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Abstract

We study differentially flat systems, subject to constraints on the input, the state and their derivatives. We are interested
in providing an approximate characterisation of the set of trajectories satisfying both the equations of the system and the
constraints. The flatness property and the choice of a polynomial parametrisation in terms of Bézier functions enable a finite
dimension formulation of the problem in the parameter space of the Bézier control points. Such formulation provides a unified
method to express a large variety of relevant constraint types such as, for instance, physical obstacles, actuator limitations,
tubes around nominal trajectories, performance requirements and energy restrictions. We present a simple and effective inner
approximation of the aforementioned set of trajectories obtained by simple algebraic manipulations of the original constraints
formulation. The symbolic nature of the proposed characterisation allows a certain degree of adaptation to changes in the
constraints without the need for any re-computation. The entire method (formulation an characterisation) is illustrated via a
classical benchmark mechanical system.
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1 Introduction

Steering the state of a system to a desired position or
through a defined path is a fundamental control problem.
It becomes notoriously difficult if the system is nonlin-
ear and the tracking has to be performed while fulfilling
physical constraints on the actuators and/or the state.
To alleviate such complexity, a 2-dof scheme, separat-
ing the feedforward and feedback parts (see, e.g. Hagen-
meyer and Delaleau [2010]), is often adopted. The feed-
back stage has to take place entirely online, while the
feedforward part can be pre-computed offline, thus en-
abling the generation of trajectories satisfying the con-
straints.

A particularly skilful means to simplify the trajectory
generation problem is to exploit some kind of system in-
version or parametrisation property such as the differ-
ential flatness (Fliess et al. [1995]), the orbital flatness
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(Fliess et al. [1999]) or the Liouvillian character (Chel-
ouah [1997]). Under these structural properties, all sys-
tem variables come as a direct (i.e. functional) expression
of a particular (possibly fictitious) output, named a flat
(or Liouvillian) output, and of a finite number of its de-
rivatives. This parametrisation has a number of advant-
ages, among which we mention: 1) An automatic satis-
faction of the system’s equations by the state and input
induced by the parametrisation. Their trajectories will
be named feasible in the sequel. 2) A direct mapping of
the constraints in the flat output space. 3) A natural ful-
filment of such constraints that is built in the flat output
trajectory design. 4) An intrinsically unified formulation
of any kind of constraints (input, output and state).

Most of the literature on steering for both differentially
flat and general systems with constraints makes use of
optimisation procedures, sometimes with collocation
and/or discretisation. Moreover, the envisioned con-
straints are quite often in the state and input, but not
in their successive derivatives. With the exception of
Suryawan et al. [2012] in the case of polynomial systems,
when such collocation or discretisation procedures are
involved, usually no guarantee of constraint fulfilment
between the collocation or discretisation points can be
given (see, e.g. Faiz et al. [2001], Petit et al. [2001],
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Oldenburg and Marquardt [2002], Joubert et al. [2015],
Roberts and Hanrahan [2016]).

Several authors sought to ensure the satisfaction of con-
straints over the entire time horizon without any post
elaboration. A simple way to avoid any recourse to col-
location or discretisation is to specialise the flat outputs
to a linear combination of known functions. While the
initial problem is infinite dimensional by nature (search
in a general functional space), the one after specialisa-
tion is a finite dimensional one (e.g. in the weights of the
linear combination).

For linear systems, Henrion and Lasserre [2006] paramet-
rise the flat output with polynomial functions, which are
naturally closed under differentiation; the corresponding
constraint problem then amounts to a polynomial non-
negativity one, which is coped with a sum-of-squares de-
composition and solved with semidefinite programming.
Louembet et al. [2010] also make use of piecewise poly-
nomial representations (B-splines) and a sum-of-squares
formulation, while Suryawan et al. [2012] resort to the
convex hull property of B-splines, which introduces some
conservatism. This convex hull property is also used by
Flores and Milam [2006] together with NURBS, the op-
timal problem being solved through sequential quad-
ratic programming. For nonlinear systems, some restric-
tions or simplifications are usually adopted. Louembet
et al. [2010], for instance, consider an inner polytopic
approximation of the constraints (actually, only linear
constraints can be solved); Suryawan et al. [2012] focus
on a special class of polynomial systems (or polynomial
approximations) where only linear and cubic monomial
terms are present; Van Loock et al. [2015] use a similar
approximation to Louembet et al. [2010], but extend to
polynomial upper and lower bounds for the constraints.

Another noticeable contribution (Cichella et al. [2018])
uses a Bernstein polynomial approximation (Bézier
curves) of an optimal solution for a constraint min-
imisation problem of a differentially flat system. This
approximation also minimises the original cost function
in the Bernstein space of order N ; the approximant se-
quence then converges to the original optimal solution.
Other interesting optimisation approaches, although
more specifically focused on particular steering prob-
lems, are represented by Mellinger and Kumar [2011],
Roberts and Hanrahan [2016], Stoican et al. [2016].

Particularly relevant for the present paper is the work
of Faulwasser et al. [2014]. Instead of looking for a spe-
cific trajectory, solution of an optimisation problem, the
authors formulate a constrained reachability problem.
More in depth, they provide some formal conditions for
the existence of a suitable control function capable of
steering the state from an initial set-point to a final set-
point, while satisfying constraints on both the state and
the input.

In this paper, we study differentially flat systems, sub-
ject to constraints on the input, the state and a finite (ar-
bitrary large) number of their derivatives, without the
need to explicitly specify starting and ending point con-
ditions.We do not focus on the generation of one particu-
lar trajectory resulting from an optimisation procedure.
Our aim is to provide an approximate characterisation
of the whole set of trajectories satisfying both the equa-
tions of the system and the constraints. The states and
the inputs are written in terms of the flat outputs (and
their derivatives) and the constraints are, therefore, dir-
ectly remapped on the desired outputs. We assume those
mappings to be expressed (natively or through approx-
imation) in polynomial form, but some special non poly-
nomial forms are also discussed. In order to reduce the
problem to a finite dimensional one, we choose a poly-
nomial parametrisation of the desired outputs as Bézier
functions. The convex hull property of Bézier functions
allows the satisfaction of the constraints on the entire
time horizon without resorting to discretisation meth-
ods and post-elaborations. The characterisation of the
set of feasible and constraint-compliant trajectories, is
then performed in the parameter space of the control
points defining the Bézier curves.

The main contribution of the paper is twofold: 1) a uni-
fied formulation of the feasible constrained trajectories
encompassing a large variety of constraint types; 2) a
simple and effective inner approximation of the afore-
mentioned set of trajectories.

The present formulation allows to specify, in a unified
fashion, many relevant constraints in the states (e.g.
initial and final points or regions, banned regions for
obstacle avoidance, corridor constraints, tubes around
nominal trajectories), in the inputs (e.g. saturations, up-
per and lower bounds due to actuator limitations, time-
varying bounds) and in arbitrary polynomial functions
of states, inputs and their derivatives (e.g. limitations
on the snap, jerk, curvature, energy or power consump-
tion).

