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A SPECTRAL APPROACH TO ESTIMATE THE AUTOCOVARIANCE
FUNCTION

CÉLINE LÉVY-LEDUC, PASCAL BONDON, AND VALDÉRIO REISEN

Abstract. This paper proposes two novel alternative estimators for the autocovariance
function of a short-range dependent stationary process based on a spectral approach. One
is based on the classical periodogram, and the other one uses the M-periodogram. The
theoretical properties of both estimators are investigated for linear processes. Monte-Carlo
experiments are conducted to compare these estimators to the standard sample autocovari-
ance function in autoregressive moving average (ARMA) models with and without additive
outliers. In the non-contaminated scenario, the empirical investigation shows that the three
estimators display similar performance. However, in the contaminated case, the estimator
based on the M-periodogram remains unaffected in the presence of additive outliers, while
the two other estimators are corrupted.

1. Introduction

The autocovariance function of a stationary process plays a central role in time series anal-
ysis. However, it is well known that the classical sample autocovariance function is very
sensitive to the presence of additive outliers in the data. A small fraction of additive outliers
can indeed alter the performance of the classical autocovariance estimator, see for instance
Deutsch et al. (1990); Chan (1992, 1995); Maronna et al. (2006) and the references therein.
Since additive outliers are common in practical situations, having an estimator of the auto-
covariance function which is robust to atypical data may be very helpful. Ma and Genton
(2000) introduced such a robust estimator and discussed its performance on simulated and real
data, and Lévy-Leduc et al. (2011) established its asymptotic properties. However, it should
be pointed out that, although this estimator of the autocovariance function has interesting
theoretical properties and displays reasonable performance for estimating the autocovariance
of time series with additive outliers, Ma and Genton (2000) observed that their robust auto-
covariance estimator does not share the non-negative definiteness property with the classical
sample autocovariance estimator. Due to the lack of robustness of classical sampling func-
tions in the time domain, estimators in the frequency domain have recently emerged in the
literature as alternative approaches to estimate time series models with different correlation
structures see, for example, Fajardo et al. (2018); Reisen et al. (2017) and references therein.

Combining tools in the time and frequency domains, this paper proposes two alternative
estimators which have the non-negative definiteness property, one of them is also not sensitive
to the presence of atypical observations in the data. The theoretical roots of the estimation
method discussed here are based on the diagonalization of a real symmetric circulant matrix
which is discussed, for example, in (Brockwell and Davis, 1991, Section 4.5). Among many
other approaches applying the circulant matrix theory in different data structures, this alge-
braic tool has been widely used to obtain fast simulation methods, usually called embedding
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circulant methods, to generate stationary univariate and multivariate Gaussian time series.
This method has emerged in a wide variety of domains see, for example, Percival (1992),
Helgason et al. (2011), Coeurjolly and Porcu (2018), among others.

Now, let (Yt), t ∈ Z, be a real valued stationary process with autocovariance function

γ(h) = Cov(Yt, Yt+h) = E[(Yt −m)(Yt+h −m)] (1)

where m = E(Yt). In the following, we assume that γ is absolutely summable, i.e.
∞∑

h=−∞
|γ(h)| <∞.

Then, the spectral density of (Yt) is defined by

f(λ) =
1

2π

∑
h∈Z

γ(h)e−ihλ, for all λ ∈ [−π, π]. (2)

The standard estimator of γ(h) from the N consecutive observations Y1, . . . , YN is the sample
autocovariance γ̃N (h) defined by

γ̃N (h) =
1

N

N−h∑
t=1

(Yt − ȲN )(Yt+h − ȲN ), h ∈ {0, . . . , N − 1}, (3)

where ȲN = N−1
∑N

t=1 Yt. Note that γ̃N has the desirable property of non-negative definite-
ness. Following (Brockwell and Davis, 1991, Proposition 4.5.2), let

cj =
√

2/N [1, cos(ωj), cos(2ωj), . . . , cos((N − 1)ωj)],

sj =
√

2/N [0, sin(ωj), sin(2ωj), . . . , sin((N − 1)ωj)],

for j = 1, . . . , [N/2] where [N/2] is the integer part of N/2 and ωj = 2πj/N is the jth Fourier
frequency. With c0 =

