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Abstract

During operation, cables may be subject to hard faults (open circuit, short circuit) or soft
faults (isolation damage, pinching, etc.) due to misuse, environmental conditions, or aging.
Even though several electric and non-electric wire diagnosis methods have been studied and
developed throughout the last few decades, re�ectometry-based techniques have provided
e�ective results with hard faults. However, they have shown to be less e�ective for soft
faults. Indeed, soft faults are characterized by a small impedance variation, resulting in
a low amplitude signature in the re�ectograms. Accordingly, the detection of these faults
depends strongly on the test signal bandwidth. Although the increase of the maximal
frequency of the test signal enhances the soft fault's "spatial" resolution, the performance
is limited by signal attenuation and dispersion. This study proposes a method to select the
best maximal frequency for soft fault detection. It is based on a combination of re�ectometry
with Principal Component Analysis (PCA), and the analysis of the Squared Prediction Error
(SPE). Experimental validation is carried out, and performance analysis in the presence
of noise is investigated. The results for shielding damage show that when the soft fault
is near the injection point, the detection probability equals to one even for SNR values as
low as 0dB. As the fault position approaches the end of the cable, the performance is still
acceptable, but for lower fault severities, the detection is almost impossible. The results also
show that the selected frequency depends on the fault severity, the fault position, and the
noise level.

Keywords: Wire diagnosis, Soft fault detection, Time domain re�ectometry, Principal
component analysis, Squared Prediction Error.
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1. Introduction

The replacement of conventional pneumatic, hydraulic and mechanical systems in mod-
ern systems by electrical ones has resulted in more complex electrical systems as well as
kilometers of wires (i.e., up to 530km in an Airbus 380), linking electrical systems, comput-
ers, displays, avionics, sensors, actuators, and cabin entertainment. As an example, di�erent
types of cables are used but coaxial ones are remaining the most common ones for commu-
nication, and accurate transmission purpose. The electrical wiring networks are considered
as a critical component since it is subjected to aggressive environmental conditions such as
vibration, heating, moisture, etc. This can lead to the appearance of faults in wires consist-
ing in hard faults (i.e. open circuit and short circuit) or soft faults (i.e., cha�ng, pinching,
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bending radius, etc.). Soft faults do not interrupt the propagation of the signal or the energy
down the cable but they can disturb it. Moreover, soft fault can evolve into hard one leading
to system failure.

Thus, to ensure the reliable use of cables, it is necessary to detect faults that might jeop-
ardize the whole system. Di�erent methods have been developed to improve the reliability
of wired networks with the fault detection and location in cables [1, 2, 3, 4, 39]. Among these
methods, we can distinguish the classical visual inspection, X-ray, capacitive and inductive
measurements [5, 6], and re�ectometry techniques [39, 7, 8, 9, 3], that are widely used and
easily embedded. Even though several electric and non-electric wire diagnosis methods have
been studied and developed throughout the last few decades [10, 4, 41, 42], re�ectometry-
based techniques are still in the center stage of research and industrial applications. Their
general concept relies on the propagation of an electromagnetic waveform in the wired net-
work to be tested, followed by the analysis of the re�ected signals to detect the presence,
position, and nature of an impedance discontinuity possibly caused by a fault.

Depending on the analysis domain of the re�ected wave, re�ectometry methods can
be categorized into two main families: Time Domain Re�ectometry (TDR) [11, 40] and
Frequency Domain Re�ectometry (FDR) [12, 39, 43]. The considerable development and
improvement of electronic components during the last decade have simpli�ed the implemen-
tation of TDR-based methods. High-resolution TDR provides precision Distance-to-Fault
measurements supplemented with useful frequency-domain information. When fast, accu-
rate localization of cable and connector faults are needed, TDR is usually a better choice
than FDR. In the case of complex topologies (multi-branched, connectors, splices, junctions)
the e�ciency of TDR is proved. Besides, over the last decade, a massive improvement in elec-
tronic components (FPGA1 and DSP2, high bandwidth converters, etc.) has been observed.
It has simpli�ed the implementation of TDR based methods. For this reason, methods
derived from TDR are generally preferred for cable diagnosis, especially when on-board.
Consequently, in this work, we will focus on the TDR methods.

Re�ectometry methods have provided e�ective results with hard faults due to their high
re�ection coe�cients, but they have shown poorer performance whenever soft faults are
addressed [14, 13, 39]. Indeed, soft faults that are usually characterized by small re�ection
coe�cients, produce weak echoes compared to those caused by junctions within a network
for example. In addition, the energy of the test signal may be signi�cantly attenuated due to
the presence of cable inhomogeneity, junctions, coupling, splices, etc., making the detection
of soft faults more complex. Moreover, soft fault detection is disturbed by environmental
conditions such as vibration, high temperature, crosstalk, noise disturbance, etc.

As a solution, further development is needed to make the re�ectometry method sensitive
enough to detect and locate soft faults e�ciently. In this context, several post-processing
methods have been proposed [15, 16, 17, 18]. However, these methods are prone to test signal
attenuation and dispersion phenomena [19]. Indeed, these phenomena signi�cantly reduce
the location accuracy when the propagation distance is important [20]. Hence, the choice of
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the test signal bandwidth is critical and a�ects the diagnosis performance. Additionally, the
maximal frequency of the re�ectometry signal is a critical parameter in detecting and locating
a fault in a cable: the higher is the frequency, the better is the re�ectogram's resolution
and the localization accuracy of small faults. However, in the case of fault detection on
long cables, increasing the signal frequency is not recommended as it introduces dispersion
and increases signal attenuation [21, 22]. In practice, the expert con�gures and calibrates
the Vector Network Analyzer (VNA) at a given frequency and records the healthy cable
measurement. Then measurements at the same frequency are then done on the cable under
test, and compared to the previous ones. If no fault is detected, this operation should be
repeated for several frequencies. Therefore, there is a loss of information and time in addition
to the subjectivity of the decision-making. Hence, more accurate and not-user dependent
technique should be proposed to cope with this problem and select the best frequency in a
given set.

Paper Contribution. With the knowledge that di�erent methods have been used in the
literature for fault detection and diagnosis in other domains than wire diagnosis using data-
driven approaches [44, 45], our main goal in this paper is to propose an e�cient solution for
improving soft fault detection based on the bene�t of the re�ectometry and then cope with
the frequency selection problem.