The characterisation of the set of trajectories can be
performed through standard formal (like the Cylindrical
Algebraic Decomposition) or numerical (Sum of Squares
formulations) methods. We discuss merits and limita-
tions of both approaches and we present a simple charac-
terisation which, despite some restrictions, offers many
interesting advantages. More in depth, our characterisa-
tion:

• provides a family of approximating sets of increasing
precision converging to the whole set of feasible con-
strained trajectories;
• can be produced by simple algebraic manipulation of
the general formulation;
• retains the constraint structure. If some of the bounds
in the constraints change, the approximation keeps
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its form and just adapts some coefficients without the
need for any re-computation;
• allows for a simple robustness analysis w.r.t. some

parameters of the constraints;
• allows the extraction of a specific trajectory from the

set and a fast on-line re-computation of a new solution
in case of changes in the constraints.

The entire method (formulation an characterisation)
is thoroughly illustrated via two interesting test cases
based on a classical benchmark mechanical system.

Some preliminary results have been elaborated in the
PhD thesis of the third author, whose relevant chapter
is available at the following arXiv preprint Bekcheva
[2020].

Notation

The set of non-negative integers is denoted by N.
Given a scalar function z ∈ Cκ(R,R) and a constant
α ∈ N, we denote by z〈α〉 the derivative tuple of z
up to the order α 6 κ: z〈α〉 = z, ż, z̈, . . . , z(α). Given
the vector function v = (v1, . . . , vq), vi ∈ Cκ(R,R)
and the tuple α = (α1, . . . , αq), αi ∈ N, we de-
note by v〈α〉 the tuple of derivatives of each com-
ponent vi of v up to its respective order αi 6 κ:
v〈α〉 = v1, . . . , v

(α1)
1 , v2, . . . , v

(α2)
2 , . . . , vq, . . . , v

(αq)
q .

We denote by R[a1, . . . , an] (or by R[a] with a =
(a1, . . . , an) ∈ Rn) the ring of polynomials in the vari-
ables a1, . . . , an and with coefficients in R.

2 Problem statement

2.1 General problem formulation

Consider the nonlinear system

ẋ(τ) = f(x(τ), u(τ)) (1)

with state vector x = (x1, . . . , xn) and control input
u = (u1, . . . , um), xi, uj ∈ Cκ([0,+∞),R) for a suitable
κ ∈ N. Systems with discontinuous or non differenti-
able functions are beyond the scope of this paper. One
can apply techniques involving Filippov solutions or the
functions algebra of Kaldmäe et al. [2017] to extend our
results to these cases. We assume the state, the input
and their derivatives to be subject to both inequality
and equality scalar constraints of the form

Gi(x
〈αxi 〉(τ), u〈α

u
i 〉(τ)) 6 0 ∀τ ∈ Ii, ∀i ∈ {1, . . . , νin}

(2a)
Dj(x

〈βxj 〉(τ), u〈β
u
j 〉(τ)) = 0 ∀τ ∈ Ij , ∀j ∈ {1, . . . , νeq}

(2b)

with each Ij being either [0, T ] (continuous constraint) or
a discrete set {t1, . . . , tγ}, 0 6 t1 6 · · · 6 tγ 6 T < +∞
(discrete constraint), and αxi , β

x
j ∈ Nn, αui , βuj ∈ Nm.

We stress that the relations (2) specify objectives (set-
points, constraints, etc.) on the finite interval [0, T ]. Ob-
jectives can be also formulated on larger intervals as
a concatenation of sub-objectives on a union of sub-
intervals, provided that some continuity and/or regular-
ity constraints are imposed on the boundaries of each
sub-interval. We here focus on just one of such intervals.

Our aim is to provide a characterisation of the set of
input and state trajectories (x, u) satisfying the system
dynamics (1) (usually referred to as feasible trajector-
ies) and the constraints (2). More formally we state the
following problem.

Problem 1 (Constrained trajectory set) Let C be
a subalgebra ofCκ([0, T ],R). Constructively characterise
the set C cons ⊆ C n+m of all extended trajectories (x, u)
satisfying the system equations (1) and the constraints
(2).

Problem 1 can be considered as a generalisation of a
constrained reachability problem (see for instance Faul-
wasser et al. [2014]). In a reachability problem the stress
is usually on initial and final set-points and the goal is
to find a suitable input to steer the state from the ini-
tial to the final point while, possibly, respecting the con-
straints. Here we wish to give a functional characterisa-
tion of the overall set of extended trajectories (x, u) satis-
fying some given differential constraints. A classical con-
strained reachability problem can be cast in the present
formalism by limiting the constraints Gi and Dj to x
and u (not their derivatives) and by forcing two of the
equality constraints to coincide with the initial and final
set-points.

Problem 1 is difficult to be addressed in its general set-
ting, thus, in the following, we make some restrictions to
the class of systems and to the functional space C . As
a first assumption we limit the analysis to differentially
flat systems (Fliess et al. [1995]).

2.2 Constraints in the flat output space

Let us assume that system (1) is differentially flat with
flat output 3

y = (y1, . . . , ym) = h(x, u〈ρ
u〉) , (3)

with ρu ∈ Nm. The parameterisation associated to y is

3 We recall that the flat output y has the same dimension
m as the input vector u.
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x = ψ(y〈η
x〉) (4a)

u = ζ(y〈η
u〉) , (4b)

with ηx ∈ Nn and ηu ∈ Nm.

Through the dynamical extension algorithm (Li and
Feng [1987]), we get the flat output dynamics

y
(θ1)
1 = φ1(y〈µ

y
1〉, u〈µ

u
1 〉)

...
y(θm)
m = φm(y〈µ

y
m〉, u〈µ

u
m〉) ,

(5)

with µyi = (µyi1, . . . , µ
y
im) ∈ Nm, µui = (µui1, . . . , µ

u
im) ∈

Nm and θi > maxj µ
y
ji. The original n-dimensional dy-

namics (1) and the Θ-dimensional flat output dynam-
ics (5) (Θ =

∑
i θi) are in one-to-one correspondence

through (3) and (4). Therefore, the constraints (2) can
be re-written as

Γi(y
〈ωin
i 〉(τ)) 6 0 ∀τ ∈ Ii, ∀i ∈ {1, . . . , νin} (6a)

∆j(y
〈ωeq
j
〉(τ)) = 0 ∀τ ∈ Ij , ∀j ∈ {1, . . . , νeq} (6b)

with Γi(y
〈ωin
i 〉) = Gi((ψ(y〈ηx 〉))〈α

x
i 〉, ζ(y〈η

u〉)〈α
u
i 〉),

∆j(y
〈ωeq
j
〉) = Dj((ψ(y〈η

x〉)〈β
x
j 〉, ζ(y〈η

u〉)〈β
u
j 〉) and

ωin
i , ω

eq
j ∈ Nm.

Thus, the Problem 1 can be transformed in terms of
the flat output dynamics (5) and the constraints (6) as
follows.

Problem 2 (Constrained flat output set) 4 LetCy
be a subspace ofCσ([0, T ],R) with σ = max((θ1, . . . , θm),
ωin

1 , . . . , ω
in
νin , ω

eq
1 , . . . , ω

eq
νeq). Constructively characterise

the set C cons
y ⊆ Cm

y of all flat outputs satisfying the
dynamics (5) and the constraints (6).