√
1/N [1, 1, 1, . . . , 1], we define PN by

PN =



c0
c1
s1
...

c[N/2]
s[N/2]


, (4)

when N is odd, and we replace cN/2 by 2−1/2 cN/2 in the definition of PN and drop the last
row of PN when N is even. Let DN be the N ×N matrix defined by

DN =

{
diag{f(0), f(ω1), f(ω1), . . . , f(ω[N/2]), f(ω[N/2])} if N is odd,
diag{f(0), f(ω1), f(ω1), . . . , f(ω(N−2)/2), f(ω(N−2)/2), f(ωN/2)} if N is even.

(5)

The alternative to γ̃N (h) that we propose in this paper is defined by

γ̂N (h) = e′h+1Γ̂N e1, (6)

where ei = (0, . . . , 0, 1, 0, . . . , 0)′, the value 1 being at the ith position,

Γ̂N = 2πP ′N D̂N PN , (7)
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and D̂N is obtained by replacing f by an estimator f̂N in (5). Many estimators can be
proposed. Here, we consider the truncated window periodogram and the truncated window
M-periodogram that will be defined below. Note that (7) implies that Γ̂N is non-negative
definite when the elements of D̂N are non-negative.

The value IN (ωj) of the periodogram at frequency ωj is defined by

IN (ωj) =
1

2πN

∣∣∣∣∣
N∑
t=1

Yt exp(ikωj)

∣∣∣∣∣
2

. (8)

Although IN (ωj) is a natural estimator of f(ωj), it is well-known that IN (ωj) is not a consistent
estimator of f(ωj) and that the periodogram needs to be locally averaged to be consistent, see
e.g. (Priestley, 1981, Chapter 6) and (Brockwell and Davis, 1991, Chapter 10). The truncated
window periodogram at frequency ωj is given by

f̂N (ωj) =
1

2mN + 1

mN∑
k=−mN

IN (ωj+k), (9)

where mN →∞ and mN/N → 0 as N →∞. Plugging (9) into (7) gives the estimator γ̂N (h).
Its consistency is established in Theorem 1.

In the following, another strategy for estimating the spectral density is proposed. It is
based on the M-periodogram IMN defined in (12) which should thus lead to a robust estimator
of the autocovariance function. As it is well known, M-estimation is indeed an alternative
robust procedure to least-square and this estimation method has recently been the subject
of intensive research for modelling linear models with absolutely summable autocovariance
processes, such as ARMA models, see for example Wu (2007), Li (2010) and Li (2008) among
others.

Following these ideas, Reisen et al. (2017) among others, proposed an alternative way to
derive the periodogram function IN (ωj) by observing that the periodogram can be defined
through the least-square estimates of a two-dimensional vector β′ = (β(1), β(2)) in the linear
regression model

Yi = β(1) cos(iωj) + β(2) sin(iωj) + εi , 1 ≤ i ≤ N, (10)

where εi denotes the deviation of Yi from β(1) cos(iωj)+β(2) sin(iωj), E[εi] = 0 and E[ε2i ] <∞.
More precisely, we have

IN (ωj) =
N

8π
‖β̃N (ωj)‖2

where ‖ · ‖ denotes the Euclidean norm and β̃N (ωj) ∈ R2 is the least-squares estimator of β
defined by

β̃N (ωj) = argmin
β∈R2

N∑
t=1

(Yt − c′t(ωj)β)2, (11)

where ct(ωj) = (cos(tωj), sin(tωj))
′. An Lp-norm periodogram was proposed by Li (2008,

2010) by replacing the L2-norm in (11) with an Lp-norm for p ∈ [1, 2). Here, we replace the
L2-norm with the Huber loss function. The so-called M-periodogram is defined by

