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Unrolled Convolutional Neural Network for
Full-Wave Inverse Scattering

Yarui Zhang, Marc Lambert, Aurélia Fraysse, and Dominique Lesselier, Senior Member IEEE

Abstract—An unrolled deep learning scheme for solving full-
wave nonlinear inverse scattering problems (ISPs) is proposed.
Inspired by the so-called unrolled method, an iterative neural
network structure combining the contrast source inversion (CSI)
method and residual network (ResNet) is designed. By embedding
the CSI iterations into the deep learning model, the domain
knowledge is well incorporated into the learning process. Thor-
ough numerical tests are carried out to evaluate the performance,
stability, robustness, and reliability of the proposed approach.
Comparisons with the widely used U-net structure and CSI
exhibit the advantage of the proposed approach.

Index Terms—contrast source inversion method, deep learning,
inverse scattering, unrolled method

I. INTRODUCTION

ELECTROMAGNETIC inverse scattering problems (ISPs)
[1] are concerned with reconstructing the spatial distri-

bution or physical parameters of an unknown scatterer from
measured scattered fields. ISPs are faced with in various
fields, like medical imaging [2], remote sensing [3], and non-
destructive testing [4].

ISPs are generally tackled by optimization methods that
minimize the discrepancy between obtained results and ex-
pected ones. Deterministic optimization methods such as the
Contrast Source Inversion method (CSI) [5], Distorted Born
Iterative Method (DBIM) [6], and Subspace-based Optimiza-
tion Method (SOM) [7] and variants, are widely used to deal
with nonlinear ISPs. Yet, such local optimization methods may
stall in local minima unless reasonable initialization. Prior
information or regularizations such as positivity and sparsity
[8] are usually enforced onto the optimization to alleviate ill-
posedness.

Deep learning, mostly convolutional neural networks
(CNN), has achieved great success for tasks of computer
vision, e.g., image segmentation [9], object recognition [10].
Deep learning is also successful for inverse imaging problems
[11], [12], [13], like image denoising [14], restoration [15],
super-resolution [16], with worthy application in MRI-based
medical imaging [17] as well. Recently, deep-learning-based
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methodologies have been applied to ISPs, as reviewed, e.g., in
[18], [19] and [20]. Unlike traditional iterative methods that get
the solutions from measurements and the domain knowledge,
they benefit from the large data set to learn the unknown
solution while the domain knowledge is less involved.

The advantages of applying deep learning tools to solve ISP
are twofold. On the one hand, it allows real-time reconstruction
whereas traditional iterative methods require computational
time. On the other hand, by benefiting from the informa-
tion contained in large-scale data, deep learning tools can
sometimes solve highly nonlinear ISPs for which traditional
methods fail. However, collecting large-scale datasets may not
be straightforward in real-world applications.

Deep learning approaches for solving ISPs can be roughly
categorized into three types as follows.

The contrast distribution can be directly derived from the
measured data, the input of the neural network being the
scattered fields, and the output being the contrast. In [21],
CNN is used to diagnose a damaged micro-structure and the
architecture takes the collected data as input and yields the
contrast distribution. Nevertheless, directly learning the con-
trast from the scattered fields requires time to learn the known
physical process. As a result, the combination of domain
knowledge and neural networks has been much exploited.

Approaches of the second type consist in incorporating
physical knowledge into deep learning. In [22] and [23],
several physical-based learning approaches are proposed such
as the Back-Propagation Scheme (BPS) and Induced Current
Learning Method (ICLM), which pre-initialize the input of the
neural network based on the domain knowledge. In [24], two
physical-guided loss functions are proposed, which enhance
noise robustness and improve reconstruction accuracy. These
methods can reduce the nonlinearity of the relationship be-
tween input and output of the neural network and simplify
learning.

The Deep-NIS approach advocated in [25] also neatly fits
the category of physics-inspired deep learning tools, once
emphasized that there exist many contributions on ISPs that
would fit the category, yet lie beyond the scope of the present
contribution. In some parallel also, one should cite [26] as
involving in original fashion a two-step solution, extraction
of so-called feature fragments from the data via an encoder
network, mapping those to the contrasts via a decoder network.
Also, among many other contributions, the reviewing of which
goes beyond the scope of the present contribution, a procedure
that embeds a forward modeling neural network in an inversion
one is devised in [27] and shows success for a full-wave ISP.