1. We propose a new approach combining re�ectometry with statistical analysis using the
principal component analysis (PCA) for soft fault detection and then the frequency
selection among a given set. PCA is a multivariate data-driven statistical modelling
technique [23] that uses information redundancy in a high-dimensional correlated input
space to project original data set into a lower-dimensional subspace de�ned by the
principal components (PCs). Although the combination of re�ectometry and PCA in
the literature was proposed for an e�cient reduction of the re�ectometry data space
[24], the application of PCA on re�ectometry-based data has not been used, so far, for
fault diagnosis in wired networks.

2. This work is an extension of the study done in [25] in which the proposal permits
to con�gure and calibrate the VNA at di�erent frequencies: �rst, measurements at
di�erent frequencies are done for the healthy cable to design the PCA model. New
measurements at the same frequencies are projected in the PCA reference frame and
compared to the healthy data. If a dissimilarity is detected, the contribution of each
variable (i.e., frequencies) to this variation is calculated. The algorithm allows then to
choose the most relevant frequency to monitor the soft fault. The advantages of the
proposal are thus time-saving and enabling automatic computerized decision-making.

The rest of the paper is organized as follows. In section 2, the modeling of the cable is
presented: 3D EM with Computer Simulations Technology (CST) for short cables and an
RLCG model for long cables. Experimental results are provided to validate the models for
healthy and faulty cables. Section 3 will be devoted to describing the frequency selection
method and simulation and experimental results. Section 4 will analyze the fault detec-
tion performance in the presence of noise. Section 5 will evaluate the frequency selection
robustness to environmental nuisance. The conclusion in section 6 will close the paper.
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2. Coaxial Cable Modeling and Electromagnetic Simulations

Although there is a great variety of cable types and faults of potential interest, in this
work we focus on coaxial cable and "chafe" faults. The FAA3, NAVAIR4, and NASA5 have
all identi�ed wire cha�ng as the most signi�cant factor contributing to electrical wiring and
interconnect system failures in aging aeronautic systems [26]. Coaxial cables are used for
the numerical model to validate the proposed method and in the conducted experimental
measurements.

2.1. Coaxial Cable Modeling and Simulation

A 3D EM model of a coaxial cable is developed using CST as shown in Figure 1. This
is a healthy RG316 coaxial cable model. The cross-section shows four concentric cylinders
de�ning the geometry: outer plastic jacket, shield, inner dielectric insulator made from
PTFE, and the core. The coaxial cable construction speci�cations are listed in Table 1.

Figure 1: The developed 3D EM model of a shielded coaxial

The external diameter of the inner conductor is d = 0.51mm and the internal diam-
eter of the outer conductor is D = 1.52mm. The conductors are made of copper with a
conductivity σ = 5.81 × 10−7(S/m). The insulation is made with Te�on (PTFE) with a
relative permittivity εr = 2.1, a relative permeability µr = 1. The thickness of the shielding
is 0.54mm. Finally, there is an outer Te�on sheath of thickness 0.43mm which envelops all

3Federal Aviation Agency
4Naval Systems Air Command
5National Aeronautics and Space Administration
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Table 1: RG-316 Coaxial cable construction speci�cations

RG-316 coaxial cable Material Diameter [mm]
Inner conductor (Core) Copper 0.51

Dielectric PTFE 1.52
Outer conductor (Shield) Copper 2.06

Jacket FEP 2.49

the components. The length of the model is l = 1m. The cable characteristic impedance is
Zc ≈ 45W using the following equation:

Zc =
138× log10

(
D
d

)
√
εr

(1)

A discrete port with an impedance Z0 = 50Ω connects the two conductors through the center
point to inject a test signal and receive the re�ected one. The transmission line is supposed
to be open-circuited at its end, and the power supply is a Gaussian excitation source located
at x= 0 with a maximum frequency of 4GHz. For the simulations, a Gaussian pulse is
injected into the wire and the re�ected signals are recorded.

Figure 2 represents the TDR response for the fault-free cable that is recorded at the
injection point. The signal propagates from the source point to the end. As there is no
discontinuity along the transmission line, the perfect transmission of the electric �eld signal
through a faultless medium is observed. The peak at 0m is due to the re�ection from the
impedance mismatch between the cable and the test circuitry (the port). The re�ection
coe�cient at the input of the cable (ΓE = Zc−Z0

Zc+Z0
= −0.0538). The peak at 1m corresponds

to the open circuit at the end of the cable. In case of an open circuit, Zl = ∞ and Γl = 1,
here in practice Γl < 1 due to attenuation through the transmission line. The amplitude
of the peak at the end of the cable is equal to 0.836V , compared to the amplitude of the
Gaussian pulse 1V .

Simulation results for longer cables with di�erent fault parameters are inducted. How-
ever, in CST, the accuracy of the solution is strongly related to the number of meshes.
Consequently, for long cables, the number of meshes is very high, which increases the com-
putational burden and the simulation time. Therefore, at �rst, we will use the CST modeled
coaxial cable in [25], where the R2RLCG method [27] is applied to extract the RLCG param-
eters. These parameters will then be used for soft fault evaluation using the characterization
method in [28]. This method extracts the fault parameters, which are, then, implemented
in a Matlab©language code to simulate di�erent fault scenarios where the cable length l
and the fault position xf are changed.