IMN (ωj) =
N

8π
‖β̂N (ωj)‖2 (12)
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where β̂N (ωj) ∈ R2 is given by

β̂N (ωj) = argmin
β∈R2

N∑
t=1

ρ(Yt − c′t(ωj)β), (13)

with ρ(x) = (x2 1|x|≤c)/2 + c(|x| − c/2)1|x|>c, c > 0. The derivative of ρ(x) is

ψ(x) = max[min(x, c),−c]. (14)

Replacing IN (ωj+k) by IMN (ωj+k) in (9), we obtained the truncated window M-periodogram
f̂MN (ωj) defined by

f̂MN (ωj) =
1

2mN + 1

mN∑
k=−mN

IMN (ωj+k), (15)

where mN tends to infinity and is such that mN/N → 0, as N tends to infinity.
Similarly as in (6), the corresponding autocovariance estimator γ̂MN (h) is defined as follows:

γ̂MN (h) = e′h+1Γ̂
M

N e1, (16)

with

Γ̂
M

N = 2πP ′N D̂
M

N PN , (17)

where PN is defined in (4) and D̂
M

N is obtained by replacing f in (5) by f̂MN (ωj) defined in
(15). The asymptotic properties of γ̂MN (h) defined by (16) are established in Theorem 2.

The paper is organized as follows. Theorems 1 and 2 are presented in Section 2. In Section 3,
the finite sample size properties of γ̃N (h), γ̂N (h) and γ̂MN (h) are investigated in ARMA models
with and without atypical observations. Concluding remarks are given in Section 4.

2. Theoretical results

In Theorems 1 and 2, (Yt) is assumed to be a linear strictly stationary process defined by

Yt =
∞∑
j=0

ajηt−j , (18)

where the constants aj are real numbers and the random variables ηt are independent, iden-
tically distributed (i.i.d) and zero-mean. In Theorem 1 below, we prove that γ̂N (h) is a
consistent estimator of γ(h) when the sequence (aj

√
j) is absolutely summable and the ηt’s

have finite fourth moment, and that γ̂N (h) is a
√
mN -consistent estimator of γ(h) where mN

is defined in (15) when (ajj
2) is absolutely summable. In Theorem 2, the sequence (aj) is only

assumed to be absolutely summable but the ηt’s are supposed to be Gaussian. The proofs of
these theorems are given in Section 5.

Theorem 1. Assume that (Yt) satisfies (18) where (ηt) are i.i.d. zero-mean random variables
and E(η4t ) <∞.
(i) Assume that

∑∞
j=0 |aj |j1/2 < ∞. Then, for each h ∈ {0, 1, . . .}, γ̂N (h) defined by (6)

where mN → ∞ and mN/N → 0, converges in probability to γ(h) defined by (1) as N tends
to infinity.
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(ii) Assume that
∑∞

j=0 |aj |j2 <∞. Then, for each h ∈ {0, 1, . . .}, γ̂N (h) defined by (6) where
mN →∞ and mN/N → 0, satisfies

γ̂N (h)− γ(h) = OP

(
1
√
mN

)
, as N →∞.

Assume that (Yt) is a zero-mean Gaussian stationary process with autocovariance function
γ. Since ψ defined by (14) is measurable, (ψ(Yt)) is a strictly stationary process. Since ψ is
bounded, (ψ(Yt)) has finite moments and E(ψ(Yt)) = 0 for all t, since ψ is odd. Let

γψ(h) = Cov(ψ(Yt), ψ(Yt+h)) = E(ψ(Yt)ψ(Yt+h)). (19)

Observe that

γψ(h) = E
(
ψ

(
σ
Yt
σ

)
ψ

(
σ
Yt+h
σ

))
= E

(
ψσ

(
Yt
σ

)
ψσ

(
Yt+h
σ

))
,

where σ = E(Y 2
t )1/2 and ψσ(x) = ψ(σx).