A neural network can be combined also with traditional op-
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timization methods. This third type still employs the traditional
iterative approach to solve the ISPs but uses deep learning
to complete the optimization procedure. In [28], the learning
process is followed by a refinement stage, where SOM is to
refine the result obtained from the previous stage.

To achieve sound retrievals, incorporating domain knowl-
edge into the deep model is of importance. In addition to
initializing the network with approximate results based on
physical information as often made, the unrolled method [29]
has been proposed for inverse problems with a fully known
forward model to flexibly combine iterative optimization meth-
ods with deep learning, the physics guiding the solution as
exemplified in the recent contribution [30].

It replaces the components of iterative optimizers with learn-
able parameters or networks while integrating the knowledge
of the direct model. Unlike the aforementioned deep learning
schemes, which mainly adopt a single network to map the
measurements or the approximate reconstructed results to the
ground truth, the unrolled method uses a recurrent block
architecture where the number of repeated blocks corresponds
with the number of iterations.

Its general framework has been much discussed to solve
inverse problems. Generally, deep models are designed based
on the proximal gradient descent algorithm, where a trainable
CNN can replace the proximal operator. In addition to the
proximal operator, other free parameters like the step-size of
descent can be learned in training. In [31] and [32], the residual
network is used to model the proximal map. Furthermore,
following connections between an iterative solver and the CNN
structure, some neural networks are designed to imitate the
iterative methods in [12], [33] and [34].

In the present contribution, inspired by the unrolled deep
learning method as proposed in the field of computer vision
and signal processing, the interest of which is, in particular,
emphasized in the thorough review [35] a novel unrolled
model which combines updating steps of CSI and a classical
CNN structure is developed. The entire network has a recurrent
block architecture that contains a series of sub-blocks. Each
includes a set of CSI update steps and a CNN block, which
corresponds to an update of contrast and contrast source, as it
will be seen. Then, several strategies are designed to improve
the model. Due to the recurrent network structure, a combined
loss function is set up, the weight parameters being determined
automatically during training. Modifications are also made
compared to a general unrolled method to adapt the network
to nonlinear inverse problems.

The contribution goes as follows. The forward problem is
sketched in Section II. The proposed methods are developed
in Section III. Numerical illustrations are in Section IV.
Conclusion and perspectives are in Section V.

II. PROBLEM FORMULATION

The scenario is time-harmonic two-dimensional electro-
magnetic scattering in the transverse magnetic (TM) polar-
ization (time convention e−iωt, ω angular frequency). An
inhomogeneous linear isotropic scatterer is embedded inside
a homogeneous linear isotropic medium D with permittivity

of air ε0 and permeability µ0. εr(r) and σ(r) denote relative
permittivity and conductivity of the scatterer with r ∈ D as a
given observation point. TM waves generated by Ns ideal line
sources located outside the scatterer at positions rs illuminate
it. For each illumination, the scattered fields are collected by
Nr ideal receivers at positions rr along a circle of observation
S, not intersecting the scatterer, and not necessarily jointing
with the sources.

The scattered electric field Ediff(rr, rs) collected by a
receiver at rr and associated with a source at rs satisfies the
integral equation

Ediff(rr, rs) =

∫
D

G(rr, r
′)J(r′, rs)dr

′, r ∈ D (1)

letting
J(r, rs) = χ(r)Etot(r, rs) (2)

G(r, r′) is the Green’s function which represents the electro-
magnetic response to a line source radiating in free space. It is
given by G(r, r′) = −iωµ0

4 H
(1)
0 (kB‖r− r′‖), H(1)

0 zero-order
Hankel function of the first kind.

The contrast function is defined as usual as χ(r) = k2(r)−
k2B where k2(r) = ω2ε0εr(r)µ0 + iωµ0σ(r), k2B = ω2ε0µ0.
J(r, rs) and E(r, rs) are the equivalent current and the total
electric field induced within the object by the incident wave.