Working with differentially flat systems allows us to
translate, in a unified fashion, all the state and input
constraints as constraints in the flat outputs and their
derivatives (see (6)). We remark that ψ and ζ in (4) are
such that ψ(y〈ηx〉) and ζ(y〈ηu〉) satisfy the dynamics of
system (1) by construction and lead to intrinsically feas-
ible trajectories. In other words, the extended traject-
ories (x, u) of (1) are in one-to-one correspondence with
y ∈ Cm

y given by (3). Hence, choosing y as a solution of
Problem 2 ensures that x and u given by (4) are solu-
tions of Problem 1.

4 Here the max operator is applied elementwise on each
vector.

2.3 Problem specialisation - Bézier curves

For any practical purpose, one has to choose the func-
tional space Cy to which all components of the flat
output belong. In order to reduce the infinite dimen-
sional complexity, one is led to choose an approximation
space C app that is dense in Cσ([0, T ],R). A possible
choice is to work with parametric functions expressed
in terms of basis functions like, for instance, Bernstein-
Bézier, Chebychev or Spline polynomials (Prautzsch
et al. [2002]).

Definition 1 A Bézier curve of degree N ∈ N in the
Euclidean space Rr is defined as

P (τ) =

N∑
j=0

cjBjN (τ), τ ∈ [0, 1]

where cj ∈ Rr are control points and BjN (τ) =
(
N
j

)
(1−

τ)N−jτ j are the Bernstein polynomials 5 .

We stress that a generic Bézier curve P (t) with t ∈ [a, b]
and a 6= b can be easily written in terms of the previously
defined P (τ), τ ∈ [0, 1] by means of the affine transform-
ation τ = (t− a)/(b− a). For the sake of simplicity, we
here set T = 1 and we chose as functional space

C app
N =

g ∈ Cσ([0, 1],R) | g(τ) =
∑N
j=0 cjBjN (τ),

N ∈ N, cj ∈ Rr

 .

(7)
The set of Bézier functions of generic degree has the very
useful property of being closed with respect to addition,
multiplication, degree elevation, derivation and integra-
tion operations (Farouki and Rajan [1988]). As a con-
sequence, any integro-differential polynomial operator
applied to a Bézier curve, still produces a Bézier curve
(in general of different degree). Therefore, if the flat out-
puts y are chosen in C app

N and the operators Γi(·) and
∆j(·) in (6) are integro-differential polynomials, then
such constraints can be expressed, after a reordering of
the coefficients and without any added conservatism, in
terms of Bézier curves in C app

N̄
for some N̄ ∈ N which is,

in general, different from N .

The main difficulty in ensuring a polynomial form for
the constraints (6) is represented by the mappings ψ(·)
and ζ(·) in the flat parametrisation (4). Indeed, while
the functions Gi(·) and Dj(·) in (2) are defined by the
designer, the mappings ψ(·) and ζ(·) are imposed by the

5 For all j 6= 0 and j 6= N , and by definition of the Bernstein
polynomials, BjN (0) = BjN (1) = 0. For j = 0, by conven-
tion τ j = τ0 = 1, whatever the value of τ is; likewise, for
j = N , τN−j = 1. Thus B0N (0) =

(
N
0

)
, BNN (0) =

(
N
N

)
.
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system. However, not the entire system needs to be ex-
pressed in polynomial form w.r.t. the flat outputs, but
only the states and inputs that actually enter the con-
straints. Moreover, in some cases this is even not ne-
cessary: the trigonometric function in the example in
Section 4 is managed without resorting to a polyno-
mial representation. Even functions expressed as ratio of
polynomials can be directly tackled without any change,
provided that the polynomial at the denominator is al-
ways positive (see again the example in Section 4 for the
variable ω).

In the other cases, polynomial constraints can be en-
forced by adding some conservativeness. A common
technique consists in providing a polynomial upper and
lower bound for the non polynomial function (see for
instance Van Loock et al. [2015]). If an estimate of the
flat outputs is available (or can be imposed) in the
interval [0, 1] in the form of a tube around a nominal
trajectory or of maximum and minimum values, then
the mappings ψ(·) and ζ(·) can be approximated up to
a desired precision. There exists a wide literature on
approximation techniques (Powell [1981]) and many effi-
cient methods based on Chebyshev polynomials (Rivlin
[1974], Trefethen [2019]).

In the light of the previous analysis, we assume the fol-
lowing.

Assumption 1 Considering y ∈ C app
N

y(τ) =

N∑
j=0

ajBjN (τ) (8)

with aj := (aj1, . . . , ajm) ∈ Rm, the constraint in (6)
can be written as

Γi(y
〈ωin
i 〉(τ)) =

N in
i∑

k=0

rin
ik(a)BkN in

i
(τ) 6 0

∀τ ∈ Ii,
∀i ∈ {1, . . . , νin}

(9a)

∆j(y
〈ωeq
j
〉(τ)) =

Neq
j∑

k=0

req
jk(a)BkNeq

j
(τ) = 0

∀τ ∈ Ij ,
∀j ∈ {1, . . . , νeq}

(9b)

where N in
i , N

eq
j ∈ N and rin

ik, r
eq
jk ∈ R[a] polynomials in

a := (a1, . . . , aN ) ∈ Rm(N+1).

Remark 1 (Time-varying and tube constraints)
The use of Bézier functions, or more in general of basis
functions, allows an interesting extension to the con-
straints formulation. Instead of the constant constraint
Γi(y

〈ωin
i 〉(τ)) 6 0 one can impose the more general time-

varying constraint Γi(y
〈ωin
i 〉(τ)) 6

∑N in
i

k=0 cikBkN (τ)

for some cik ∈ R. Indeed, by defining Γ̃i(y〈ω
in
i 〉(τ)) =∑N in

i

k=0

(
rin
ik(a)− cik

)
BkN (τ), the new constraint can be

cast in the form (9a) with respect to the polynomials
r̃in
ik(a) = rin

ik(a)− cik.

Tube constraints can be imposed on states and inputs
in a similar fashion. Such constraints are particularly
relevant in obstacle avoidance tasks, where a non feas-
ible nominal trajectory avoiding the obstacles can be eas-
ily available via geometric planning. The goal, in this
case, is to compute a feasible trajectory, still avoiding
obstacles, which is not too far from the nominal one. Let
us consider, for instance, a vector v = (v1, . . . , vp) of
state variables (or inputs) expressed as polynomials (see
previous discussion) of the flat outputs and their deriv-
atives according to (4). If a nominal trajectory v̄(τ) =
(v̄1(τ), . . . , v̄p(τ)) is given in terms of Bézier functions

as v̄i(τ) =
∑N in

i

k=0 v̄ikBkN (τ), then a tube constraint can
be imposed as follows

∑p
i=1 (vi(τ)− v̄i(τ))

2 6 c2, where
c is the radius of the tube. It is easy to verify that, after
rearranging all the terms w.r.t. the Bernstein polynomi-
als, the previous expression is in the form (9a).

Remark 2 (Polynomial ratio constraints) The ad-
option of Bézier functions enables another useful exten-
sion, namely the definition of constraints described in
terms of polynomial ratios. Suppose to have the following
constraints:

b 6

∑Nn
k=0 nk(a)BkN (τ)∑Nd
k=0 dk(a)BkN (τ)

6 b

where b < b ∈ R and
nk, dk ∈ R[a01, . . . , a0m, . . . , aN1, . . . , aNm]. Let us also
assume

∑Nd
k=0 dk(a)BkN (τ) > 0 for every τ ∈ [0, 1]. For

the sake of simplicity we consider hereNn = Nd = N , the
general case can be put in this form by adding identically
zero polynomials. We can split the previous constraints
as follows:

b

N∑
k=0

dk(a)BkN (τ)−
N∑
k=0

nk(a)BkN (τ) 6 0

N∑
k=0

nk(a)BkN (τ)− b
N∑
k=0

dk(a)BkN (τ) 6 0 .

