Sequential Bayesian inversion of black-box functions in presence of uncertainties

Romain Ait Abdelmalek-Lomenech, Julien Bect, Emmanuel Vazquez

To cite this version:

Romain Ait Abdelmalek-Lomenech, Julien Bect, Emmanuel Vazquez. Sequential Bayesian inversion of black-box functions in presence of uncertainties. MASCOT-NUM 2022, Jun 2022, Clermont-Ferrand, France. hal-03694867

HAL Id: hal-03694867
https://centralesupelec.hal.science/hal-03694867
Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
The reliability-based inversion (RBI) problem

We view our system as a black-box function \( f: X \times S \rightarrow \mathbb{R} \). In this setting, \( X \) is the space of deterministic inputs and \( S \) the space of uncertain inputs.

- Given a level \( q \in \mathbb{R} \) and a threshold \( \alpha \in [0,1] \), our objective is to approximate the set
  \[
  \Gamma(f) = \{ x \in X : P(\xi(x) \geq q) \geq \alpha \}
  \]
  where \( S \) is a random variable with known distribution \( P_S \) on \( S \).

- Equivalently, we can formulate this problem as a classification problem, in which we wish to approximate the classifier
  \[
  c(x) = \begin{cases} 
  1 & \text{if } x \in \Gamma(f) \\
  0 & \text{otherwise}
  \end{cases}
  \]

The Stepwise Uncertainty Reduction (SUR) principle

SUR strategies are a subset of the Bayesian strategies in which the points of evaluation are sequentially chosen by minimizing the expected future uncertainty on the object of interest, using a probabilistic surrogate of the unknown function.

- Consider \( \xi \sim GP(\mu, k) \) a Gaussian Process prior on \( f \), with \( \mu \) and \( k \) respectively the mean and covariance functions of the process.

- We define the current information \( I_n \):
  \[
  I_n = \{ (X_1, S_1, \xi(X_1, S_1)), \ldots, (X_n, S_n, \xi(X_n, S_n)) \}
  \]

- A SUR strategy choose the point minimizing the expected future uncertainty:
  \[
  (X_{n+1}, S_{n+1}) \in \arg\min_{(x,s) \in X \times S} E_x(U_n \mid X_{n+1} = x, S_{n+1} = s)
  \]
  where:
  - \( U_n \) is an uncertainty metric on the object of interest, depending on \( I_n \)
  - \( E_x \) expectation with respect to \( P_x \), the distribution of \( \xi \) given \( I_n \)

SUR approaches have been successfully used for the resolution of several problems regarding expensive-to-evaluate black box, including optimization [VVW09; MTZ78], function fitting, and more standard inversion problems. [Bec+12]

Construction of a SUR criterion for the RBI problem

- Let us define the integrated process \( \tau \) and \( \Gamma(\xi) \) the associated random excursion set above the threshold \( \alpha \):
  \[
  \tau(\xi, x) = \int \mathbb{1}(\xi(x, s) \geq q) P_S(ds) \quad \text{and} \quad \Gamma(\xi) = \{ x \in X, \tau(\xi, x) \geq \alpha \}
  \]

- We consider the uncertainty metric \( U_n \) defined by
  \[
  U_n = \int \tilde{p}_n(x)(1 - \tilde{p}_n(x)) \, dx
  \]
  with \( \tilde{p}_n(x) = P_x(\tau(\xi, x) \geq \alpha) \)

The link between the metric and the uncertainty of the random set \( \Gamma(\xi) \) can be seen more clearly by remarking that:
\[
U_n = \int \tilde{V}_n(x)(1 \in \Gamma(\xi)) \, dx
\]
with \( \tilde{V}_n \), the conditional variance given \( I_n \).

- The conditional distributions of \( \tau(\xi, x) \) are intractable: the SUR criterion does not admit an analytic expression.
- Monte Carlo simulations: \( \xi \) being Gaussian, we can generate \( \xi_1, \ldots, \xi_M \) sample paths of \( \xi \) under \( P_n \)
  \[
  \frac{1}{M} \sum_{i=1}^{M} I(\tau(\xi_i, x) \geq \alpha) = \frac{1}{M} \sum_{i=1}^{M} \tilde{p}_n(x)
  \]
  For each candidate point \( (x, s) \), the sample paths are reconditioned according to values sampled from the distribution of \( \frac{\xi(\xi, x)}{s} \) given \( I_n \).

Numerical results

We compare, iteration by iteration, the proportion of misclassified points obtained with our method to the ones of methods focusing on the excursion set in the joint space \( X \times S \) of design and uncertainties: the straddle criterion [Bry+05] and a SUR approach to standard inversion problems. [Bec+12]

Empirical evidences show that our method generally outperforms state of the art joint space inversion methods. Moreover, in all the test cases, the new SUR strategy nev er lags behind the others approaches considered.

References


This work has been funded by the National French Research Agency (ANR) in the context of the project SAMOURAI (ANR-20-CE46-0013).