Furthermore, let

ψσ(x) =
∑
p≥0

cp
p!
Hp(x),

denote the Hermite expansion of ψσ where Hp is the pth Hermite polynomial and

cp = E(ψσ(X)Hp(X)),

X being a standard Gaussian random variable. Since ψσ is odd, c0 = 0 and thus

ψσ(x) =
∑
p≥1

cp
p!
Hp(x). (20)

Thus

γψ(h) =
∑
p≥1

∑
q≥1

cp
p!

cq
q!
E
(
Hp

(
Yt
σ

)
Hq

(
Yt+h
σ

))
.

By using the Mehler formula given in Breuer and Major (1983), we obtain that

γψ(h) =
∑
p≥1

c2p
p!
ρ(h)p ≤ |ρ(h)|

∑
p≥1

c2p
p!

= |ρ(h)| E(ψσ(X)2) ≤ c
∣∣∣∣γ(h)

γ(0)

∣∣∣∣ , (21)

where ρ(h) denotes the correlation function of (Yt), the first inequality coming from the fact
that |ρ(h)| ≤ 1 for all h and the second from the fact that ψ is bounded by c. Hence (γψ(h))
is absolutely summable and the spectral density of (ψ(Yt)) can be defined by

fψ(λ) =
1

2π

∑
h∈Z

γψ(h)e−ihλ, for all λ ∈ [−π, π]. (22)

Theorem 2. Assume that (Yt) satisfies (18) where
∑∞

j=0 |aj | <∞ and (ηt) are i.i.d. standard
Gaussian random variables. Then, for each h ∈ {0, 1, . . .}, γ̂MN (h) defined in (16) converges in
probability to γψ(h)/κ2 as N tends to infinity, where γψ(h) is defined in (19) and κ = 2Φ(c)−1,
Φ being the cumulative distribution function of a standard Gaussian random variable and c is
the constant appearing in (14).



6 CÉLINE LÉVY-LEDUC, PASCAL BONDON, AND VALDÉRIO REISEN

●

●

●

●

●

●
●

● ● ●

●

●
● ●

● ● ● ● ● ●●

●

● ●
● ●

●
●

●
●0.00

0.03

0.06

0.09

0.12

0 1 2 3 4 5 6 7 8 9 10
h

ab
so

lu
te

_d
iff

er
en

ce

c
●

●

●

1.345
3.173
5

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ● ●
● ●●

●
● ● ●

● ●
● ● ●0.0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10
h

ab
so

lu
te

_d
iff

er
en

ce

c
●

●

●

1.345
3.173
5

Figure 1. Absolute difference of γ(h) and γψ(h)/κ2 for φ = 0.5 (left) and
φ = 0.7 (right).
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Figure 2. Absolute difference of γ(h) and γψ(h)/κ2 in the AR(2) case for
(φ1, φ2) = (1,−0.25) (left) and (φ1, φ2) = (1,−0.5) (right).

Remark 1. According to Theorem 2, for a Gaussian linear process, γ̂MN (h) is a consistent
estimator of γψ(h)/κ2. In Figure 1, the absolute difference between γ(h) and γψ(h)/κ2 are
displayed for different values of c when (Yt) is a Gaussian AR(1) process defined by

Yt = φYt−1 + ηt, (23)

where φ = 0.5, 0.7 and (ηt) are i.i.d. standard Gaussian random variables. In this case,
γ(h) ∝ φ|h|. This figure shows that γψ(h)/κ2 is very close to γ(h) independently of the values
of γ(h) when c is large enough. In Figure 2, the same quantities are displayed when (Yt) is a
Gaussian AR(2) process defined by

Yt = φ1Yt−1 + φ2Yt−2 + ηt, (24)

where (ηt) are i.i.d. standard Gaussian random variables and (φ1, φ2) = (1,−0.25) and
(φ1, φ2) = (1,−0.5). We can also see from this figure that γψ(h)/κ2 is very close to γ(h)
when c ≥ 5 independently of the values of h.
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3. Numerical experiments

In order to investigate the empirical properties of the proposed estimators, we considered
finite sample sizes from AR Gaussian processes (Yt) defined by (23) and (24) for the AR(1)
and AR(2) models, respectively. The contaminated process (Zt) is defined by

Zt = Yt + ωδt, (25)

where ω is the magnitude of the additive outliers and (δt) are i.i.d random variables such that
P(δt = −1) = P(δt = 1) = p/2, P(δt = 0) = 1 − p with 0 < p < 1. It follows that E(δt) = 0
and Var(δt) = p. In (25), (Yt) and (δt) are assumed to be independent.

