

i(n−1),1k in,k1

i(n−1),2k in,k2

i(n−1),3k in,k3

i(n−1),4k in,k4

fspike

eNnk

Sn,k1

Sn,k2

Sn,k3

Sn,k4

Fig. 5: Electronic Neural Network

B. Analysis of electronic spiking neural networks

While (5) and FNN property are widely known in the case

of mathematical neural networks [14], it is not the case for

electronic spiking neural networks (eNN). Figure 5 illustrates

a system model for eNeurons (eNnk) connected to a synapse

array (Sn,ki). Considering eNNs, the presence of a synapse

linking the neurons modifies the proof in (5). An eNeuron

takes as an input current iex, which is the sum of the current

fed (∑4
i=1 i(n−1),ik) in the node Vm. It outputs a spiking voltage

in Vm which iex amplitude is coded in the fspike. A function h
can thus be defined for the eNeuron such that fspike = h(iex).
The synapse does the opposite, it converts fspike pre-synaptic

information to a post-synaptic current isyn. From isyn and

fspike relationship, a function g can be defined such that

isyn = g( fspike).
An eNN such as the one modeled in Fig. 4(a), now consid-

ering eNeuron models from Fig. 5, can be studied with some

formalisms. The kth eNeuron on the nth layer will be referred

to as eNnk, with the transfer function hnk, input ink, and spiking

frequency fnk. The synapse linking together eNnk and eN(n+1)l
will be referred to as Sn,kl , with the transfer function gn,kl , input

fn,kl , output in,kl . Let Mn be the number of neurons in layer n.

Assuming the transfer functions of the synapses and neurons

are linear, i.e. for all n,k, l such that eNnk,eN(n+1)l ∈ eNN :

hnk(iex) = knk · iex +bnk (6)

gn,kl( fspike) = wn,kl · fspike + cn,kl . (7)

The spiking frequency of eN(n+1)l is then

f(n+1)l = h(n+1)l

(
Mn

∑
k=1

in,kl

)

f(n+1)l = h(n+1)l

(
Mn

∑
k=1

gn,kl( fnk)

)

f(n+1)l = k(n+1)l ·
(

Mn

∑
k=1

wn,kl · fnk + cn,kl

)
+b(n+1)l . (8)

This relation is linear, which means that if we express the

spiking frequencies of a layer of eNeurons as a vector, we can

find matrices such that

Fn = ( fn1, ..., fnMn)
T (9)

Fn = AnFn−1. (10)

By induction, one may obtain

I1 = (i11, ..., i1Hn)
T

FN =
N

∏
n=1

An · I1. (11)

This proves that the previous result still applies in the case of

an eNN. Provided neurons and synapses have linear transfer

functions, any multi-layer feed-forward neural network is

equivalent to a two layers neural network.

IV. CIRCUIT DESIGN EXAMPLE

A iex parametric sweep is PLS simulated between 1 pA

and 1 nA to extract the fspike response of the eNeurons as a

function of iex. At iex > 1nA, spiking frequency begins to fall

due to circuit stability due to subthreshold biasing (i.e. spiking

oscillations stops). Thus, the pointed iex range corresponds to

the estimated dynamic of the eNeurons. This work will use the
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Fig. 6: In-house proposed layouts for eNeurons under test: (a) Simplified ML using 8.210× 7.525 μm2 [7], (b) LIF using

6.565× 4.335 μm2 [8], (c) "FS" biomimetic ML using 5.695× 17.335 μm2 [10], (d) "LTS" biomimetic ML using 9.110×
17.335 μm2 [10]. Studied synapse layout (e) using 6.60×7.55 μm2.

least mean squares method to evaluate the transfer function

linearity of aforementioned eNeurons. If an accurate linear fit

is found for eNeurons under test, they should not be used in

deep learning applications. Fitting accuracy is estimated from

r2 method from MatLab tools. Same PLS provide the relation

between energy efficiency and spiking frequency, similarly

tests are carried out as proposed in [9], [10].

TABLE I: Sizing of MN and MP transistors in W ×L (nm)
and in capacitance for C (fF) for the neurons

LIF model proposed in [8]
MP1, MN1, MP2, MN2, MN3 135×65
Cf 5.038

ML model proposed in [7]
MP1, MN1, MP2, MN2, MPNa, MNK 135×65
Cm 3.996 CK 7.991

ML model proposed in [10]
MP1 135×60 MN1 200×60
MP2 1200×60 MN2 135×60
MP3 200×60 MN3 135×60
MPNa 800×60 MNK 2000×60
Cm 5.534 Cf 9.838
MPd 500×10,000 MNK′ 2000×60
C′

K 6.763 GL Leakage
Proposed synapse

MPR 500×3000 MNTrans 135×480
MP1 270×60 MP2 324×60
C 11.9

In-house design is proposed for eNeurons illustrated in

Fig. 2. eNeuron transistor sizing is summarized in Tab. I.

Implementing every neuron in BiCMOS 55 nm technology,

eNeuron layouts are depicted in Fig. 6. Post-layout simulations

(PLS) are carried out using Spectre Virtuoso from BSIM4

models, which are measured-based foundry models validated

in[16].