These two constraints can then be cast in the form (9a)
with respect to the polynomials r̃in

ik(a) = bdk(a) − nk(a)

and r̃in
jk(a) = nk(a)− bdk(a) for some index i, j.

In order to reduce the infinite dimensional Problem 2
to a finite dimensional one, we exploit the well known
fact (see for instance Prautzsch et al. [2002]) that any
Bézier curve lies within the convex hull of the points
(t∗j , cj), where t∗j = j

N are the Greville abscissae and cj

5



the control points. By adding some conservatism, we can
replace the constraints (9), which have to hold for any
τ ∈ [0, 1], with a set of constraints expressed in terms of
the (finitely many) control points of (9).

Definition 2 Let

rin = (rin
10, . . . , r

in
1N in

1
, . . . , rin

νin0, . . . , r
in
νinN in

νin
)

req = (req
10, . . . , r

eq
1Neq

1
, . . . , req

νeq0, . . . , r
eq
νeqNeq

νeq
)

and r = (rin, req), where rin
ij and r

eq
kh are the polynomials

occurring in (9). We define the semi-algebraic set asso-
ciated to the constraints (9) as

S (r,A) =
{
a ∈ A | rin(a) 6 0, req(a) = 0

}
(10)

for any parallelotope

A = [a0, a0]× · · · × [aN , aN ] (11)

with ai, ai ∈ (R ∪ {−∞,+∞})m. The sets [ai, ai] =
[ai1, ai1] × · · · × [aim, aim], with aij < aij, are them-
selves parallelotopes bounding the elements of the vectors
ai ∈ Rm.

The parallelotope A, endowed with the usual RN+1 to-
pology, is the topological space associated to the sheaf
of available trajectories among which the user is allowed
to choose a reference, through the representation (8).
A is defined by the designer in terms of the upper and
lower bounds of the control points of the Bézier func-
tions defining the flat outputs. The flat outputs have al-
most always a physical meaning and it is not difficult
to find bounds for them. The semi-algebraic set S (r,A)
represents the subset of A of those trajectories fulfilling
the constraints (6). Picking a in S (r,A) automatically
ensures that the output y in (8) satisfies the constraints
(9). Unfortunately, however, there is no way to ensure a
priori that such a solution exists even in the whole par-
allelotope A. The infinite dimensional Problem 2 has be-
come a finite dimensional one in the vector a, and can
be reformulated as follows.

Problem 3 (Semi-algebraic set) For any fixed par-
allelotope A as in (11), constructively characterise the
semi-algebraic set S (r,A) in (10).

Remark 3 (Reducing the conservatism) The con-
servatism introduced by the latter formulation of the
problem is due to the, potentially large, distance of a
Bézier curve from its control points. A sharp estimate
of the maximum distance of a Bézier curve from its de-
fining control polygon, i.e. the piecewise linear function
connecting the points (t∗j , cj), is provided in Nairn et al.
[1998]. A way to reduce such a conservatism, without
increasing the number of the parameters, is to apply a
suitable degree elevation of the Bézier curve. It has been

proved, see e.g. Prautzsch et al. [2002], that repeated
degree elevations produce a sequence of control polygons
converging to the underlying Bézier curve. An estimate
of the reduction of the maximum distance is again given
in Nairn et al. [1998].

3 Characterisation of the semi-algebraic set

3.1 Existing approaches

A full characterisation of the semi-algebraic set S (r,A)
mentioned in Problem 3 would consist of a symbolic rep-
resentation of each connected component defining the
set and of, at least, one internal, sample point for each
component. This goal can be achieved with exact, sym-
bolic methods like the Cylindrical Algebraic Decomposi-
tion (CAD) (Arnon et al. [1984]). The CAD is a powerful
method, originally developed for the existential quanti-
fiers elimination problem, that provides a partition of
the parameter space in cells described as simpler semi-
algebraic sets. On each cell the polynomials defining
equalities and inequalities are sign-invariant (negative,
positive or zero). Among all the cells, those where all the
conditions are verified are returned and for each cell a
sample point is also provided.

The CAD algorithm has two main drawbacks. The first
is related to its computational complexity: it is doubly
exponential in the number of variables. More precisely,
for s polynomials of maximum degree d in n variables,
the complexity is bounded by (sd)2O(n)

(Davenport and
Heintz [1988], England and Daven [2016]). There exist
many improvements and optimisations of the basic al-
gorithm (see for instance Wilson et al. [2014] for sub-
CAD and Basu et al. [2006] for a general overview of
the field), which increase the practical usability of the
CAD, but none of them changes its theoretical complex-
ity. There also exists a family of algorithms based on
the critical points method (see Grigoriev and Vorobjov
[1988], Basu et al. [2006]) whose complexity is singly ex-
ponential.

The second drawback is the huge number of cells often
produced by the partition. Even if their expression is
potentially much simpler than that of the original semi-
algebraic set, their number negatively affect the CAD
usability.

To overcome these limitations, many numerical, not ex-
act, approaches have been proposed in the literature.
They aim to solve a large variety of problems includ-
ing ascertaining the non-negativity of a polynomial on
a basic semi-algebraic set 6 , testing emptiness of semi-
algebraic sets and computing inner or outer approxima-

6 A basic semi-algebraic set is built in terms of only (weak)
polynomial inequalities.
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tions of basic semi-algebraic sets. They all consist in con-
verting the exact problem in an approximated one, which
can be efficiently solved by exploiting the semidefinite
programming theory and Sum of Squares (SoS) polyno-
mials (Laurent [2009], Lasserre [2006], Parrilo [2003]).

In this vein, an algorithm that can be exploited to solve,
at least partially, the characterisation of Problem 3 has
been proposed in Dabbene et al. [2017]. It is able to
provide a numerical approximation (inner or outer) of a
basic semi-algebraic set. Unfortunately, despite its the-
oretically soundness and simplicity of implementation,
it often suffers from numerical problems. A way to limit
such shortcomings is to add further ad-hoc constraints
forcing the correct solution, but there is no systematic
procedure to guide in their choice.

Moreover, all the aforementioned numerical methods
have the tendency to loose the link with the symbolic
constraints. That is, if a bound on a variable or a
parameter on a constraint is changed, a new numerical
problem has to be solved and the previous solution is of
scarce (or null) use.

3.2 A simple partial characterisation

We propose here a simple numerical method to provide
an approximate characterisation of the semi-algebraic
set in Problem 3, which has the advantage of retaining
its link with the symbolic formulation and to require few
computations.

3.2.1 The p-norm ellipsoids

As in Dabbene et al. [2017], we look for an inner approx-
imation of a basic semi-algebraic set instead of the gen-
eral set S (r,A) in Problem 3. More precisely, we assume
that the equality constraints can be solved via symbolic
variable substitutions or can be converted, up to a de-
sired precision, to a couple of inequalities. In many prac-
tical problems the use of equality constraints is limited
to the specification of some waypoints (such as the de-
parture and arrival points). As a consequence, we do not
deem their potential replacement by couples of inequal-
ities a significant limitation. We also assume that the
inequalities come naturally, or can be put, in the form
ri 6 ri(a) 6 ri for some ri, ri ∈ R and ri ∈ R[a]. We
stress that, in practical cases, the inequalities often come
in that form and, in general, the polynomials ri always
admit a finite upper and lower bound when the parallel-
otope A is bounded, namely when ai, ai ∈ Rm. Thus we
make the following assumption.