The total electric field is obtained as

Etot(r, rs) = Einc(r, rs) +

∫
D
G(r, r′)J(r′, rs)dr

′, r ∈ D
(3)

where Einc(r, rs) is the incident field.
Using a pulse-basis point-matching method of moments

(MoM), the domain D is discretized into N2 small square
pixels wherein electric field and contrast are considered con-
stant. The discrete version of the previous equations reads

Ediff
ir,is =

N∑
i=1

GS;ir,iJi,is (4)

Etot
i,is = Einc

i,is +GD;i,iJi,is (5)

with is = 1, . . . , Ns, ir = 1, . . . , Nr, i = 1, . . . , N2, and
Ji,is = diag(χi)Etot

i,is
the contrast source. Subscripts D and

S indicate the location of r, and otherwise, the operators are
identical:

GD, SJi,is =

∫
D
G(r, r′)J(r′, rs)dr

′ r ∈ D or r ∈ S
(6)

The forward problem is the calculation of Ediff
ir,is

from knowl-
edge of χi and the (non-linear and ill-posed) inverse scattering
one is to retrieve χi from Ediff

ir,is
.

III. CSI-BASED UNROLLING DEEP LEARNING SCHEMA

As underlined, it is key to integrate the physical knowledge
into the deep learning approach to get physically meaningful
results while reducing the computational burden of learning
already known physical laws.

The unrolled method, which imitates iterative optimization
approaches, generally holds a network structure with repeated
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Fig. 1. CSI-based unrolled neural network structure. p ∈ {1 . . . Np}, Np
number of sub-blocks. k ∈ {1 . . . Nk}, Nk number of CSI iterations in each.

sub-blocks. Each sub-block contains the iterations of tradi-
tional optimization methods and a neural network.

Herein, one proposes a CSI-based unrolled deep learning
method (The structure is sketched in Fig. 1), where each
sub-block of the network contains two modules: Module CSI
and Module CNN. In the following, the CSI method is first
reviewed as the main brick of Module CSI. Then, some
basic elements of CNN and the network structure adopted are
introduced. Details of the approach follow. Last, the U-net [36]
structure is briefly presented for comparison.

A. Contrast source inversion method: Module CSI

CSI is much used to tackle inverse scattering. From (4) and
(5), state and data equations stand as

Ji,is = diag (χi)
[
Einc
i,is +GD,i,iJi,is

]
(7)

Ediff
i,is =

N∑
i=1

GS;ir,iJi,is (8)

The cost function is a linear combination of normalized
mismatches in state and data equations:

F (Ji,is , χi) =

∑
is

∑
ir

‖ξir,is −
∑
i

GS;ir,iJi,is‖2∑
is

∑
ir

‖ξir,is‖
2

+

∑
is

∑
i

∥∥diag (χi)Einc
i,is
− Ji,is + diag(χi)GD;i,iJi,is

∥∥2
∑
is

∑
i

∥∥diag (χi)Einc
i,is

∥∥2
(9)

Contrast sources Ji,is and contrast χi are alternatively
reconstructed with a conjugate gradient method. At each
iteration, the contrast sources are updated by minimizing the
entire cost function, then χi is determined by minimizing the
error in the state equation. Note that the minimization at each
iteration is linear. Update steps of CSI at a single iteration
k are shown in Algorithm 1. Here, ρis,k is the data error,
ris,k the state error, gJis,k the gradient of the cost function (9)

w.r.t Jis,k evaluated at Jis,k−1, whereas βk−1, νis,k the Polak-
Ribière conjugate gradient directions, and αJk the update size.