2.2. RLCG-based Model

For the previous cable, the R2RLCG method explained in [27] is applied to extract the
RLCG parameters displayed in Figure 3. R2RLCG method [27] is an iterative method
to go back to the RLCG parameters of a uniform cable section from a Time Domain Re-
�ectometry (TDR) or Frequency Domain Re�ectometry (FDR) measurement. There are
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Figure 2: TDR response for the 1m modeled coaxial cable with an open circuit at its end

methods described by some articles [35, 36, 37, 38] to extract RLCG from S parameters
measurements but mainly on a thinner frequency band than R2RLCG method. This one
was developed for its main advantages:

� Measure at one point of the cable

� Rapidity of calculus

It is based on the following prerequisites:

� Knowledge of the cable length noted l

� Knowledge of the input impedance noted Z0

� Absence of strong re�ections on the cable

� Knowledge of the load at the end of the line noted Zl

This method is also based on another assumption as to the shape of the desired RLCG
parameters. Conventionally, for standard cables, it is possible to show a dependence in the
square root of the frequency for R and a linear dependence ofG with respect to the frequency.
L and C are almost constant over the re�ectometry working frequency band. This choice
has consequences on the resulting parameters. The attenuation has a frequency dependence
which is the sum of a term proportional to the root of the frequency and a term proportional
to the frequency [27]. The phase factor is taken as proportional to the frequency, which is
often the case for the frequency band considered. Likewise, a consequence of these choices is
that the real part of the characteristic impedance is almost constant over the entire frequency
band. This method will provide the RLCG parameters over the entire frequency band and,
consequently, the attenuation, the speed, and the complex characteristic impedance with
high precision.
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The results are consistent with the previous assumption as they show the dependence
on the square root of the frequency of the resistance R, and a linear dependence of the
conductance G with respect to the frequency. The capacitance C = 1.08×10−10(Farad/m)
and inductance L = 2.18×10−7(Henry/m) are assumed constant over the frequency band.

Figure 3: Variation of estimated cable RLCG parameters as a function of the frequency

Figure 4 shows the TDR re�ectograms of the RLCG-based model and the 3D EM model.
For these simulations, the bandwidth ranges from DC to 4GHz, and the width of the
Gaussian pulse is 250ps. The correlation coe�cient used to evaluate the similarity between
the two models is equal to 0.9584. It is considered that the data is strongly correlated if
the correlation coe�cient is between 0.9 and 1 [28]. The model with distributed constants
is validated. Therefore, the computed R, L, C, and G parameters of the healthy cable will
be used for soft fault characterization in the next section.

2.3. Soft Fault Modeling and Simulation

We will focus on the impact of the degradation of the cable shielding, taking into account
the three-dimensional characteristics of the fault. As the size of the fault and the degree of
opening on the shield increase, the radiation losses due to the propagation of waves through
the opening of the shield may also increase. The faulty area will then have an impedance Zf
di�erent from the cable's characteristic impedance Zc. Therefore, when the incident wave
enters the faulty zone, there will be re�ections (at the beginning and end of the fault).

The coaxial cable modeled in section 2.1 is degraded (a portion of the shield is removed)
as shown in Figure 5. For this work, only the shield of the cable is damaged. As highlighted
in Figure 5, the core is not a�ected by the cable degradation. The fault is characterized by
three parameters: the fault position xf , the fault length Lf and the angular cutaways θf .
We will seek to understand the in�uence of each parameter on the shape of the re�ectogram.
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Figure 4: TDR re�ectograms of the RLCG-based model and 3D EM model

Hereafter, we consider the case for which only the cable's shield is degraded with di�erent
widths (θf ): 45°, 90°,180°. The soft fault of length Lf = 5mm occurs at xf = 0.5m from
the beginning of the cable.

Figure 5: Coaxial cable with a shielding damage model

Figure 6 presents the TDR response for the faulty case of θf = 180°. Due to the fault
presence, when the incident signal arrives at the discontinuity of length Lf , multiple re�ec-
tions between the two interfaces and the defective zone are produced. The signal amplitude
at the end of the cable illustrates that the incident signal still propagates along the line but
with a lower amplitude (0.833V ) due to the re�ections in the faulty zone.

Figure 7 illustrates the TDR fault signatures for three angular cutaways. The shape of
the re�ected signal exhibits positive and negative re�ections due to the sign of the re�ection
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Figure 6: TDR response of a shielding fault with xf = 0.5m, Lf = 5mm and θf = 180°

coe�cient at the discontinuity interfaces. The re�ected signal changes signi�cantly with
the shielding fault width θf . As shown in this �gure, the amplitude of the re�ected waves
is very small (around 5% of the excitation signal amplitude Ui). Thus, the re�ected pulse
cannot be detected easily with usual measurement devices since according to [29], impedance
discontinuities greater than 10% are relatively easy to identify and locate just by looking at
the response or using relatively simple algorithms. Impedance di�erences below 10% become
progressively more di�cult to identify, as their response is much smaller. Eventually, the
peaks from the re�ection are smaller than the measurement error and cannot be detected.

Figure 7: Shielding fault signatures for di�erent fault width's at xf = 0.5m and Lf = 5mm

The detailed process of the characterization method has been represented in [28]. The
�rst step has been done in section 2.2 where the RLCG-based model is developed and vali-
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dated. The RLCG-based model TDR response (Figure 4) is Vsim de�ned as the re�ectometry
response containing the contribution of the healthy NUT. Second, we propose to study the
e�ect of increasing the width θf and the length Lf of the shielding fault on the RLCG
parameters. The three faults previously de�ned in this section are used, with a constant
length of the fault (Lf = 5mm). Figure 7 is used as Vmes, the re�ectometry response of the
faulty NUT containing the signature of the soft faults. For these simulations, the maximum
frequency of the signal is 4GHz. Third, the baselined signature of the three fault cases is
obtained. Fourth, based on the electrical faults parameters obtained from the Genetic Algo-
rithm (GA), the impedance Zd of the fault is calculated. In the case of a shielding damage
with θf = 45°, Lf = 5mm and xf = 0.5m, the impedance of the fault is Zd = 0.9Zc = 45Ω.
This fault thus introduces an impedance variation (∆Zc) of 5Ω. In the case of a shielding
damage with θf = 90°, the impedance of the fault is Zd = 0.54Zc = 27Ω. This fault thus
introduces an impedance variation of 23Ω. Finally, in the case of a shielding damage with
θf = 180°, the impedance of the fault is Zd = 0.46Zc = 23Ω. This fault thus introduces an
impedance variation of 27Ω.

From the results in Table 2, we can observe an increase of the variation of the charac-
teristic impedance and the re�ection coe�cient when the fault width increases.

Table 2: The estimated parameters of the shielding damage for di�erent fault widths

Width of the fault xf Lf ∆Zc Γ

θf = 45° 0.5m 5mm 5Ω 0.0526

θf = 90° 0.5m 5mm 23Ω 0.2987

θf = 180° 0.5m 5mm 27Ω 0.3698

The results in Table 3 show that the length of the fault has no e�ect on the change in
impedance when the fault width is set constant at 45°. However, the increase of the fault
length Lf increases the amplitude of the fault signature.