Assumption 2 There exist M polynomials ri ∈ R[a]
such that the semi-algebraic set S (r,A) in (10) can
be transformed in the following basic semi-algebraic set

defined in terms of 2M inequalities

S (A) = {a ∈ A | ri 6 ri(a) 6 ri, ri, ri ∈ R, i = 1, . . . ,M} .
(12)

We want to compute an inner approximation A ⊂
S (A). To this aim, let us define the parallelotope

P = [r1, r1]× · · · × [rM , rM ] (13)

with ri, ri ∈ R as in (12), and the vector polynomial
function R : a 7→ (r1(a), . . . , rM (a)). The inverse of R
is a multivalued function defined as R−1 : ρ 7→ {a ∈
Rm(N+1) | R(a) = ρ}. We can easily verify that S (A) =
R−1(P) ∩ A, so, for any M ⊂ P we have S (A) ⊃
R−1(M )∩A. The idea is to build a suitable set M ⊂ P
(or a family of them) and then to define the sought in-
ner approximation as A = R−1(M ) ∩ A, which auto-
matically satisfies A ⊂ S (A). In particular, if M is a
semi-algebraic set defined by only one inequality, then
also R−1(M ) is a semi-algebraic set defined by one in-
equality.

Definition 3 Let us define the unit M -dimensional el-
lipsoid in p-norm centred in c = (c1, . . . , cM ) ∈ Rm as

EM,p =

{
q ∈ RM

∣∣∣ M∑
i=1

|qi − ci|p

bpi
− 1 6 0

}
(14)

for some constants bi > 0 representing the semi-axes. If
p = 2d, d ∈ N we can drop the absolute value and the
ellipsoid EM,p becomes a semi-algebraic set.

In the following we impose p = 2d, d ∈ N. Moreover, if
we set

2bi = ri − ri
2ci = ri + ri (15)

we have EM,p ⊂ P. In the light of the previous discussion,
we can state the following proposition.

Proposition 1 Given the semi-algebraic set

R−1(EM,p) =

{
a ∈ Rm(N+1)

∣∣∣ M∑
i=1

(
ri(a)− ci

bi

)p
− 1 6 0

}
(16)

where ri are the polynomials defining S (A) in (12), the
set A M,p = R−1(EM,p) ∩ A satisfies A M,p ⊂ S (A). It
is thus an approximation of S (A) parametrised by M
and p.

The present approximation has the advantage of be-
ing directly generated with few symbolic manipulations,
once the order p has been fixed. Moreover, the positions
(15) show clearly the link with the symbolic constraints.
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If the bounds ri, ri in (15) change, the approximation
keeps its form and just adapts some coefficients without
the need for any re-computation.

Remark 4 The use of the ellipsoidal approximation
provides an alternative formulation to the inequality con-
straints expressed as ratio of polynomials. In the Remark
2 such ratios where converted in two sets of inequalities
in terms of the polynomials r̃in

ik(a) = bdk(a)− nk(a) and
r̃in
jk(a) = nk(a)−bdk(a). Working with the control points,
and accepting the ensuing conservatism, leads to the in-
equalities bdk(a) − nk(a) 6 0 and nk(a) − bdk(a) 6 0.
These inequalities can be put back in rational form as
follows:

b 6
nk(a)

dk(a)
6 b , (17)

with the further constraints 0 6 dk(a) to ensure the posit-
ivity of dk. We notice that such positivity constraints can
be dropped whenever the polynomials dk are squares or
sum of squares. This way we have two-boundary inequal-
ities that can be directly included in the semi-algebraic
set (16) by setting (with a slight abuse of notation)

rk(a) =
nk(a)

dk(a)

2bi = b− b
2ci = b+ b . (18)

If a purely polynomial representation of the set
R−1(EM,p) is desired, the inequality in (16) can be put
in rational form through the computation of the LCD
and the denominator discarded due to its positivity.

3.2.2 Volume coverage

Proposition 2 Given M ∈ N, the sets A M,p =
R−1(EM,p) ∩ A constitute a family of approximat-
ing sets for S (A) parametrised in p. In other words,
A M,p1 ⊆ A M,p2 for any 2 6 p1 6 p2 ∈ N and

lim
p→∞

A M,p = S (A) .

PROOF. By definition, the ellipsoids EM,p for fixedM
are such that EM,p1 ⊆ EM,p2 for any 2 6 p1 6 p2 ∈ N.
Moreover limp→∞ EM,p = P. By continuity of R−1(·) we
have A M,p1 ⊆ A M,p2 for any 2 6 p1 6 p2 ∈ N and

lim
p→∞

A M,p = lim
p→∞

R−1(EM,p)∩A = R−1(P)∩A = S (A) .

The previous proposition ensures that, if S (A) is not
empty, then there exists p̄ > 2 such that for any p > p̄,
the set A M,p is not empty too, hence the approxima-
tion A M,p provides a set of feasible solutions. The previ-
ous assertions can be made more precise by considering

firstly the volume of the ellipsoid EM,p (see for instance
Wang [2005])

V (EM,p) =
2MΓM

(
1
p + 1

)
Γ
(
M
p + 1

) M∏
i=1

ci

where Γ(·) is the gamma function and secondly the one
of the parallelotope P

V (P) = 2M
M∏
i=1

ci.

The ratio between these two volumes is given by

%(M,p) =
ΓM

(
1
p + 1

)
Γ
(
M
p + 1

)
and, for fixed M , clearly limp→∞ %(M,p) = 1. Unfortu-
nately, if we fix p and we compute limM→∞ %(M,p) = 0
we verify that, for increasing dimension, the volume of a
parallelotope is concentrated at the corners. Hence, the
higher the dimension M , the higher p must be to cap-
ture a relevant part of the volume of P. To give an idea
of how much p must increase when M increases, let us
as consider a linear relation between the two: p = kM
for some k ∈ N and compute the limit

%(k) = lim
M→∞

%(M,kM) =
e−

γ
k

Γ
(

1
k + 1

)
where γ = −Γ′(1) is the Euler-Mascheroni constant.
Being %(M,kM) > %(k) for anyM , %(k) provides a lower
bound on the percentage of coverage of the volume of P.
For instance, %(1) ≈ 0.56, %(2) ≈ 0.84 and %(3) ≈ 0.92.

3.2.3 Internal sample points

The problem with this approximation is that, even if
there exists a p̄ > 2 such that for any p > p̄, the set
A M,p is not empty, there is no general rule to compute
such p̄. Generally speaking, A M,p is an approximation
of S (A), but there is no assurance of A M,p being not
empty.