Algorithm 1 CSI at iteration k
1: Input: Jis,k−1, χk−1, ξis , GS , GD, Einc

2: ρis,k = ξis −GSJis,k−1
3: ris,k = βk−1E

tot
is,k−1 − Jis,k−1

4: gJis,k = − G∗Sρis,k∑
is

∑
ir
‖ξir,is‖2

− ris,k −G∗D(χk−1ris,k)∑
is

∑
i ‖χiEinc

i,is
‖2

5: νis,k = gJis,k +
<
{∑

is

〈
gJis,k, g

J
is,k
− gJis,k−1

〉}
∑
is

〈
gJis,k−1, g

J
is,k−1

〉 νis,k−1

6: αJk =
−<

{∑
is

〈
gJis,k, νis,k

〉}
∑
is
‖GSνis,k‖2∑

is

∑
ir
‖ξir,is‖2

+

∑
is
‖νis,k − χk−1GDνis,k‖2∑

is

∑
i ‖χiEinc

i,is
‖2

7: Jis,k = Jis,k−1 + αJkνis,k
8: Etot

is,k
= Einc

is
+GDJis,k

9: χk =

∑Ns

is=1 Jis,kE
tot∗
is,k∑Ns

is=1 ‖Eis,k‖2
10:
11: Output: Jis,k, χk

The first sub-block, Module CSI –based on the CSI method–
aims at providing an immediate initialization of J and χ for the
Module CNN. Then, in the following sub-blocks, Module CSI
further refines the results that come from the precedent Module
CNN (Module CNN, yielding, at the specific step considered,
the contrast distribution, is discussed in detail in the following
subsections.) Note that the step size αJ is not a learnable
parameter and is determined by minimizing both data and state
error functions.

B. Convolutional neural networks: Module CNN

A convolutional neural network (CNN) typically consists
of four types of layers: convolutional, rectified linear unit
(ReLU), pooling, and fully-connected layer. Traditional artifi-
cial neural networks are usually built only with fully connected
layers, which brings drawbacks like loss of spatial structure
information, computational burden, and over-fitting. CNN can
alleviate these problems because the convolutional layer as the
core layer in building a CNN produces few parameters.

In the proposed unrolled schema, the network structure in
Module CNN is stacked by residual blocks. Residual learning
has been proposed in [37] to deal with network degradation,
which means that adding more layers might degrade learning
performance. The entire network structure of Module CNN is
illustrated in Fig. 2. It thus consists of two residual blocks and
two convolutional blocks.

Adding a shortcut between the input x and the output, the
network has to learn the residual H(x) between ground truth
and input. It should be easier to optimize than the original
mapping, and this shortcut ensures that higher layers perform
at least as well as lower ones.

The input of Module CNN is the contrast χ
obtained by Module CSI, which is a tensor of shape
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[Number of samples× Number of channels×H ×W ], H
and W being image height and width. The number of
input/output channels is 2 for a complex-valued image by
splitting real and imaginary parts into two different channels;
for a real-valued image, the second channel is empty.

Conv. 1 + BN +ReLU

Residual Block

Residual Block

Conv. 2 + BN +ReLU

(a) Module CNN

Conv. + BN + ReLU

Conv. + BN Identity 
mapping

ℋ 𝑥 + 𝑥

ℋ 𝑥

𝑥

ReLU

(b) Residual sub-block

Fig. 2. Network structure of Module CNN and its residual sub-block.

For all convolutional layers, the spatial size of the filters
used to obtain the feature maps is 3 × 3. Inside the residual
block, the number of filters for each layer is 64. The number
of filters of layers Conv.1 and Conv.2 in Module CNN are 64
and 2, respectively. To keep the spatial size of feature maps
unchanged after each convolution, the stride of the convolution
operation is set to 1, and a 1-sized zero-padding is added.
Each convolutional layer is followed by batch normalization
(BN), which stabilizes the neural network, accelerates training
convergence, reduces sensitivity to weight initialization, and
alleviates overfitting. Finally, a ReLU layer is added as the
nonlinear activation layer used to overcome the vanishing
gradient problem and add the nonlinearity to the model.

C. CSI-based unrolling deep learning framework: CSI-Net

As depicted in Fig. 1, the network contains a series of sub-
blocks. For the first sub-block, the input is the pre-initialized
contrast χ and contrast source J , obtained by standard back-
propagation.

A closed-form contrast source is obtained as:

J0 =
‖G∗SEdiff‖2

‖GSG∗SEdiff‖2
G∗SE

diff (10)

and the corresponding contrast χ0 derived from J0:

χ0 =

∑Ns

is=1 Jis,0E
tot∗
is,0∑Ns

is=1 ‖Etot
is,0
‖2

(11)

Additionally, the inputs include as well auxiliary data
Ediff, Einc, GS , GD to perform the CSI iterations. Denoting
Np the total number of sub-blocks and Nk the total number
of CSI iterations performed inside each sub-block. In the p-th
sub-block, there are two main steps.

