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Reliability-based inversion problem

Consider f : X× S 7−→ R an expensive to compute black-box
numerical simulator with inputs

x ∈ X: design input.

s ∈ S: uncertain input.

We assume that S is equipped with a known probability distribution PS .

Example: f the electrical production of a wind farm, depending on

x the design of the wind turbine

s the climatic conditions
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Reliability-based inversion (RBI) problem
Given q ∈ R, α ∈ ]0, 1[, and S ∼ PS , we define the set of interest as

Γ(f ) = {x ∈ X, PS(f (x ,S) ≥ q) ≥ α}

with the associated function c(x) = 1(x ∈ Γ(f ))

Figure: Excursion set of f over q (left) and set of interest (right).
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Reliability-based inversion (RBI) problem

Objective:

Construct a good approximation Γ̂(f ) of Γ(f ), given a (generally small)
budget of N calls to f .

=⇒ “Reliability-based” inversion problem (RBI)

=⇒ Careful decision rule for the choice of the points of evaluations

{(X1,S1), ..., (XN ,SN)}

We propose a Stepwise Uncertainty Reduction (SUR) strategy to this end.
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Bayesian decision framework & SUR methods

Let ξ be a Gaussian process (GP) prior on f

ξ ∼ GP(µ, k)

with µ a mean function and k a covariance kernel.

Main interests of GPs :

Tractable conditional distributions

Conditioning formula for sample paths

=⇒ Common assumption in Bayesian optimization and black-box
inference.
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Bayesian decision framework & SUR methods

SUR strategies principle:

Given current information In

In = {(X1,S1, ξ (X1,S1)) , ... , (Xn,Sn, ξ (Xn,Sn))}

choose the point minimizing the expected future uncertainty.

(Xn+1,Sn+1) ∈ arg min
(x,s)∈X×S

En (Un+1 | Xn+1 = x , Sn+1 = s)

where:

Un+1 uncertainty metric depending on In+1

En expectation w.r.t. Pn, the distribution of ξ knowing In
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Bayesian decision framework & SUR methods

Examples of SUR strategies:

Let µn(x , s) = En (ξ(x , s)) and σ2
n(x , s) = En

(
(ξ(x , s)− µn(x , s))2

)
,

respectively the kriging mean and variance of ξ(x , s) knowing In

Function fitting: ALC [CGJ94]

Un = En

(
‖ξ − µn‖2

L2(X×S)

)
=

∫
X×S

σ2
n(x , s)d(x , s)

Optimization: IAGO [VVW09]

Un = Hn

(
arg min

(x,s)∈X×S
ξ(x , s)

)

where Hn is the entropy w.r.t. Pn
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Bayesian decision framework & SUR methods

Standard inversion in the joint space X× S [Bec+12]: approximate
the excursion set

γ(f ) = {(x , s) ∈ X× S, f (x , s) ≥ q}

Un =

∫
X×S

pn(x , s) (1− pn(x , s)) d(x , s)

with pn(x , s) = Φ
(
µn(x,s)−q
σn(x,s)

)
where Φ is the c.d.f of the standard

Gaussian distribution.
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A SUR method for RBI

We introduce the integrated process and the associated set of interest:

τ(ξ, x) =

∫
S

1(ξ(x , s) ≥ q)PS(ds)

and

Γ(ξ) = {x ∈ X, τ(ξ, x) ≥ α}

We consider the uncertainty metric Un defined by

Un =

∫
X

p̃n(x)(1− p̃n(x))dx

with p̃n(x) = Pn(τ(ξ, x) ≥ α)
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A SUR method for RBI

Remark

The metric Un can be rewritten:

Un =

∫
X

Vn (1(x ∈ Γ(ξ)) dx

with Vn the conditional variance knowing In

Issue: The distribution of τ(ξ, x) is intractable

The process ξ being Gaussian, we can generate ξ1, ..., ξM sample paths of
ξ under Pn

1

M

M∑
m=1

1(τ(ξm, x) ≥ α)
a.s−→

M→+∞
Pn(τ(ξ, x) ≥ α)

The paths are then reconditioned for every candidate point (x , s),
according to values sampled from the posterior distribution of ξ(x , s).
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A SUR method for RBI

Sequential choice of evaluation points according to

(Xn+1,Sn+1) ∈ arg min
(x,s)∈X×S

En (Un+1 | Xn+1 = x , Sn+1 = s)

When the budget of N evaluations is reached, we define

Γ̂(f ) = {x ∈ X, τ̂(f , x) ≥ α}

with τ̂(f , x) approximation constructed from the final model.

Simplest choice of τ̂(f , x):

τ̂(f , x) = τ(µN , x)

with µN = EN(ξ), the posterior mean function of ξ knowing IN

=⇒ Can be obtained easily, ξ being Gaussian.
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Numerical experiments
Two test functions:

f1(x , s) = g1(x , s) + sin(x1.4) + sin(y1.4)

X× S = [0, 10]× [0, 15]
g1 the Branin-Hoo function
PS = U([0, 15])

Figure: Excursion set of f1 (left), set of interest for q = 7.5 & α = 0.4. (right)
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Numerical experiments

f2(x , s) =
1

2
(g2(x1, s1) + g2(x2, s2))

X× S = [−2, 2]2 × [−1, 1]2

g2 the six-hump camel-back function
PS = U([−1, 1]2)

Figure: Set of interest of f2 for q = 2.15 and α = 0.35.
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Numerical experiments
Speed of convergence compared to the one of methods reducing
uncertainty on the excursion set in the joint space:

Straddle heuristic [Bry+05]
Standard SUR inversion

Figure: Median of the proportion of misclassification vs. number of iterations -
(50 runs).
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Numerical experiments

Illustration: Sequential overview of an application of the strategy.

Figure: Example of design and estimation obtained.
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Numerical experiments

In some cases, the strategy performs similarly to the SUR inversion in the
joint space. We consider f3 the Hartman4 function:

Figure: Median of the proportion of misclassification vs. number of iterations -
(50 runs).

=⇒ RBI-SUR method never lags behind for all the functions tested.
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Conclusion & open questions

Conclusion:

RBI dedicated SUR method tends to converge faster than standard
methods focusing on the excursion set in the joint space X× S.

Drawback: based on expensive conditioning of GPs sample paths.

Open questions:

In a simplified framework: consistency of the strategy?

Efficient sampling of the set of candidate points.

Approximation of the integrals.

This work has been funded by the French National Research Agency (ANR)

in the context of the project SAMOURAI (ANR-20-CE46-0013).
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Appendix

Illustration: Design obtained by our strategy vs. design obtained by
SUR method on the excursion set in the joint space.

Figure: Our strategy (left), standard SUR on the joint space (right).
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Appendix

Parameters for the numerical simulations:

Test function f1:

Covariance kernel: anisotropic Matérn.

Number of initial (random) points: 20.

Number of candidate points: 400.

Number of trajectories: 250.

Test function f2:

Covariance kernel: anisotropic Matérn.

Number of initial (random) points: 40.

Number of candidate points: 1600.

Number of trajectories: 500.
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