To compare the performance of γ̃N (h), γ̂N (h) and γ̂MN (h) with and without atypical obser-
vations, N = 1000 observations Y1, . . . , YN were generated from (23) with φ = 0.5, 0.7 and
from (24) with (φ1, φ2) = (1,−0.25) and (φ1, φ2) = (1,−0.5). The contaminated observations
Z1, . . . , ZN were generated from (25) with ω = 20, p = 15%, 20%. The truncated window
periodograms f̂N (ωj) and f̂MN (ωj) were computed with mN = 25, 50, 100 in (9) and (15).
The three values c = 1.345, 3.173, 5 in (14) were considered. The numerical experiments were
repeated 100 times and Figures 3 to 10 plot the averages of γ̃N (h), γ̂N (h) and γ̂MN (h) obtained
from 100 replications. These figures also display the values of γ(h) and γψ(h)/κ2.

In Figures 3 to 6, the estimators were calculated from the uncontaminated data Y1, . . . , YN .
The associated confidence intervals are displayed where the upper (resp. lower) bounds were
obtained by adding (resp. subtracting) 1.96 times the standard deviation to the average.
These figures show that the three estimators have similar performance and are very close
to γ(h) and γψ(h)/κ2 when c and mN are well-chosen. The best results are obtained when
mN = 25 and c = 3.173, independently of the values of γ(h).

In Figures 7 to 10, the estimators were calculated from the contaminated data Z1, . . . , ZN .
We observe that the performance of γ̃N (h) and γ̂N (h) are altered, while γ̂MN (h) is still reliable
for well-chosen values of c and mN . More precisely, even with 20% of atypical observations,
namely 200 very large observations with respect to 800 remaining data, γ̂MN (h) can be consid-
ered as a competitive estimator of γ(h), especially when c = 3.173 and mN is smaller than 50.
Note that we did not display the confidence intervals in these figures because the estimations
obtained with γ̃N (h) and γ̂N (h) are so unstable that the length of the confidence intervals is
very large.

4. Conclusion and future work

In this paper, two new estimators for the autocovariance function of short-range depen-
dent stationary processes are proposed. Both of them are based on the diagonalization of
a real symmetric circulant matrix and use spectral density estimators, namely the classical
periodogram and the M-periodogram. Some consistency properties of these two estimators
are established. Their performance are also investigated through Monte-Carlo simulations
for different ARMA processes using contaminated with additive outliers and outlier-free time
series. Our estimators display similar performance to the classical autocovariance estimator
in the context of non-contaminated data. In the presence of additive outliers, the autocovari-
ance estimator based on the M-periodogram is unaffected while the classical autocovariance
estimator and the estimator based on the periodogram are altered. Therefore, the estimator
based on the M-periodogram is an alternative method to estimate the autocovariance function
when dealing with short-range dependent time series with and without outliers.



8 CÉLINE LÉVY-LEDUC, PASCAL BONDON, AND VALDÉRIO REISEN

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

c: 1.345 c: 3.173 c: 5
m

_N
: 25

m
_N

: 50
m

_N
: 100

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

h

A
ve

ra
ge

s 
an

d 
co

nf
id

en
ce

 in
te

rv
al

s

estimator

●

●

●

γN(h)

γN(h)

γN
M(h)

Figure 3. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) and their associated confi-
dence intervals in the AR(1) case where φ = 0.5, γ(h) with red circles and
γψ(h)/κ2 with blue crosses.