Firstly, the input passes through a sequence of Module CSI.
In the commonly used unrolling deep learning framework, the
gradient descent update step is performed only once inside
each sub-block, where the step size is considered as a free
parameter learned during training. In contrast, the step size

αJ here is a constant determined at each iteration, thus not
a learnable parameter. Moreover, instead of running a single
CSI iteration in each sub-block, the CSI iteration is repeated
several times.

This modification comes from the following considerations:
Data in Module CSI are not normalized, so the initialization of
step size is essential and should respect the correct scale. So
it is more convenient to determine the step size by following
traditional optimization. As it cannot be learned, the single
iteration step is replaced by multiple iterations to speed up
convergence and amplify improvements brought by Module
CSI. At the end of this step, a preliminary reconstruction
χp−0.5 of the contrast χ is obtained.

Secondly, the previous result χp−0.5 is applied as input
of Module CNN. Note that it should be normalized before
being involved in the network. The output of this module is
χp, which is the final result of the p-th sub-block, and the
corresponding contrast source Jp is updated by solving the
forward problem.

Since the proposed model has a cascade architecture, the
choice of the loss function is important. The loss scale corre-
sponding to each sub-block’s output could significantly differ.
To equally train each sub-block, a combined loss function built
with the normalized mean square error (MSE) is chosen:

L =

Np∑
i=1

λiLi∑Np

i=1 λi
, Li =

Ne∑
j=1

(x̃ij − xj)2, λi =
L0

Li
(12)

where Ne denotes the number of elements in x̃i, and λi is the
weighting coefficients of i-th sub-block.

D. U-net deep learning framework for comparison

The U-net structure, originally designed for medical image
segmentation, is widely used for ISPs (as in [22], [24] among
many). Details of U-net can be found in [36]. Fig. 3 shows
the network structure in the present work.

IV. NUMERICAL ILLUSTRATION

Numerical experiments have been carried out to evaluate the
performance of the method. Details of the scattering system
are as follows: the operating frequency is 400MHz, the region
of interest D is of 2m×2m size and is discretized into N
square cells. For the forward problem, N = 32×32. Nr = 32
receivers and Ns = 16 transmitters are evenly distributed on a
circle of radius r = 3m centered at (0, 0) m. The embedding
medium is of εb = 1.

To evaluate the reconstruction quality from different points
of view, three criteria are adopted:

1) Relative error of contrast

Errχ =
‖χ̃− χ‖2

‖χ‖2
(13)

2) Relative error of permittivity over the pixelized domain

Errε =

√√√√√ 1

Nx ×Ny

Nx∑
ix

Ny∑
iy

∣∣∣∣ ε̃ix,iy − εix,iyεix,iy

∣∣∣∣
 (14)
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Fig. 3. The U-net structure. The dimension of the feature maps passing through each layer is noted as [Number of channels@H ×W ].

3) Structural Similarity Index

SSIM(χ̃, χ) =
(2µχ̃µχ + C1) + (2σχ̃χ + C2)

(µχ̃2 + µχ2 + C1)(σχ̃2 + σχ2 + C2)
(15)

where µx and σx are the mean and the standard deviation
of x, respectively. σxy is the covariance between x and y.
C1 = (k1L)

2, C2 = (k2L)
2 are to stabilize the division

with weak denominator where L the dynamic range of
the pixel values. k1 = 0.01 and k2 = 0.03 by default.

Denote the proposed unrolled network as CSI-Net. To check
on the advantage brought by Module CSI, one removes all
Module CSI blocks from CSI-Net, and the model becomes
a cascaded residual neural network, denoted as CC-ResNet.
For comparison, results of CC-ResNet, the widely used U-
net structure, and the iterative CSI method with positivity
constraint are also displayed. For the latter, the number of
iterations has been arbitrarily chosen as NCSI

k = 150 and the
algorithm stopped when NCSI

k is reached.