Table 3: The estimated parameters of the shielding damage for di�erent fault lengths

Length of the fault xf θf ∆Zc
Lf = 5mm 0.5m 45° 5Ω
Lf = 10mm 0.5m 45° 5Ω
Lf = 20mm 0.5m 45° 5Ω

To sum up, the characterization method using the Matlab code is compared to the
commercial 3D simulator (CST) by simulating a cable with a shielding fault. The TDR
results for three di�erent widths are depicted in Figure 8. The correlation coe�cients for
the di�erent cases are = 0.9841, 0.9839 and 0.9797 respectively. These encouraging results
prove that we can retrieve the TDR response for longer cables from the Matlab code, which
is far less time consuming than using CST.

Figure 9 shows the TDR fault signatures at 4GHz for the following fault (θf = 180° and
Lf = 5mm) located at xf = 0.5m, 5m and 50m, for 1m, 10m and 100m cables, respectively.
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(a) (b)

(c)

Figure 8: Signatures of the reconstructed and simulated fault with width (a) θf = 45°, (b) θf = 90° and (c)
θf = 180°

Table 4 shows the amplitude variation of the soft fault signature with the change in the fault
position along the cable. It illustrates the attenuation phenomenon and hence, the selection
of frequency issue addressed in the following sections.

Table 4: Variation of the fault (θf = 180° and Lf = 5mm) amplitude with its position along the cable

Cable length lf [m] 1 10 100
Fault position xf [m] 0.5 5 50

Amplitude [V] 0.036 0.012 0.00012

2.4. Model Validation with Experimental Results

This section aims at validating the developed models with experimental results. The
experimental data collection starts with focusing on the coaxial cable type, measuring the
TDR response of the healthy cable. Then the cable is damaged using an abrasive apparatus
to chafe a small section of the wire and �nally measure the TDR response of the faulty cable.
In the following, we are interested in how the TDR signal changes depending on the width
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(a) 1m cable (b) 10m cable

(c) 100m cable

Figure 9: Fault signature for di�erent cable lengths

of the cha�ng. At θf = 180°, the shielding has worn away su�ciently to expose the inner
core conductor insulation as it can be observed in Figure 10a.

The measurement is carried out using an RG-316 coaxial cable (Zc = 50∓2Ω at 4GHz).
The exterior insulation on the cable has a relative permittivity of about 2.1. In this study,
we are not interested in measuring scrapes of the exterior insulation, but instead, we are
interested when cha�ng starts to create holes in the shielding.

A 5mm long, 180° wide shielding damage is created at 0.5m from the injection point
as shown in Figure 10a. The length of the Cable Under Test (CUT) is 1m. In Figure
10b, the cable input terminal was attached with a 50Ω N series RF coaxial cable connector.
The other end is left open-ended. The re�ected signals and the corresponding re�ectograms
are obtained using a 9kHz-4.5GHz Keysight Vector Network Analyzer, calibrated to acquire
highly accurate measurements. A TDR signal is considered on a total bandwidth de�ned
from DC to a maximal frequency fmax (1GHz, 2GHz, 3GHz and 4GHz). Note that the
VNA is a Keysight E5071C ENA Vector Network Analyzer. This analyzer combines high
RF performances and powerful analysis capabilities. It allows many functionalities such
as �xture simulator, equation editor for real time data processing, time domain analysis,
dielectric and magnetic properties measurement, ... Based on the embedded �xture simula-
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tor, this VNA allows mixed mode S-parameters measurements, port impedance conversion,
matching circuit simulation, ... The conversion between the S-parameters and the TDR is
done automatically by this VNA. For our experiments, the VNA generate a sinusoidal test
signal. A variation of the chirp z inverse Fast Fourier Transform (FFT) is used to transform
from the frequency domain to the time domain. This permits the user to �zoom in� on a
speci�c time (distance) range of interest for the data display. The re�ected signal after post
processing (FFT) is converted into time domain (TDR) to obtain the re�ectogram. Then
we can compare simulation results (TDR) with experimental results that are represented in
time domain.

(a) Experimental chafed cable

(b) Experimental bench

Figure 10: Experimental setup

Figure 11 and Figure 12 represent the simulated and experimental re�ectograms for
healthy and faulty cable, respectively. The di�erence at the input is due to the presence
of the connector and the generator in the experiments, whereas for the simulations, only a
generator is used.

Three sections are considered in the experimental and simulation TDR responses: input,
faulty part, and the end (here, open circuit). The energy for each section is calculated using
(2). the results presented in Table 5 show that the energy of the input section is identical
for both the experimental and the simulation responses, regardless of the di�erence in the
signature shape and its amplitude. The di�erence in the amplitude at the cable end is due
to the open circuit impedance in the experiment which is di�erent from the in�nite value
used for the simulations. This di�erence is probably also due to the larger actual cable loss
compared to what is modeled.

Es = |X(f)|2 (2)

where X(f) is the Fourier transform of x(t) de�ned as the re�ected signal.
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Figure 11: Healthy TDR responses

Figure 12: Faulty TDR responses

Table 5: Energy calculations

Energy [J/Hz] Input Fault (middle) Cable end
Simulation 0.31 0.11 71.65

Experimental 0.31 0.11 67.06

The Root Mean Square Error (RMSE) between the two re�ectograms in Figure 12 is
equal to 0.024. This value is relatively low since the observations mean value is 0.168. It
can be noticed that we can �nd the mean of observations by dividing the sum of all the
observations by the total number of observations (here we use the re�ectometry data). The
RMSE based only on the signature in the fault section is 0.001. Since it constitutes only
4% of the total RMSE (0.024), the majority of the error is due to the output section. These
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results show that the magnitude of the simulation and experimental signals are in the same
range.

Now that the model is validated, it can be used to generate the data to evaluate the
frequency selection approach, presented in the following section.