For future work, one idea is to use alternative spectral estimators to the ones proposed
here, such as the windowed tapered or multitaper spectral estimators. As explained in Walden
(2000) and Percival and Walden (2020), these estimators suffer less from leakage and would
probably improve the estimation of the autocovariance function, especially when the process
has a large dynamic range or when the number of samples is small. Additionally, it will be
interesting to explore the impact of correlated contaminated processes on the performance of
the robust autocovariance estimator defined in (16).

5. Proofs

Lemma 1. Assume that (Yt) satisfies (18) where
∑∞

j=0 |aj |j1/2 < ∞ and (ηt) are i.i.d. cen-
tered random variables with finite second moment. Let PN and RN be defined in (4) and (38),
respectively. Then, for each h in {0, 1, . . .},

e′h+1P
′
N RN PN e1= o

(
1√
N

)
, as N →∞,
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Figure 4. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) and their associated confi-
dence intervals in the AR(1) case where φ = 0.7, γ(h) with red circles and
γψ(h)/κ2 with blue crosses.

where ei = (0, . . . , 0, 1, 0, . . . , 0)′, the value 1 being at the ith position, if ψ appearing in (38)
is equal to identity. If ψ is defined by (14) then the results holds if the ηt’s are assumed to be
i.i.d. standard Gaussian random variables.

Proof of Lemma 1. By (38),

e′h+1P
′
N RN PN e1 = e′h+1(Γ

ψ
N − 2πP ′N D

ψ
N PN )e1 = γψ(h)− 2π e′h+1P

′
N D

ψ
N PN e1.

Let Γ
ψ,(s)
N be the symmetric circulant matrix defined by

Γ
ψ,(s)
N =


γψ(0) γψ(1) γψ(2) · · · γψ(2) γψ(1)
γψ(1) γψ(0) γψ(1) · · · γψ(3) γψ(2)
γψ(2) γψ(1) γψ(0) · · · γψ(4) γψ(3)

...
...

... · · ·
...

...
γψ(1) γψ(2) γψ(3) · · · γψ(1) γψ(0)

 .
For each h ∈ {0, . . . , [N/2]}, we have

e′h+1P
′
N RN PN e1 = e′h+1(Γ

ψ,(s)
N − 2πP ′N D

ψ
N PN )e1.
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Figure 5. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) and their associated confi-
dence intervals in the AR(2) case where (φ1, φ2) = (1,−0.5), γ(h) with red
circles and γψ(h)/κ2 with blue crosses.

Let Λ(s) = diag(λ0, λ1, λ1, . . . , λ[N/2], λ[N/2]) if N is odd, and the last row of Λ(s) is dropped if
N is even, where

λj =

{∑
|h|≤[N/2] γψ(h)e−

i2πjh
N if N is odd,∑

|h|<N/2 γψ(h)e−
i2πjh
N + γψ(N/2)e−iπj if N is even.

It follows from (Brockwell and Davis, 1991, Equation (4.5.5)), that Γ
ψ,(s)
N = P ′N Λ(s)PN .

Thus,

e′h+1P
′
N RN PN e1 = e′h+1P

′
N (Λ(s)−2πDψ

N )PN e1 =

N∑
k=1

(PN )k,h+1(Λ
(s)−2πDψ

N )k,k(PN )k,1.
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Figure 6. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) and their associated confi-
dence intervals in the AR(2) case where (φ1, φ2) = (1,−0.25), γ(h) with red
circles and γψ(h)/κ2 with blue crosses.

Since |(PN )i,j | ≤
√

2/N for all i, j, we have

∣∣e′h+1P
′
N RN PN e1

∣∣ ≤ 2

N

N∑
k=1

∣∣∣(Λ(s) − 2πDψ
N )k,k

∣∣∣
≤ 2 sup

1≤k≤N

∣∣∣(Λ(s) − 2πDψ
N )k,k

∣∣∣
≤ 2

∑
|h|≥[N/2]

|γψ(h)|,

where the third inequality comes from the definition of Dψ
N and (22). According to (21),∑

h∈Z |γψ(h)| < C
∑

h∈Z |γ(h)| < ∞, where C is a constant, thus e′h+1P
′
N RN PN e1 → 0 as

N →∞. Note that if ψ = Id, it follows from (19) that γψ(h) = γ(h), thus the previous result
also holds.
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Figure 7. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) for φ = 0.5, p = 15%, ω = 20,
γ(h) with red circles and γψ(h)/κ2 with blue crosses.