A. Implementation details

Implementation details of the approach, including division
of dataset and hyperparameters settings, are as follows: several
datasets are used to train the proposed model, each one
comprising 2500 samples. Among the 2500 data pairs, 2000
are employed for training, 300 for validation, and 200 for
testing. The Adam optimizer [38] is chosen to optimize the
loss function. 40 epochs are set in the training process.
The size of the mini-batch is 20. The learning rate is set
to 0.001, decayed by 0.1 each 10 epochs. Nk and Np are
chosen by compromising between learning performance and
computational complexity, here Nk = 10 and Np = 4.

Computations are run on a server with NVIDIA RTX A3000
GPU (6GB). The networks are implemented with Pytorch
[39]. It takes 0.63 h for CSI-Net training and 0.03 h for
CC-ResNet and U-net. It takes less than 0.4 s to get the
reconstruction using CSI-Net, and about 4 s using CSI, U-Net
being almost real-time.

B. Test with circular dataset

A synthetically generated circular dataset [22] is used. Each
sample contains disks of random quantities: number (between
1 and 3), relative permittivity (between 1.3 and 2), radius
(between 0.15m and 0.4m), and location. The scatterers may
overlap. The collected fields used for training are noise-free.
Unless specified, the scatterers are lossless.

The trained models are tested with 200 samples. Fig. 4
shows six representative results obtained by three models
and CSI. Results by CSI-Net are smoother, and edges better
preserved, especially when multiple scatterers interplay.

In Samples #1, #3 and #4, where the scatterers are very
close to each other, only rough estimates are obtained by CC-
ResNet and U-net. The shape and relative permittivity obtained
are not exact, and the boundaries not clear.

In Samples #2 and #5, with CC-ResNet and U-net, the
reconstruction of the weaker scatterers is influenced by the
relatively stronger ones, so only the latter are well retrieved.
Sample #6 is challenging since an obstacle is inside one
another. CC-ResNet and U-net can retrieve the two large
obstacles while the small nested one is missed. With CSI, the
reconstructed scatterers exhibit clear boundaries and shapes.
Yet, compared to CSI-Net, artifacts show up inside the scat-
terers obtained by CSI.

Table I provides the corresponding reconstructed errors and
SSIM. For all test samples #1−#6, CSI-Net generates the
lowest reconstruction errors and highest SSIM. In addition,
Errχ, Errε and SSIM of all 200 samples obtained by three
trained models are displayed in Fig. 5 to provide a global
view of the reconstruction performance. CSI-Net ensures the
lowest average reconstruction errors but also reduces extreme
cases, i.e., decreases the variance of reconstruction errors.

TABLE I
RECONSTRUCTION QUALITY OF THREE MODELS AND CSI. SNR = 20dB.

Model Sample #1 #2 #3 #4 #5 #6

Errχ
CC-ResNet 0.172 0.121 0.137 0.113 0.101 0.113

CSI-Net 0.027 0.028 0.021 0.027 0.017 0.014
U-net 0.166 0.085 0.108 0.100 0.125 0.093
CSI 0.057 0.067 0.058 0.063 0.055 0.064

Errε
CC-ResNet 0.148 0.073 0.098 0.077 0.081 0.073

CSI-Net 0.048 0.045 0.037 0.050 0.034 0.029
U-net 0.149 0.074 0.090 0.072 0.096 0.071
CSI 0.078 0.069 0.063 0.069 0.067 0.065

SSIM
CC-ResNet 0.340 0.475 0.445 0.425 0.488 0.499

CSI-Net 0.710 0.726 0.693 0.682 0.704 0.720
U-net 0.203 0.582 0.6514 0.569 0.531 0.669
CSI 0.478 0.463 0.430 0.443 0.481 0.394

To check on robustness, further simulations are carried out
with Gaussian noises of different SNR (20, 10 and 5 dB)
added to the scattered fields. In Fig. 6, the mean and variance
of results obtained with the real-valued circular dataset are
displayed. For the mean error, the growth rate of CSI-Net at
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Fig. 4. Relative permittivity of reconstructed profiles from the test dataset. The range of relative permittivity is [1.3, 2]. Gaussian noise of SNR = 20dB is
added. The first row is the ground truth of the profiles.
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Fig. 5. Errχ, Errε and SSIM obtained by applying the trained model on 200 test samples. Gaussian noise of SNR = 20dB is added to collected fields.