3. Frequency Selection Algorithm for Soft Fault Diagnosis

The �rst step is to design the PCA model from the fault-free cable. This model is
then used to evaluate new measurement data from the cable under test. Two statistical
measures can be used; the Q (Squared Prediction Error (SPE)) in the residual subspace,
and the Hotelling T 2 in the principal subspace [30]. If a fault is detected, the best frequency
corresponding to the one with the highest contribution is selected. Figure 13 shows the
�owchart of the proposed method , which consists of the following steps:

Step 1: Collect training data representing healthy process operations and scale(normalize)
them using their mean and standard deviation (Training phase).

Step 2: Develop a statistical PCA model for the system using the singular value decompo-
sition (Training phase).

Step 3: De�ne a con�dence level α and calculate the upper control limits for Q and T 2

statistics (Training phase).

Step 4: Acquire new sample measurement and scale it using the same factors (mean and
standard deviation) from step one (Monitoring phase).

Step 5: Generate Q and T 2 statistics based on the obtained PCA model (Monitoring phase).

Step 6: Decide if the new sample is considered faulty when one or more residuals exceeds
the threshold (Monitoring phase).

Step 7: Inspect the inputs (original variables) that highly in�uence the residual. Contribu-
tion plots are used for this purpose, and the best frequency is then selected (Best
frequency selection phase).

This method consists of three phases:

1. Training phase, where data X∗ are collected during fault-free operation, and the PCA
model is developed as explained in [25]. Then, the reduced dimension model can be
used to detect and diagnose abnormalities.

2. Monitoring phase, i.e., fault detection, is handled using the monitoring statistics T 2

and Q tests. If the Q or T 2 value falls outside their con�dence limits for several
samples, then there is an abnormality.

3. Best frequency selection phase, where fault diagnosis is managed through contribution
plots. Since the reference matrix, X∗ is built so that each variable corresponds to
a speci�c frequency; then one can inspect the inputs (frequencies in this case) that
highly in�uence the abnormal sample Q or T 2 value. After which, the most relevant
frequency to monitor the detected soft fault is selected.
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Figure 13: Flowchart of the proposed approach

3.1. Simulation Results

3.1.1. Data-base Building

From the simulation results in [25], we have found that soft faults are better detected
in the residual subspace using the Q test. Thus in the following sections, only the Q test
will be used. Simulated data are obtained from CST for the 1m long cable, and from the
RLCG-based model for longer cables.

(1) CST simulations: for the cable de�ned in 2.1 of length l = 1m, we simulate fault cases
characterized by three parameters at four di�erent frequencies f = [1GHz, 2GHz,
3GHz, and 4GHz]. We have in total nine total cases for each frequency:

(a) Position xf = 0.5m
(b) Length Lf = [5mm,10mm,20mm]
(c) Width θf = [45°, 90°, 180°]

(2) Usually, the location of the fault is unknown; the fault length is also unknown. It is
necessary to analyze the sensitivity of the proposed method for di�erent values of fault
length to evaluate its robustness. For that, the fault parameters are extracted using
the characterization method described in section 2.3 and are implemented to simulate
di�erent fault cases for which the cable length l and the fault position xf are changed:

� Extract the R, L, C, G parameters from the healthy cable data

� Derive ∆Zd for the nine fault cases de�ned in step (1)

� Insert the signatures in the simulation Matlab code

� Choose a cable of length l = 10m
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� Simulate fault cases characterized by three parameters (36 cases in total):

(a) Position xf = [20%, 50%, 70%, 90%] (vary the fault position along the cable
length in %)

(b) Length Lf = [5mm, 10mm, 20mm]
(c) Width θf = [45°, 90°, 180°]

Finally, for the 10m cable, the TDR responses at the di�erent frequencies (1GHz, 2GHz,
3GHz, 4GHz) cab be obtained for the healthy cable and for the 36 faulty cases.

3.1.2. Training

For our proposal, we �rst consider the reference healthy data given by (3). X∗ is formed
up of four variables. Each variable x∗

j corresponds to the 10m cable healthy TDR response
at the frequency f = 1GHz, 2GHz, 3GHz and 4GHz respectively.

X∗ = [x∗
1 x∗

2 x∗
3 x∗

4] (3)

The obtained data matrix X∗ is then used for the construction of the PCA model according
to equations (10), (11) and (12) in [25]. Table 6 indicates that the cumulative variance of
the �rst score is 99.9412% that is greater than the lower limit. This implies that the data
is well described by one principal component. Thus, k, the number of the retained PC, is
equal to one.

Table 6: PCA model variances

PC Variance (%) Cumulated variance (%)

1 99.941 99.941

2 0.0575 99.9985

3 0.0014 99.999

4 3.5377e-05 100.000

3.1.3. Monitoring

Our methodology's second step leads to considering a new measurement data set X
corresponding to the faulty cases. Each variable (vector) is a concatenated vector of the
fault signature data for the 36 fault cases at the same operating frequency. The new data
matrix is de�ned as:

X = [x1 x2 x3 x4] (4)

where the variable xj = [F1 F2 ... F36]t describes the fault signature data vector at
frequency j such that F1 corresponds to the fault case 1.

The new measurement matrix is projected into the reference frame obtained from the
PCA model, and compared to the reference data using the Q test. The 95% con�dence limit
Qα = 0.0118 according to [25].

It is observed that several samples have crossed Qα. This indicates that faults have
occurred. The �rst occurrence of the fault corresponds to the highest impedance variation
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in the re�ectogram. For each round-trip of the wave, its peak amplitude decreases. Due to
the presence of several round-trip peaks for the same fault, several abnormal samples will
be produced in the Q chart. Therefore, we consider the samples with the highest Q value
as the abnormal ones corresponding to the fault. Twenty eight (28) fault cases out of the
thirty six (36) are detected.