Moreover, since
∑

j≥0
√
j|aj | <∞ and γ(h) = σ2

∑
j≥0 ajaj+h, where σ

2 is the variance of
the ηk’s,∑

|h|≥[N/2]

|γ(h)| = 2
∑

h≥[N/2]

|γ(h)| ≤ 2σ2
∑
j≥0

|aj |√
j + [N/2]

∑
h≥[N/2]

√
j + h|aj+h|

≤ 2σ2√
[N/2]

∑
j≥0
|aj |

 ∑
`≥[N/2]

√
`|a`|

 = o

(
1√
N

)
.

�

Proof of Theorem 1. Let
ΓN = (γ(i− j))1≤i,j≤N , (26)

where γ is defined in (1). By (Brockwell and Davis, 1991, Proposition 4.5.2),

ΓN = 2πP ′N DN PN +P ′N RN PN , (27)

where PN and DN are defined by (4) and (5), respectively, and RN converges to zero uni-
formly as N →∞, i.e., sup1≤i,j≤N (RN )(i,j) → 0. For any h ∈ {0, . . . , N − 1}, it follows from
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Figure 8. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) for φ = 0.7, p = 15%, ω = 20,
γ(h) with red circles and γψ(h)/κ2 with blue crosses.

(6), (7), (26) and (27) that,

γ̂N (h)− γ(h) = e′h+1Γ̂Ne1 − e′h+1 ΓN e1

= 2πe′h+1P
′
N (D̂N −DN )PN e1 − e′h+1P

′
N RN PN e1.

Taking ψ = Id in Lemma 1, we have e′h+1P
′
N RN PN e1= o

(
1√
N

)
, as N → ∞ and thus

tends to zero. Hence, to prove (i) of Theorem 1, it is enough to prove that e′h+1P
′
N (D̂N −

DN )PN e1 = oP (1) as N →∞. Observe that

e′h+1P
′
N (D̂N −DN )PN e1 =

1
N (f̂N (0)− f(0)) + 2

N

∑[N/2]
j=1 (f̂N (ωj)− f(ωj)) cos(hωj) if N is odd,

1
N (f̂N (0)− f(0)) + 2

N

∑N/2−1
j=1 (f̂N (ωj)− f(ωj)) cos(hωj)

+ 1
N (f̂N (π)− f(π)) cos(hπ) if N is even.

(28)

By (Brockwell and Davis, 1991, Remark 1, page 353), f̂N converges in mean square to f

uniformly on [−π, π] as N →∞. Then f̂N (0) and f̂N (π) converge in mean square to f(0) and
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Figure 9. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) for φ = 0.5, p = 20%, ω = 20,
γ(h) with red circles and γψ(h)/κ2 with blue crosses.

f(π), respectively, as N →∞. Finally,∣∣∣∣∣∣ 2

N

[N/2]∑
j=1

(f̂N (ωj)− f(ωj)) cos(hωj)

∣∣∣∣∣∣ ≤ 2

N

[N/2]∑
j=1

|f̂N (ωj)− f(ωj)| ≤ sup
−π≤ω≤π

|f̂N (ω)− f(ω)|

where the right-hand side converges in mean square to 0 as N →∞.
To prove (ii) of Theorem 1, it is enough to show that

e′h+1P
′
N (D̂N −DN )PN e1 = OP

(
1
√
mN

)
, as N →∞.