20 and 10 dB is larger than for the two other approaches,
yet CSI-Net always exhibits the smallest mean error, i.e., it
is robust to noise contamination. As for the variance change,
improvement by the proposed method lies not only in better
overall reconstruction quality but also in a strong reduction of
poor results, i.e., confidence level increases.

In general, a larger training dataset leads to better neu-
ral network training. However, in the real world, collecting
datasets may not be straightforward. So, a neural network
should perform well with a small amount of data. Here, the
models are trained with the real-valued circular dataset, and
the numbers of training pairs are 250, 500, 1000, 1500, and
2000, respectively. The mean value and variance of Errχ are
displayed in Fig. 7. As the training dataset’s size increases, the
performance of all models improves. But, for a small dataset,
U-net performance strongly degrades while CC-ResNet and

Noise-free 20dB 10dB 5dB
SNR

10 2

10 1

Mean value
CC-ResNet
CSI-Net
U-net

Noise-free 20dB 10dB 5dB
SNR

10 4

10 3

10 2

10 1
Variance

CC-ResNet
CSI-Net
U-net

Fig. 6. Noise stability: mean and variance of Errχ obtained by CC-ResNet,
CSI-Net, and U-net on 200 test samples belonging to the circular database as
a function of noise levels.

CSI-Net remain stable. Moreover, CSI-Net consistently out-
performs the other two methods.

Evaluations of reliability can be performed by showing that
the training dataset is not particularly tuned to a proposed
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Fig. 7. Mean and variance of Errχ obtained by CC-ResNet, CSI-Net and
U-net on 200 test samples as a function of the number of training pairs.

network. To this end, a real-valued circular dataset including
5000 samples is used. Five datasets of 2000 data pairs are
randomly sampled from the latter as training datasets for the
models. Fig. 8 illustrates that the performance of the proposed
approach remains stable when the dataset changes.
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Fig. 8. Mean and variance of Errχ obtained by CC-ResNet, CSI-Net and
U-net on 200 test samples using models trained with five randomly chosen
datasets of 2000 data pairs.

Generalization capability is always an issue, so challenging
examples must be considered. The models trained with the
circular dataset are now tested on six test samples that are
not within the range of the training dataset. The results are
in Fig. 9. CC-ResNet is not included since all of its results
are worse than CSI-Net. Notice that positivity constraint is
enforced in CSI, significantly improving its performance. The
number of iterations is set to 200. In particular, samples #7
and #8 are the well-known “Austria” profile with relative
permittivity of 1.5 and 2, respectively.

CSI-Net achieves the best reconstruction for most of the
samples from #7 to #12. For sample #7, U-net only gives a
rough reconstruction, where the center of the ring is obscured,
and the shape is not continuous. For sample #8, where the level
of nonlinearity increases, it fails. As for CSI, the retrieved
profiles have a smaller size than the true ones. Also, artifacts
show up around the edges. For the other samples, U-net fails to
provide meaningful results and CSI can achieve good results,
though with more artifacts than CSI-Net results. The Errχ of
the results are in Table II. They show that CSI-Net has a
better generalization capability than U-net and can improve
the reconstruction quality of several cases compared to CSI.

C. Test with MNIST dataset

The proposed model is trained with a different dataset
where the scatterers are modeled from the MNIST database
[40], which contains handwritten digits samples. Digits are
transformed to scatterers of random relative permittivity be-
tween 2 and 2.5. To increase diversity, a circular/rectangle

TABLE II
ERRχ OF TEST SAMPLES #7-#12. SNR = 20dB

Model Sample #7 #8 #9 #10 #11 #12

CSI-Net 0.038 0.095 0.023 0.024 0.029 0.052
U-net 0.236 0.477 0.157 0.182 0.235 0.101
CSI 0.098 0.093 0.036 0.024 0.031 0.034

of random relative permittivity between 2 and 2.5 is added
to each sample. The diameters/side lengths are between 0.3m
and 0.8m. The scattering system settings, dataset division, and
training hyperparameters are unchanged.

The trained models are tested on 200 samples within the
same range of the training dataset. As shown in Fig. 10,
samples #13-#16 are four representative samples among the
test dataset, and #17-#18 are “Austria” profiles with relative
permittivities of 2.5 and 3, respectively. Due to strong non-
linearity, CSI fails to reconstruct all samples so its results
are not displayed. U-net can roughly reconstruct the profiles,
however, most details are missing. In comparison, CSI-Net
achieves better reconstructions for all test samples.