3.1.4. Best Frequency Selection

We use the contribution plot of the abnormal sample related to each case of the detected
cases to select the best frequency. For example, for the abnormal sample 34280 corresponding
to the fault case F9 (Lf = 20mm,θf = 180°), the contributions to the Q statistics are plotted
in Figure 14: x4 had the highest contribution, so the frequency 4GHz leads to the best fault
detection capability. Table 7 summarizes the results for all the faulty cases: detection result
and the selected frequency for the detected faults.
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Table 7: Fault detection for di�erent fault scenarios for a 10m cable

Fault cases Parameters(xf ,Lf ,θf ) Detected/Not detected If detected, selected f

F1
Lf = 5mm
θf = 45°

F2
Lf = 5mm
θf = 90°

F3
Lf = 5mm
θf = 180°

F4
Lf = 10mm
θf = 45°

F5
Lf = 10mm
θf = 90°

F6
Lf = 10mm
θf = 180°

F7
Lf = 20mm
θf = 45°

F8
Lf = 20mm
θf = 90°

F9

xf = 20%

Lf = 20mm
θf = 180°

Yes 4GHz

F10
Lf = 5mm
θf = 45° No

F11
Lf = 5mm
θf = 90°

F12
Lf = 5mm
θf = 180°

F13
Lf = 10mm
θf = 45°

F14
Lf = 10mm
θf = 90°

F15
Lf = 10mm
θf = 180°

F16
Lf = 20mm
θf = 45°

F17
Lf = 20mm
θf = 90°

F18

xf = 50%

Lf = 20mm
θf = 180°

Yes 4GHz

F19
Lf = 5mm
θf = 45° No

F20
Lf = 5mm
θf = 90°

F21
Lf = 5mm
θf = 180°

Yes 4GHz

F22
Lf = 10mm
θf = 45° No

F23
Lf = 10mm
θf = 90°

F24
Lf = 10mm
θf = 180°

F25
Lf = 20mm
θf = 45°

F26
Lf = 20mm
θf = 90°

F27

xf = 70%

Lf = 20mm
θf = 180°

Yes 4GHz

F28
Lf = 5mm
θf = 45°

F29
Lf = 5mm
θf = 90°

No

F30
Lf = 5mm
θf = 180° Yes 3GHz

F31
Lf = 10mm
θf = 45°

F32
Lf = 10mm
θf = 90°

No

F33
Lf = 10mm
θf = 180° Yes 3GHz

F34
Lf = 20mm
θf = 45° No

F35
Lf = 20mm
θf = 90°

F36

xf = 90%

Lf = 20mm
θf = 180°

Yes 2GHz
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.

Figure 14: Contribution plot of the fault F9

For the fault cases at xf = 90%, the selected frequency is 3GHz for the two severities
F30 and F33 and 2GHz for F35 and F36. Figure 15 shows the contribution plots of the
abnormal sample corresponding to F30 and F36 .

(a) F30 (b) F36

Figure 15: Contribution plot of the fault cases at xf = 90%

In order to explain the obtained results, the energy Ef of the faulty section at each
frequency f for each of the indicated fault case is presented in Table 8. It is noticed that
the method chooses the frequency with the highest energy.

Table 8: Energy calculation for the detected fault cases at xf = 90%

Fault cases E1[J/Hz] E2[J/Hz] E3[J/Hz] E4[J/Hz]

F30 0.011 0.013 0.073 0.063

F33 0.028 0.035 0.081 0.076

F35 0.003 0.024 0.0107 0.0097

F36 0.0423 0.1406 0.1248 0.113
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The combination of re�ectometry and PCA coupled to Q statistic, in the case study
above, shows that:

� For xf = 20%, all the faults are detected whatever their severity level, and the selected
frequency is 4GHz. These simulation results are in coherence with the rule that as
the fault is close to the beginning of the cable, the higher the excitation frequency is,
the better is the fault detection.

� For xf = 50%, the fault with the smallest severity (θf = 45°, Lf = 5mm) cannot
be detected whatever the excitation frequency. All other severities are detected with
4GHz as the best frequency.

� For xf = 70%, the faults of width θf = 45° and with 5 and 10mm long cannot be
detected whatever the frequency. The selected frequency for the detected cases is
4GHz.

� For xf = 90%, the faults with θf = 180° are all detected. For the faults with lengths
of 5mm and 10mm, the selected frequency equals 3GHz, and for the 20mm case, it is
2GHz. Only one case with θf = 90° and 20mm long is detected and the best frequency
is 2GHz.

To show the e�ect of the fault position on the retained frequency for longer cables, the
simulations for a 100m cable of the fault case F3 (Lf = 5mm, θf = 180°) are done. The
position of the fault varies with a step of 2m. In Figure 16, the selected frequency decreases
as the fault position approaches the end of the cable.

Figure 16: Variation of the selected frequency with the fault position for a 100m cable for the fault case
(Lf = 5mm, θf = 180°)

3.2. Experimental Validation

The methodology for fault detection using PCA, and frequency selection is now evaluated
on real cables using the setup displayed in Figure 10b. The re�ectometry responses of the
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healthy cable and the faulty one (shield damage located at 0.5m on a 1m cable) are measured
and displayed in Figure 11 and Figure 12.

Table 9 indicates that the cumulative variance of the �rst two scores is 99.99% greater
than the lower limit. Using CPV (cumulative percentile variation) method [31], the dimen-
sion of the reference frame is set to two. The value of the limit is Qα = 0.628.

Table 9: PCA model variances

PC Variance (%) Cumulated variance (%)

1 79.09 79.0959

2 20.904 99.994

3 3.0823e-31 99.994

4 7.1047e-63 100.00

Figure 17 shows the Q test results of this experiment where several samples are above
the threshold. The contribution plot of the abnormal sample is represented in Figure 18.
The variable corresponding to frequency 4GHz contributes the most to this sample. Hence,
f = 4GHz is the selected maximal frequency.

Figure 17: Q values of experimental measurement samples

In the following, the performance of this approach will be evaluated for a set of cables
with di�erent operating conditions. Two questions will be tackled:

(1) What is the performance of the Q test for di�erent Signal to Noise Ratios (SNRs)?

(2) What is the performance of the frequency selection for di�erent SNRs in the fault case
detection?

Note that the choice of the frequency depends on several factors from the cable length
to the fault characteristics and the environment where the cable is operating. Hence, gener-
alizing the frequency choice is not applicable, it is always depending on the case study and
that what is about the proposed method concerns the automatic frequency choice among
settled ones according to the case study we have. In our work, even the R2RLCG technology
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Figure 18: Contribution plot of the abnormal experimental sample corresponding to a 5mm long, 180° wide
shielding fault

used to obtain the cable RLCG model remains e�ective on longer cables (around tens of
meters). The experimental validation is done for a shorter cable. Nevertheless with no loss
of generality, the proposed procedures can be applied and are still valid for longer cable
cases.