To complete the characterisation of the semi-algebraic
set, hence to solve the Problem 3, we need to establish
whether the set is not empty and, in this case, to provide
at least an internal sample point. The CAD method is
of no use now as the number of variables is not changed,
but the fact of having the setR−1(EM,p) defined by only
one polynomial allows us to use simpler numerical meth-
ods. More precisely, we can pose the following minimisa-
tion problem mina∈A

∑M
i=1

(
ri(a)−ci

bi

)p
− 1 and look for
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a local minimiser a∗. If we can find a negative minimum
value, then the set is not empty and the correspond-
ing a∗ is the required sample point. The aforementioned
minimisation problem has constraints of a very simple
form, namely only upper and lower bounds on the vari-
ables. Therefore, a simple algorithm can be employed,
whose core is a standard line search method based, for
instance, on the gradient descent (Nocedal and Wright
[Chapt. 3, 2006]). The constraints can be accounted for
by simply modifying the search direction according to
the gradient projection method (Nocedal and Wright
[Chapt. 16, 2006]). It is important to remark that such a
minimum point can be computed quite efficiently since
the gradient (and Hessian if needed) can be symbolically
provided to the minimisation algorithm. Unfortunately,
if the minimum value is positive, there is no assurance
of the emptiness of the set as the defining polynomial
has in general many minima. Multi-start approaches are
beneficial in this case to improve the chance of finding
the global minimum. If a negative minimum cannot be
found, the order p of the polynomial can be increased
and the search repeated.

Remark 5 (On-line trajectory re-computation)
The advantage of retaining the link with the symbolic
constraints becomes particularly relevant when an on-
line re-computation of a trajectory is necessary to cope
with a change in the constraints. If some of the bounds
ri, ri in (15) change, the previously computed trajectory
could be no longer valid; but the formal expression of the
set A M,p is not changed and it can still provide feasible
trajectories. A quick on-line execution of the gradient
descent algorithm can provide a new internal sample
point, thus a valid trajectory.

3.2.4 Local approximations

Asmentioned before, with the generic ellipsoidal approx-
imation there is no assurance that for a fixed p the set
A M,p is not empty. This lack is due to the fact that the
centre c of the ellipsoid defined in (15) or (18) is in the
middle of the parallelotope P, but there is no reason for
this point to be the image of a valid solution. In fact,
quite often the opposite is true: R−1(c) /∈ S (A). On
the contrary, if an internal sample point s ∈ S (A) is
known, it is possible to build a non-empty set A M,p for
any order p (even just 2). The trick is to centre the el-
lipsoidal approximation in the image of the point s along
the map R. More precisely, we define the new centre and
the semi-axes as

c = (c1, . . . , cM ) = R(s)

bi = min(ci − ri, ri − ci)

(or bi = min(ci − b, b− ci) if we consider inequalities of
the type (17)). The semi-axes are defined so as to ensure
that EM,p ⊂ P. Actually EM,p is now a local ellipsoidal
approximation of a portion of P. Notice that, the point s

belongs to the ensuing set R−1(EM,p) by construction,
hence A M,p is not empty whatever p is.

3.2.5 Robustness of solutions

An interesting aspect of the present approximation is re-
lated to the possibility of performing a robustness ana-
lysis of the solutions with respect to individual con-
straints. Assume that a∗ ∈ A M,p is a solution to Prob-
lem 3 and r̃ is one of the constraint bounds rk, rk for
any fixed k. The constants bk and ck in (15) are the only
ones to be functions of r̃. The defining polynomial in (16)
computed in a∗ is now a mono-variate function (actually
a ratio of polynomials or a polynomial) of the variable r̃:

la∗(r̃) =

M∑
i=1

(
ri(a

∗)− ci(r̃)
bi(r̃)

)p
− 1 (19)

The function la∗(·) can be easily exploited to evaluate the
validity of the solution a∗ with respect to variations of r̃.
It is important to remark, however, the conservativeness
of such a robustness analysis. The solution a∗ can still be
valid for a certain r̃ even if it fails the robustness check
for that r̃. The robustness analysis is indeed related to
the set A M,p, namely the set produced by the chosen
ellipsoidal approximation, not to the set S (A). If the
test fails for some fixed M and p, then a∗ /∈ A M,p, but
it is still possible that a∗ ∈ S (A).

4 Numerical test cases

In the present section we will illustrate the steps involved
in the solution of Problem 3 via two different mechanical
systems.

4.1 The unicycle

A kinematic model of the unicycle mobile robot is given
by

ẋ = v cos θ

ẏ = v sin θ (20)
θ̇ = ω

where (x, y) represents the position of the cart with re-
spect to an inertial frame, θ is the orientation, that is
the angle between the x-axis and the heading direction
measured counterclockwise. The control inputs are the
linear velocity v > 0 and the angular velocity ω. The
model is flat with respect to the outputs x and y. The
flat parameterisation (4) is given by
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θ = ψ(x, ẋ, y, ẏ) = arctan
ẏ

ẋ
(21a)

v = ζ1(x, ẋ, y, ẏ) =
√
ẋ2 + ẏ2 (21b)

ω = ζ2(x, ẋ, ẍ, y, ẏ, ÿ) =
ÿẋ− ẍẏ
ẋ2 + ẏ2

. (21c)

We remark that, being v > 0, both θ and ω are well
defined.

4.1.1 Test case 1

In the first case we consider a unicycle moving from a
given initial position and orientation at time t = 0 to a
given final position and orientation at time t = 1. We
assume limited control authorities both in v and ω. The
equality and inequality constraints (2) thus read

x(0) = x0 x(1) = xf

y(0) = y0 y(1) = yf

θ(0) = θ0 θ(1) = θf

v 6 v 6 v

ω 6 ω 6 ω .

For the flat outputs we choose cubic Bézier curves

x(t) =

3∑
j=0

XjBj3(t), y(t) =

3∑
j=0

YjBj3(t) .

Bézier curves are often represented in terms of the vec-
tors of their control points: X = [X0, X1, X2, X3] and
Y = [Y0, Y1, Y2, Y3]. Using this notation, we can give an
idea of the transformation induced by the derivative op-
erations on the control points:

Ẋ = 3[X1 −X0, X2 −X1, X3 −X2]

Ẍ = 6[X0 − 2X1 +X2, X1 − 2X2 +X3]

where with Ẋ and Ẍ we denoted the vectors of control
points of ẋ and ẍ respectively.

The equality constraints on the initial and final pos-
itions directly fix some control points as: X0 = x0,
X3 = xf , Y0 = y0 and Y3 = yf . Imposing the constraints
on the orientation is slightly more involved since the
parameterisation (21a) is not polynomial. Let us con-
sider the case θ0 (θf is similar). We translate the ori-
ginal equality constraint in an equality and an inequal-
ity constraints in terms of the control points of the flat
outputs. If θ0 = π

2 we pose ẋ(0) = 0 and ẏ(0) > 0. If
θ0 = 3π

2 we pose ẋ(0) = 0 and ẏ(0) < 0. If θ0 ∈
(
π
2 ,

3π
2

)
we pose ẏ(0) = ẋ(0) tan θ0 and ẋ(0) < 0. Finally, if

θ0 ∈
[
0, π2

)
∪
(

3π
2 , 2π

)
we pose ẏ(0) = ẋ(0) tan θ0 and

ẋ(0) > 0. As an example let us consider θ0 = 0. In this
case we have ẏ(0) = 0 and ẋ(0) > 0, which directly
translates in terms of control points to: 3(Y1 − Y0) = 0
and 3(X1 − X0) > 0. If a two-boundary inequality of
the kind considered in (12) is required, an upper bound
on 3(X1 −X0) can be easily added either assuming the
parallelotope A in (11) is bounded or by recalling that
|ẋ(0)| < |v|.

