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Laboratoire des Signaux et Systèmes
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Abstract—Thanks to High-Level Synthesis (HLS) tools, FPGAs
have become an alternative to GPUs for compute-intensive ap-
plications. These tools have been developed to provide flexibility
in FPGA design at a higher abstraction level than hardware
description languages. Major FPGA manufacturers have pro-
posed many HLS tools depending on the target audience. In
this paper, we propose a hardware architecture on FPGA for
2D convolution designed through two software-like development
tools based on oneAPI and OpenCL languages. This paper also
focuses on comparing the oneAPI and OpenCL HLS tools in
terms of performance and productivity with the case study of
the 2D convolution operator using an Intel Stratix 10 device.

Index Terms—Convolution, Local memory, OneAPI, OpenCL

I. INTRODUCTION

Convolution is one of the most used operators in signal
and image processing applications such as edge detection,
image blurring, noise reduction [1]. The operator is very
compute-intensive, mainly used in iterative algorithms for
inverse problems such as deconvolution [2]. It is essential to
have significant computing power and a consequent bandwidth
to meet the high computational demand. The acceleration of
2D convolution has been explored on different computing
architectures such as CPU, GPU, or FPGA [3], [4]. Many
approaches have been developed to accelerate the convolution
operator, such as the reduction of the arithmetic complexity
notably by using Winograd method [5], simple matrix multipli-
cation using core tensors [6] or element-wise multiplication in
the Fourier domain [7]–[9]. The element-wise multiplication in
the Fourier domain followed by the inverse Fourier transform
delivers better throughput than the convolution in the image
domain for large mask sizes [10]. These works also explored
different computational accuracy (half, fixed, single, or double
precision) to leverage the underlying architecture better. This
paper will focus on the pipeline execution model for FPGA.
We proposed a convolution accelerator with a memory access
strategy to reuse the data and improve the algorithm’s arith-
metic intensity, allowing us to use FPGA BRAM efficiently.

II. 2D CONVOLUTION

The 2D convolution represents a multiply-accumulation
operation between a mask (convolution kernel) and the pixels
of a given image. Let f be a 2D image of size (H, W) and h

a mask of size (K, K), the convolution of f by h noted F is
given by:

F (x, y) =

K−1∑
j=0

K−1∑
i=0

f(x− (i− K

2
), y− (j − K

2
))h(i, j) (1)

To deal with the problem of image edge, we use the zero-
padding method, which allows us to maintain the size of
the input image. The pixel padding technique is often the
acceptable solution to handle image edges, and zero-padding
is the simplest to implement among the different types of
padding used [11].

III. FPGA-BASED CONVOLUTION

We have described equation 1 in OpenCL and oneAPI for an
FPGA implementation by performing the same optimizations
to evaluate the efficiency of both tools. We will compare
the efficiency of these tools on this operator using several
mask sizes. Our implementation uses shift register technique to
leverage FPGA local memory. Traditionally, the shift register

Algorithm 1 Optimized kernel
for all yn do

Prefetched new line into flocal

Circular Shift the mask buffer
#pragma unroll 4
for all xn do

result← 0
#pragma unroll
for all j do

#pragma unroll
for all i do

Handle image border
result+ = flocal[xn, yn] ∗ h[i, j]

end for
end for
output local[xn] = result

end for
F ← output local

end for

method is used on FPGA to perform the convolution using
Hardware Description Languages (HDL). In that case, the shift
is applied to the local buffer for the input data to add new
incoming data at the bottom of the buffer. Therefore, the buffer
size cannot be too large to avoid expensive shift costs. In our
implementation, the shift is only applied to the mask buffer,
which is implemented into FPGA registers. A local buffer is
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Fig. 1. Memory access strategy with circular shift applied to the mask

implemented using BRAM resources to store the input data.
At each iteration of loop yn, a new image line is inserted into
the local buffer replacing the buffer line whose coefficients
will no longer be used for this iteration as illustrated in Fig.1.

The circular shift intends to switch the rows of the con-
volution mask so that the element-wise multiplication of the
input image and the mask is done with correct correspondence
between their lines. At a given iteration n, the circular buffer
contains all the input data to compute a line of the output
image without access to global memory. However, for the
next iteration n + 1, the line at the top of the buffer is no
longer required to compute the next output line. Therefore
this line is replaced by a new image line, and then the bottom
line of the mask buffer becomes the top to match coefficients.
Then, for iteration n + 2, the second line of the local buffer
is replaced by the new image line, and at the same time, the
mask buffer is shifted. The convolution is performed this way
until the output image is completely calculated. Compared to
the prefetched data buffer, the mask buffer is smaller and
is implemented using registers instead of BRAM resources.
Therefore, this circular shift register will be less expensive
and energy-efficient for the overall design. The pseudo-code
of this version is presented in Algorithm 1.

IV. RESULTS AND DISCUSSION

We notice better performance for the OpenCL tool in
almost all cases for the convolution operator. This performance
advantage of OpenCL lies in the difference in depth of the
generated pipeline. Indeed, we noticed a significant difference
in these two tools’ global memory access latencies (201 versus
818 cycles). This memory latency impacts the number of
pipeline stages, especially in the blocks where access to global
memory is required. This has little impact on performance for
an ideal pipeline as long as the pipeline can produce a result
at each clock cycle. Regardless of the depth, once filled, the
pipeline can perform an update at every clock cycle (or at
regular intervals), given that we are working on massive data.
On the other hand, all the pipeline stages will be impacted
if the computation is stalled due to memory accesses (high
stall percentage). This delay will propagate in pipeline depth,
which will prevent an update from being produced at each
clock cycle. Synthesis tool with oneAPI is less advantageous

Mask size OpenCL oneAPI OneAPI lost of
Time (ms) Time (ms) performance (%)

3×3 0.28 0.31 10.7
5×5 0.29 0.36 24.1
7×7 0.32 0.44 37.5
9×9 0.35 0.49 40
15×15 0.52 × ×

TABLE I
PERFORMANCE COMPARISON BETWEEN OPENCL AND ONEAPI

in this regard, with a 4× higher global memory latency than
using OpenCL, and this latency will affect the generated
pipeline. In any case, a reduction of global memory access
is necessary to guarantee better performance, and for this
reason, local memory usage must be privileged. Our optimized
versions reduce the memory access, and the stall percentage is
alleviated. The results of the optimized versions are presented
in table I for the oneAPI and OpenCL kernels. We can observe
similar performance with a slight advantage for OpenCL due
to the performance loss for oneAPI kernels.

V. CONCLUSION

This paper deals with the acceleration of the 2D convolution
operator on FPGA with high level languages. Several imple-
mentations have been implemented to evaluate the OpenCL
and oneAPI synthesis tools from Intel. These tools allow to
have an implementation on FPGA with a reduced development
time, but a powerful design requires a deep analysis of
the application in order to apply consequent FPGA-specific
optimizations. We find that OpenCL offers the best trade-
off between development time and performance. However,
oneAPI is gaining more and more maturity and could become
an alternative to OpenCL.
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