The Errχ of these test samples obtained by different meth-
ods are presented in Table III. Note that its last two columns
give the mean value and the variance of Errχ across all 200
test samples. It is readily seen that CSI-Net outperforms other
methods for the cases where the nonlinearity increases.

TABLE III
ERRχ OF TEST SAMPLES #13-#18, AND 200 TEST SAMPLES. SNR = 20dB

Model Sample #13 #14 #15 #16 #17 #18 Mean Variance

CSI-Net 0.073 0.064 0.096 0.059 0.105 0.218 0.047 0.0004
U-net 0.249 0.197 0.219 0.162 0.146 0.244 0.097 0.0014

D. Test with lossy scatterers

All previous results are on lossless scatterers. The proposed
model is now trained with a complex-valued circular dataset
to represent lossy scatterers. The training dataset shares the
same key parameters as the real-valued one except for the
relative permittivity value. Real parts of relative permittivities
are between 1.3 and 2.4; imaginary parts vary from 0 to
1.2. The trained model is tested on the “Austria” profile,
and the results are in Fig. 11. Both CSI-Net and CSI exhibit
satisfactory results. On the contrary, U-net fails to reconstruct
the ring for both real and imaginary parts. Corresponding Errχ
are in Table IV. The last two rows give the mean error and
variance over 200 test samples.

V. CONCLUSION

An unrolled deep learning model embedding the iterative
CSI optimization method into the CNN structure has been
proposed to tackle a full-wave 2-D inverse scattering problem.
Indeed, employing deep learning tools to solve such a problem
requires learning the laws of scattering. Also, those tools may
perform well when traditional optimization methods appear to
fail, yet lack of generalization capability and potentially low
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Fig. 9. Reconstructed relative permittivity obtained by CSI-Net, U-net, and CSI. The models are trained with the circular dataset. The test dataset lies outside
the range of training data. 20dB Gaussian noise affects the collected scattered fields.
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Fig. 10. Reconstructed relative permittivity obtained by CSI-Net, U-net (CSI has been omitted since failing to yield proper reconstruction). The models are
trained with the MNIST dataset. The test dataset is outside the range of training data. 20dB Gaussian noise affects the collected scattered fields.
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Fig. 11. Reconstructed relative permittivity obtained by models trained with a
complex-valued circular dataset. <{ε} (top) of ground truth is 1.8 and ={ε}
(bottom) is 0.5. 20 dB Gaussian noise affects the collected scattered fields.

confidence level tend to impair their usage. So, combining
domain knowledge with learning approaches by integrating
the CSI updating steps within the network structure appears a
fruitful way forward.

Numerical illustrations indeed confirm that the proposed
CSI-Net has a better generalization ability than the widely
used U-net structure. The confidence level of results is also
improved with the help of embedded CSI steps. Furthermore,
good results are obtained even when CSI fails.

The fact that the cost function takes in account the outputs
of all subblocks with proper weights, and so doing at least
yields the same degree of convergence of each said subblock,
should be emphasized. Notice however that one is not aware
of mathematical proof that would fit the proposed framework,
so work into that direction should be helpful.

To summarize, CSI-Net combines the advantages of both
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TABLE IV
MEAN AND VARIANCE OF ERRχ OVER 200 TEST SAMPLES. SNR = 20dB.

Model CSI-Net U-net CSI

“Austria” 0.131 0.269 0.157
Mean 0.021 0.040 \

Variance 0.0004 0.0011 \

sides. Overall, the proposed approach provides a general
scheme for fruitfully mixing iterative optimization and learn-
ing. That is, CSI can be replaced by another iterative method
while extra constraints should further improve the confidence
level of the network structure.
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Paris, in 1982. He is with the Centre National de la Recherche Scientifique
(CNRS) since October 1981, and he is now Director of Research CNRS
Emeritus. He was a Visiting Scholar with the Department of Electrical
Engineering, University of California at Los Angeles, Los Angeles, CA,
USA, from 1982 to 1983. He belongs to the Laboratoire des Signaux et
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