The inequality constraints for v can be easily written as
(recall v has to be positive by hypothesis) v2 6 ẋ2+ẏ2 6
v2, which has to be satisfied for each control points of v.
As a result we have a set of five quadratic two-boundary
inequalities. For example, the one for the first control
point of v2 is given by: v2 6 9(X0−X1)2 +9(Y0−Y1)2 6
v2.

The inequality constraints for ω are expressed as a ra-
tio of polynomials, so we make reference to Remark 4
to produce a set of five two-boundary inequalities of
the form ω 6 Ni

Di
6 ω, where Ni and Di are the con-

trol points associated to the Bézier functions at the
numerator and denominator of the ratio (21c). As an
example we report here the first control points N0 =
18(Y0−Y1)(X0−2X1+X2)−18(X0−X1)(Y0−2Y1+Y2)
and D0 = 9(X0 −X1)2 + 9(Y0 − Y1)2.

In order to make more concrete the present test case, let
us fix the following values for the constraints:

x0 = 0 xf = 1

y0 = 0 yf = 1/2

θ0 = 0 θf = 0

v = 0 v =
√

10

ω = −10 ω = 10

and the following parallelotope for the control points:
A = [−1, 1]8. Once the equality constraints have been
removed by symbolic variable substitutions, the (basic)
semi-algebraic set S (r,A) in (10) is made up of 22 poly-
nomial inequalities of maximal degree 2 in the two vari-
ables X1 and X2.

In this simple case the CAD is able to provide an elegant
solution (see the blue triangle in figure 1) to Problem 3
given by:

1

10
< X1 <

17

20
,

1

20
+X1 < X2 <

9

10
.

Concerning the ellipsoidal approximation described in
Section 3.2, the set S (A) in (12) is made up ofM = 12
two-boundary inequalities (i.e. 24 single inequalities), 5
of which expressed as ratios of polynomials and 7 ex-
pressed as polynomials, all in the two variables X1 and
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Figure 1. Solution domains for the test case 1. The basic
semi-algebraic set S (A) is in blue, the generic ellipsoidal
approximation of order p = 20 is in red and that of order
p = 8 is in orange. The black dot represents the sample point
s ≈ [0.34, 0.65] computed by the gradient descent algorithm.

X2. Two inner approximations A M,p = R−1(EM,p)∩A
of S (A) are shown in figure 1, one for p = 8 (%(M,p) ≈
0.37) in orange, the other for p = 20 (%(M,p) ≈ 0.81)
in red. The gradient descent algorithm initialised with
starting point s0 = [1, 10−5] produces a valid internal
sample point: s ≈ [0.34, 0.65] (see the black dot in fig-
ure 1). It is worth noting that the initial point s0 ∈ A
but is not a solution: s0 /∈ S (A).

In order to improve the approximation of S (A) without
increasing the order of the ellipsoid, one can look for a
local approximation as described in Section 3.2.4. Defin-
ing the sample point s as the new centre and the semi-
axes accordingly (see again Section 3.2.4), a suitable ap-
proximation of order p = 4 is found (see the green set in
figure 2). It is worth noting that, despite its low order,
such local approximation is even better than the general
one of order p = 8.

We can perform a robustness analysis of the solution
s ≈ [0.34, 0.65] with respect to variations of the bounds
v, ω and ω according to the method described in sec-
tion 3.2.5. We use the ellipsoidal approximation of order
p = 8 and we consider two independent variations in v
and in ω̃ > 0 such that ω = −ω̃ and ω = ω̃. The func-
tions ls(v) and ls(ω̃) in (19) turn out to be a ratio of
polynomials with an always positive denominator. We
focus now only on the numerators nls(v) and nls(ω̃) of
the two functions. nls(ω̃) takes on the very simple form
nls(ω̃) ≈ −0.2987ω̃8 + 6255.66, which leads to the valid-
ity interval ω̃ > 3.4684. nls(v) takes on a more com-
plicated form of a polynomial of order 8 in the variable
v2. By numerically computing the roots, one finds the
following validity interval 1.5269 < v < 3.5055. The ro-
bustness test ensures that the solution s ≈ [0.34, 0.65]
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Figure 2. Solution domains for the test case 1. The basic
semi-algebraic set S (A) is in blue, the local approximation
of order p = 4 computed with respect to the sample point
s = [0.34, 0.65] is in green.
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Figure 3. Bounds for the x and y states in test case 2.

can be used, without any re-computation, even if one of
the bounds v, ω and ω varies according to the computed
validity margins.

4.1.2 Test case 2

For the second test case we show how the present ap-
proach allows to impose constraints to the state variables
and control inputs in a unified fashion. This is partic-
ularly relevant when performing, for instance, obstacle
avoidance.

We choose quintic Bézier curves for the x and y variables
and we impose them to stay in the interior of the region
bounded by two Bézier curves as depicted in figure 3.
Such constraints directly translate in terms of control
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points for the x and y variables as follows:

X =

[
0,

1

10
,

1

5
,

4

5
,

9

10
, 1

]
Y 6 Y 6 Y

Y =

[
0, − 1

103
,

9

10
,

1

2
,

3

8
,

1

2

]
Y =

[
0,

1

10
,

6

5
,

11

10
,

3

4
,

1

2

]
.

Notice that, with the present constraints, the initial and
final positions of the vehicle are the same of test case 1.
Concerning the initial and final orientation we strictly
fix the former and we provide a bound for the latter:

θ0 = 0

−π
3
6 θf 6

π

3
.

The constraints on the control inputs are:

v = 0 v = 10

ω = −50 ω = 50.

Since the control points for x are completely fixed, the
parallelotope A has the form: A =

∏5
i=0[Y i, Y i].

Once the equality constraints have been removed
by symbolic variable substitutions, the (basic) semi-
algebraic set S (r,A) in (10) is made up of 47 polynomial
inequalities (7 of degree 0, 12 of degree 1 and 28 of de-
gree 2) in the three variables Y2, Y3 and Y4. In this case
we did not look for a solution with the CAD algorithm,
but we directly computed an ellipsoidal approximation.
The set S (A) in (12) is made up of M = 20 two-
boundary inequalities (once those of degree zero have
been removed being automatically satisfied), 7 of which
expressed as ratios of polynomials and 13 expressed as
polynomials. All the polynomials are of maximal degree
2 in the three variables Y2, Y3 and Y4. A numerical
representation of S (A), obtained by fine gridding the
parameter space, is shown in blue in figure 4.

In order to compute the approximation A M,p =
R−1(EM,p) ∩ A we chose here p = 80 (%(M,p) ≈ 0.96)
obtaining the set represented in red in figure 4. The
gradient descent algorithm initialised with starting
point s0 = 1/2[Y 2 + Y 2, Y 3 + Y 3, Y 4 + Y 4] produces a
valid internal sample point: s ≈ [0.92, 0.93, 0.66]. It is
worth noting that the initial point s0 ∈ A but is not a
solution: s0 /∈ S (A).