A basic synapse, illustrated in Fig. 3, was designed to assess

the linearity characteristic of the Destexhe mathematical model

in (3). A diode-connected transistor is used to have a high

load, which makes the RC filter operate at a frequency in

the range of spiking frequencies. The current mirror allows

for choosing a weight for the synapse, and makes the output

current positive. The last diode connected transistor allows for

controlling the common-mode offset. Transistor and capacitor

sizing are obtained so that the input and output ranges of the

synapse match those of eNeurons. Table I summarizes the final

sizing. Figure 6(e) illustrates the layout for the synapse under

study. For PLS results, the synapse is used to connect two

neurons, thus assuring the correct operation of the synapse.

A. eNeuron PLS

Figure 7 shows that the relations between iex and Fspike are

non-linear, with energy efficiency significantly increasing with

increased input current. As energy efficient is an important

concern when designing and using eNeurons, it is expected

for the neurons to be used in operating areas of high energy

efficiency. Thus, a linear fit was realized for those areas in

particular, omitting the less efficient low-spiking frequencies.

Having a smaller range of operation, the LIF eNeuron pro-

posed in [7] is significantly more non-linear than the other

eNeurons. No satisfying linear fit could be found for the

transfer function in Fig. 7(a), for any significantly large iex
range.

For the eNeuron proposed in [8] and the FS eNeuron

proposed in [10], a satisfying linear fit was found (r2 = 0.99)

for iex > 200pA. While the transfer functions are still non-

linear in this area, they can be closely approximated by a

linear function. The difference between the linear fits and real

transfer functions on average of 1.58% of spiking frequency

for Fig. 7(b), with the fit f (i) = 0.10× i+158.5, and 3.09% for

the FS eNeuron in Fig. 7(c), with the fit f (i) = 0.28× i−14.0.

For the LTS eNeuron proposed in [10], a linear fit can be found

for the whole area of operation, with r2 = 0.99) for iex > 100pA
with the fit f (i) = 0.30× i+133.9.

Figure 7 also shows the energy efficiency of the neurons

for a sweep of their input range. Figure 7(b) shows that

the neuron becomes most energy efficient above 100pA, with

energy efficiency strongly degrading for small iex. Figure 7(c)

show that the neurons become energy efficient at iex > 200pA,

with performance degrading for smaller input. The neurons are

thus expected to be used in ranges above 100pA and 200pA
respectively.

This results highlights a trade-off that has to be made

between energy efficiency and deep-learning capabilities while

using state-of-the-art eNeurons. If a designer chooses to use

the full range of frequency of the eNeurons, he will face

poor energy efficiency. If instead one chooses to limit the
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(a) eNeuron proposed in [7] (b) ULP eNeuron proposed in [8] (c) eNeurons proposed in [10]

Fig. 7: Results of in-house PLS using BiCMOS 55nm technology. In black, spiking frequencies of eNeurons as a function of

input current. In red, linearisation at high FSpike. In blue, energy efficiency of the neurons as a function of the input current.

operating range to higher fspike, the neurons will have a linear

characteristic. In this second case, he will either be limited

to the processing capabilities of a shallow neural network, or

have to use a non-linear synapse. A designer could also use

the Sorikopoulos eNeurons, which would provide nonlinearity

at the cost of dynamic range.

B. Synapse PLS

The synapse PLS results exhibit the necessary functions:

output current grows with input spiking frequency, and fre-

quency injection is prevented. The excitation current of the

input neuron was swept from 0 to 1 nA, to generate a sweep

of the input spiking frequency of the synapse.

Fig. 8: Synapse transfer function in black, with linear fit in

red.

Figure 8 shows that the output current of the synapse

increases with the input frequency, which is consistent with

the expected behavior for an excitation synapse. The frequency

range explored is 0 to 450 kHz, as it is the output range

of the FS Neuron used here [10]. The output is non-linear,

however, as with the neurons, a linear fit can be found for

a specific input range. For fspike In > 150 kHz , the linear fit

i( f ) = 1.63× f + 769.2 was found with r2 > 0.99, with an

average difference between linearization and output of 1.09%.

As a linear fit can be found for the synapse in areas of high

energy efficiency of the eNeurons, it will not introduce non-

linearity for networks functioning in those areas of operation.

This means that the transfer function between the outputs of

two layers will be a linear combination. This makes deep

learning and energy efficiency mutually exclusive if those

neuromorphic components are used.

V. CONCLUSIONS

This paper studied the deep learning capabilities of eNeu-

rons, exposing trade-offs for using FNN architecture. PLS

results showed that linear fits were possible at iex > 200 pA,

with r2 ≥ 0.99, which makes deep networks useless in those

areas of high energy efficiency. A linear fit could also be

found with r2 > 0.99 for the synapse, showing that using such

components at iex > 200 pA would not introduce any non-

linearities. To the best of the author’s knowledge, the trade-

offs revealed in this paper are the first to highlight the counter-

intuitive choice of high power consumption that has to be made

to allow for deep learning capabilities.
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