4. Fault Detection Performance Analysis in the Presence of Noise

The performance of the Q test in the presence of noise is evaluated in this section.
Figure 19 represents the �owchart of the methodology organised in three steps; First, the
soft fault detection, and the computation of the probability of detection Pd in the presence
of noise. Second, the calculation of the probability of false alarm PFA for each SNR. Finally,
the best frequency selection in the noisy environment is performed.

Figure 19: Flowchart of the Q test performance analysis

23



4.1. Soft Fault Detection

4.1.1. Training Data Generation

For the training dataX∗, the star mark refers to the fault-free and noise-free environment.
This data matrix is the one used in section 3.1.2 where a 10m cable is used and simulated
at four di�erent excitation frequencies.

4.1.2. Testing Data Generation: Noise introduction

The testing data used here is X in 3.1.3 where the di�erent fault scenarios (36 cases
by varying the fault position along a 10m cable while changing its severity (Lf and θf )) at
di�erent frequencies are used for the performance analysis of the proposed method.

Now, noise (V ) is added to the testing data X, resulting in Xν where the used SNR levels
are −5dB, 0dB, 5dB, 10dB and 15dB. The variable xj is a column vector of X taken for
the jth variable. The noise is assumed to be Additive White Gaussian (AWGN). The noise
vector added to the variable xj is νj ∼ N(0, pν) (xνj = xj + νj). Its power pν is related to
the signal's power ps as expressed in 5. Then, 500 realizations are performed at each SNR
level.

SNR = 10 log

(
ps
pν

)
(5)

Figure 20 shows the TDR responses in the faulty case (Lf = 5mm, θf = 180° at xf =
70%) for SNR= −5dB and SNR= 10dB. It is noticed that in both cases, the fault is hidden
in the noise making the detection more di�cult.

(a) SNR= −5dB (b) SNR= 10dB

Figure 20: TDR response in the presence of F at xf = 70% with the e�ect of the added noise

4.1.3. Fault Detection

For each realization, we apply the Q test to �nd if the fault is detected or not. Then, Pd is
calculated for each fault case at each SNR, and if Pd > εd, the fault is considered detected at
this SNR. εd is determined by the application domain. For example in the military, medical
and health domains, anomaly detection is a very critical problem and requires a high degree
of accuracy [32].
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Table 10 gives the Pd of the fault cases F3, F12, F21 and F30 for the di�erent SNRs. It
is shown that the faults in the presence of noise are detected with a Pd > 0.85. We assume
that the detection probabilities are su�cient for the next steps.

Table 10: Pd for di�erent noise levels

SNR [dB] F3 F12 F21 F30

-5 1 1 0.853 0.859

0 1 1 1 0.862

5 1 1 1 0.896

10 1 1 1 0.983

15 1 1 1 1

4.2. False Alarm Analysis

PFA at a speci�c SNR is calculated as follows: �rst, the TDR signal is divided into
healthy and faulty intervals. Then, for each realization, the Q test is applied. Then PFA
is calculated as the average on the 500 realizations. The results are displayed in Table 11.
We can notice that PFA is not null when the noise level is equal or higher than the signal
level. Hence, if PFA < ε, we proceed to the best frequency selection part. We assume in the

Table 11: PFA for di�erent noise levels

SNR [dB] PFA
-5 0.034

0 0.018

5 0

10 0

15 0

following that the obtained false alarm probabilities are lower than the threshold.

4.3. Best Frequency Selection

4.3.1. Robustness to Noise Evaluation

For each detected fault, at a given SNR and for a speci�c realization, the best frequency
selection is done using the contribution plot of the detected abnormal sample. Taking into
account the 500 realizations, the selected frequency fn is the frequency with the highest
occurrence rate among the four used ones.

For the case under study, Figure 21 represents the variation of the selected frequency
with the SNR for di�erent fault positions. It is noted that the selected frequency depends
on fault position and the SNR: the variation is similar for xf = 20% and xf = 50%. As the
fault reaches the cable end, the selected frequency decreases. This variation was predictable
due to the attenuation throughout the cable, and agrees with the rule for long cables: the
lower the frequency is, better is the fault detection.

The trend of the selected frequency is similar for a 100m cable as shown in Figure 22.
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Figure 21: Frequency variation with the SNR for a 10m cable with a 5mm and 180° fault

Figure 22: Frequency variation with the SNR for a 100m cable with a 5mm and 180° fault

4.3.2. Frequency Occurrence

For all the 28 detected fault cases in section 4.1.3, whenever the selected frequency in
the noisy environment is di�erent from that in the noise-free environment (i.e. fn 6= f), the
occurrence percentage for each frequency will be studied. These fault cases are:

� F25 at SNR= 0dB

� F30 at SNR= 0dB, 5dB and 10dB

� F35 at SNR= 0dB

Those are the critical cases at the positions 70% and 90%:

Fault case F25:. (xf = 70%, lf = 20mm, θf = 45° at SNR= 0dB), the selected frequency is
fn = 3GHz, where as the selected frequency in the noise-free case is f = 4GHz. So, in the
presence of noise, what is the occurrence percentage for each frequency? Table 12 presents
the results for 500 realizations which are similar for 2000 realizations. We can observe the
the percentages of occurrence for both frequencies are close, even it is a little higher for
3GHz.

Table 13 and Table 14 display the results for F30 adn F35.
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Table 12: Frequency occurrence percentages for the fault case F25

SNR [dB] f [GHz] Occurrence percentage

1 3.3%
2 21.5%
3 39.2%

0

4 36%

Table 13: Frequency occurrence percentages for the fault case F30

SNR [dB] f [GHz] Occurrence percentage

1 17.8%
2 35.2%
3 31.4%

0

4 15.6%

1 2.7%
2 43.5%
3 41.3%

5

4 12.5%

1 0.6%
2 45.3%
3 43.4%

10

4 10.7%

Table 14: Frequency occurrence percentages for the fault case F35

SNR [dB] f [GHz] Occurrence percentage

1 45.6%
2 33.2%
3 12.8%

0

4 8.4%

4.3.3. ROC Curves Investigation

At each SNR level, for each realization, the Q value data is divided into two classes:
Healthy and Faulty. Then for the 500 realizations, the data is concatenated in the Healthy
and the faulty classes and the ROC curves are calculated.