Despite the high order (p = 80) and the high coverage
index of the parallelotope P, the approximation A M,p is
appreciably smaller than S (A). The reason is that the
solution set is manly located in a corner of P. In order to
significantly lower the degree of the approximation, one

Figure 4. Solution domains for the test case 2. The basic
semi-algebraic set S (A) is in blue, the generic ellipsoidal
approximation of order p = 80 is in red, the local approxim-
ation of order p = 4 computed with respect to the sample
point s = [0.92, 0.93, 0.66] is in green.

can look for a local approximation as discussed in Section
3.2.4. Defining s as the new centre and the semi-axes ac-
cordingly (see again Section 3.2.4), a suitable approxim-
ation of order p = 4 is found (see the green surface in fig-
ure 4). An even better approximation is found by choos-
ing a slightly different sample point s = [0.95, 0.95, 0.6]
and p = 8 as shown in figure 5. More than one local ap-
proximation can be computed, if other sample points are
known, and a partial covering of the set S (A) can thus
be obtained.

4.2 The planar manipulator

The dynamics of a planar manipulator can be written as
(see Murray et al. [1994])

D(q)q̈ + C(q, q̇)q̇ = τ

where τ = [τ1, τ2] are the couples at the joints and
q = [θ1, θ2] with θ1 the angle of the first link w.r.t. the
horizontal axis measured CCW and θ2 is the angle of
the second link w.r.t. the axis of the first link measured
CCW. The matrices are

D(q) =

(
α+ 2βc2 δ + βc2

δ + βc2 δ

)

C(q, q̇) =

(
−βs2θ̇2 −βs2(θ̇1 + θ̇2)

βs2θ̇1 0

)
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Figure 5. Solution domains for the test case 2. The basic
semi-algebraic set S (A) is in blue, the local approximation
of order p = 8 computed with respect to the sample point
s = [0.95, 0.95, 0.6] is in green.

where c2 = cos θ2 and s2 = sin θ2. The position of the
end–effector is given by

x2 = `1 cos θ1 + `2 cos(θ1 + θ2)

y2 = `1 sin θ1 + `2 sin(θ1 + θ2) .

For the simulations we choose: `1 = 0.5 m, `2 = 0.3 m,
α ≈ 0.18428 kg m2, β = 0.027 kg m2, δ ≈ 0.01082 kg m2.
The system is flat w.r.t. the outputs θ1, θ2.

This second example show how the present approach
allows to impose constraints to the state variables and
control inputs in a unified fashion. More specifically,
we want the manipulator to move from the initial po-
sition θ1(0) = θ̇1(0) = θ̈1(0) = θ̇2(0) = θ̈2(0) = 0,
θ2(0) = π

6 to the final position θ1(1) = π
2 , θ2(1) = 11π

6 ,
θ̇1(1) = θ̈1(1) = θ̇2(1) = θ̈2(1) = 0, with the end–
effector avoiding a circular obstacle of radius R̄ = 0.15 m
centred in [xo, yo] = (`1 + `2)[cos π4 , sin

π
4 ]. We also im-

pose upper and lower bounds on θi and τi, i = 1, 2. The
inequality constraints are hence:

0 ≤ θ1 ≤
π

2
0 ≤ θ2 ≤ 2π

|τ1| ≤ 30 |τ2| ≤ 10

and

R̄2 ≤ (x2 − xo)2 + (y2 − yo)2 ≤ (`1 + `2)2 .

The expressions for x2, y2, τ1 and τ2 are clearly not poly-
nomials, so we approximate the trigonometric functions
with polynomials whose coefficients are found with a

least square method. More precisely, we found for sin θ1,
cos θ1, sin θ2, cos θ2 an approximation in terms of polyno-
mials of order 3, 4, 5, 6 respectively, with maximum ab-
solute error 0.00236, 0.00019, 0.01436, 0.00302 respect-
ively. We remark that the smaller the interval of the
angle, the smaller the order of the approximating poly-
nomials.
We choose a Bézier of order 5 for θ1 and of order 8
for θ2. The equality constraints associated to the initial
and final points produce the following vectors of control
points:

Θ1 =
[
0, 0, 0,

π

2
,
π

2
,
π

2

]
Θ2 =

[
π

6
,
π

6
,
π

6
, X3, X4, X5,

11π

6
,

11π

6
,

11π

6

]
where X3, X4 and X5 are free parameters. As suggested
in Remark 3, we reduce the conservatism of the Bézier
for θ2 by a degree elevation from 8 to 10, which produces
the control vector

Θ̃2 =

[
π

6
,
π

6
,
π

6
,

7X3

15
+

4π

45
,

8X3

15
+
X4

3
+

π

45
,

2X3

9
+

5X4

9
+

2X5

9
,
X4

3
+

8X5

15
+

11π

45
,

7X5

15
+

44π

45
,

11π

6
,

11π

6
,

11π

6

]
By the constraints on θ2 and the analysis of the vector
Θ̃2, the parallelotope for the free control points is chosen
as A =

[
− 4π

21 ,
86π
21

]
×
[
− 688π

105 ,
131π
21

]
×
[
− 44π

21 ,
46π
21

]
.

The (basic) semi-algebraic set S (r,A) in (10) is made
up of 500 polynomial inequalities (22 of degree 0, the
other 478 ranging from degree 1 to 12) in the three vari-
ables X3, X4 and X5. In this case we did not look for a
solution with the CAD algorithm, but we directly com-
puted an ellipsoidal approximation. The set S (A) in
(12) is made up of M = 239 two-boundary inequalities,
once those of degree zero have been removed being auto-
matically satisfied. A numerical representation of S (A),
obtained by fine gridding the parameter space, is shown
in blue in figure 6. In order to compute the approxim-
ation A M,p = R−1(EM,p) ∩ A we chose here p = 100
(%(M,p) = 0.09) obtaining the set represented in red in
figure 6. An approximation of order p = 300 (%(M,p) =
0.68, not shown here) produces an almost perfect cover-
age of S (A). The gradient descent algorithm initialised
with starting point s0 = [1, 1, 1] produces a valid in-
ternal sample point: s ≈ [7.16, 3.05, −0.90]. It is worth
noting that the initial point s0 ∈ A but is not a solution:
s0 /∈ S (A).

In order to significantly lower the degree of the approx-
imation, one can look for a local approximation as dis-
cussed in Section 3.2.4. Defining s as the new centre and
the semi-axes accordingly (see again Section 3.2.4), a
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Figure 6. Solution domains for the planar manipulator. The
basic semi-algebraic set S (A) is in blue, the generic ellips-
oidal approximation of order p = 100 is in red, the local ap-
proximation of order p = 10 computed with respect to the
sample point s ≈ [7.16, 3.05, −0.90] is in green.

suitable approximation of order p = 10 is found (see the
green surface in figure 6).

5 Conclusions

n this paper we investigate the problem of characterising
the set of feasible trajectories satisfying constraints on
the input, the state and their derivatives. We exploit the
flatness property and a parametrisation based on Bézier
functions to reduce the complexity of the problem to a
finite dimension one. Other than providing a unified for-
mulation encompassing a wide variety of different types
of constraints, we present a simple symbolic approxim-
ation of the set of feasible constrained trajectories.

Future works will investigate how the present character-
isation can be exploited to build other relevant sets, such
as for instance the actuated energy set, and to analyse
some system properties (e.g. sensitivity to parameters
and constraint bounds, cross-influence of physical quant-
ities like curvature or snap on energy consumption).
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