The comparative study is �rst done by setting the SNR to 15dB and varying the position
of the fault F (5mm,180°) for a 10m cable case. The detection performance results using
the Q test for di�erent SNR levels are displayed in Figure 23, for xf = 20%, xf = 70% and
xf = 90%, respectively.

Thanks to the simulation results for a 10m length RG316 coaxial cable with a shielding
damage, studied at four di�erent positions xf =[20%, 50%, 70%, 90%], it is noted that:

� The Q test has 100% detection capability for the noise levels (SNR ≥ 0dB) with a low
false alarm probability for xf = 20% and xf = 70%.
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(a) (b) (c)

Figure 23: ROC curves for a 10m cable with a 5mm and 180° fault

� For the lower noise levels (SNR < 0dB), the detection capability of Q test is a�ected
by the noise for xf = 70% but it still 100% for xf = 20%.

� The Q test has a high e�ciency with 85% detection capability with a low false alarm
probability for xf = 90%. The fault detection capability decreases along with the
increasing noise level from 100% at 15dB to 85.9% at −5dB.

The detection capability is equal to 89.6% even when SNR= 5dB. As the fault position
approaches the end of the cable, the performance is still good and is equal to 85.9% at
SNR= −5dB. To conclude, Q test is e�cient for detecting soft faults, but its performance
is a�ected by the SNR when the fault position is close to the cable end.

5. Frequency Selection Robustness to Environmental Noise

The performance of the selected frequency f in the presence of noise in the fault case
detection is now studied. Figure 24 represents the �owchart of the proposed methodology.
It consists of the following steps:

� From the PCA results in section 3.1.4, 28 fault cases are detected and the selected
frequency f for each fault case is indicated in Table 7. Noise is added to the signal at
frequency f and 500 realizations are performed.

� A fusion algorithm [33] of several post processing methods (Signature Magni�cation by
Selective Windowing (SMSW) [18], subtractive correlation method, and the method
based on the integral of a re�ectogram [34]) is applied to each realization. Pd is calcu-
lated for each fault case, at a speci�c SNR. The results of this method are represented
by the performance analysis curves.

� For the cases in section 4.3.2, where fn 6= f , noise is added to the signal at frequency
fn. Then the fusion algorithm is used to obtain Pnd, the probability of detection
calculated at the frequency fn. Here, the goal is to compare Pd and Pnd, and to
evaluate the performance of the Q test using the Fusion algorithm.
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Figure 24: Flowchart of the performance of the selected frequency f in the presence of noise

Now, to obtain the performance analysis curves, each detected fault case in Table 7,
at frequency f , for each SNR, Pd is calculated using (6) by averaging the probability of
detection of all the realizations r = {1, 2, . . . , 500}:

Pd =

∑500
r=1 pr
500

(6)

where pr, the probability of detection for each realization at a speci�c SNR, is calculated
using the fusion algorithm.

Figure 25: Performance analysis curve in the case of a 20mm and 45° fault

The case study is the fault case with Lf = 20mm and three di�erent severities (θf = 45°,
θf = 90° and θf = 180°). For each severity, the fault position varies along the cable. Pd is
calculated for di�erent fault positions and for each SNR.
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(1) The performance analysis curve for the �rst severity (Lf = 20mm, θf = 45°) is repre-
sented in Figure 25. It is observed that, for each SNR, the detection capability vanishes
as the fault reaches the cable end (xf = 90%).

(2) Figure 26 represents the performance analysis curve for the second severity (Lf =
20mm,θf = 90°). The detection capability compared to the previous case is higher
for all noise levels. We can also notice that for low noise levels, the probability of
detection is higher than 0.8.

Figure 26: Performance analysis curve in the case of a 20mm and 90° fault

(3) Figure 27 represents the performance analysis curve for the third severity level (Lf =
20mm,θf = 180°). The detection capability for this severity is higher than the two
previous cases. We can notice the same decreasing trend when the fault is close to
the cable end. However, for low noise levels (10 and 15dB), the detection capability
is almost constant and higher than 0.94.

Figure 27: Performance analysis curve in the case of a 20mm and 180° fault

From these results, we can conclude that the probability of detection is higher when the
fault occurs near the beginning of the cable and as the SNR increases for the same fault
severity. The soft faults with the lowest severity level cannot be detected near the cable's
end. And the situation is even worse when the noise level is close to the signal level.
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6. Conclusion

This study presents an e�cient approach to select the best frequency bandwidth for
soft fault detection in wired networks based on a judicious combination of re�ectometry and
PCA. The proposed method allows con�guring the VNA at di�erent frequencies. It performs
measurements at di�erent frequencies for the reference case to design the PCA model. The
new measurements are projected into the PCA model reference frame and compared to the
reference data. If a di�erence is observed, the contribution of each variable (i.e., frequencies)
to this di�erence is calculated. The algorithm then chooses the most relevant frequency
to monitor the soft fault. The advantages are thus time-saving and enabling automatic
computerized decision-making.

Our results have shown that the selected frequency to monitor a fault case depends
on several parameters: the cable type and characteristics, the fault severity and position,
and the noise level. Regarding the statistical tests, the Q criteria is more relevant. The
simulation results are based on a 3D electromagnetic model using CST for short cables and
an RLCG-based model for longer cables. The models have been validated with experimental
measurements in the case of shielding damage. Once validated, the parametric model has
been used for extensive simulations to cope with the di�erent fault con�gurations.

Experimental validations in the presence of soft faults were carried out. The performance
analysis of this method has also been investigated. For the considered use case, when the soft
fault is near the injection point, the detection probability equals one even for SNR values as
low as 0dB. As the fault position approaches the end of the cable, the performance is still ac-
ceptable, but for lower fault severities, the detection is almost impossible. Future works can
focus on other types of noise such as impulsive noise in vehicular networks, mechanical noise
in airplanes, etc. Their impact on detection performance should be evaluated. Moreover,
the case of di�erent types of cables should be also considered to see how the methodology
can be adapted to them based on their speci�c properties.
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