By (28) and the Markov inequality, it is enough to prove that

mN

N2
sup

1≤j≤N/2
E
[(
f̂N (ωj)− f(ωj)

)2]
= O(1)

and

mN

N2
E

N/2∑
j=1

(f̂N (ωj)− f(ωj)) cos(hωj)

2 = O(1).
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Figure 10. Averages of γ̃N (h), γ̂N (h) and γ̂MN (h) for φ = 0.7, p = 20%,
ω = 20, γ(h) with red circles and γψ(h)/κ2 with blue crosses.

By the Cauchy-Schwarz inequality, it is thus enough to prove that

mN sup
1≤j≤N/2

E
[(
f̂N (ωj)− f(ωj)

)2]
= O(1). (29)

Note that

E
[(
f̂N (ωj)− f(ωj)

)2]
= Var(f̂N (ωj)) +

(
E(f̂N (ωj))− f(ωj)

)2
. (30)

Let us first prove that for each fixed j,

Var(f̂N (ωj)) = O

(
1

mN

)
,
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where O does not depend on j. By (9),

Var(f̂N (ωj)) =
1

(2mN + 1)2

∑
|k|≤mN

∑
|k′|≤mN

Cov
(
IN (ωj+k), IN (ωj+k′)

)
=

1

(2mN + 1)2

∑
|k|≤mN

Var (IN (ωj+k))

+
1

(2mN + 1)2

∑
|k|,|k′|≤mN ,k 6=k′

Cov
(
IN (ωj+k), IN (ωj+k′)

)
. (31)

By (Brockwell and Davis, 1991, Theorem 10.3.2), the last term in (31) is O(1/N) and
Var (IN (ωj+k)) = Cf2(ωj+k) + O(1/

√
N). Since f(λ) ≤ 1

2π

∑
h∈Z |γ(h)| < ∞ for all λ ∈

[−π, π], we get that

Var(f̂N (ωj)) = O

(
1

mN

)
+O

(
1

mN

√
N

)
+O

(
1

N

)
= O

(
1

mN

)
, (32)

as N tends to infinity where O does not depend on j.
Let us now focus on E(f̂N (ωj)) − f(ωj). From the proof of (Brockwell and Davis, 1991,

Proposition 10.3.1), we get that

E(f̂N (ωj))− f(ωj) =
1

2π(2mN + 1)

∑
|k|≤mN

∑
|`|<N

(
1− |`|

N

)
γ(`)e−i`ωj+k −

∑
`∈Z

γ(`)e−i`ωj


=

1

2π(2mN + 1)

∑
|k|≤mN

∑
|`|<N

γ(`)e−i`ωj+k − 1

N

∑
|`|<N

|`|γ(`)e−i`ωj+k

−
∑
|`|<N

γ(`)e−i`ωj −
∑
|`|≥N

γ(`)e−i`ωj



=
1

2π(2mN + 1)

∑
|k|≤mN


∑
|`|<N

γ(`)e−i`ωj
(
e−i`ωk − 1

)
︸ ︷︷ ︸

Ak,j

− 1

N

∑
|`|<N

|`|γ(`)e−i`ωj+k −
∑
|`|≥N

γ(`)e−i`ωj

︸ ︷︷ ︸
Bk,j

 .

Observe that

1

2π(2mN + 1)

∣∣∣∣∣∣
∑
|k|≤mN

Bk,j

∣∣∣∣∣∣ ≤ 2

2π(2mN + 1)

∑
|k|≤mN

1

N

∑
`∈Z
|`||γ(`)| = O

(
1

N

)
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since
∑

`∈Z |`||γ(`)| ≤ σ2
∑

`∈Z
∑

j≥0 |aj ||aj+l||`| ≤ σ2(
∑

j≥0 |aj |)(
∑

j≥0 |aj |j) < ∞, where O
does not depend on j.

Note that∣∣∣∣∣∣
∑
|k|≤mN

Ak,j

∣∣∣∣∣∣ ≤
∑
|`|<N

|γ(`)|

∣∣∣∣∣∣
∑
|k|≤mN

(
e−i`ωk − 1

)∣∣∣∣∣∣ = 2
∑
|`|<N

|γ(`)|

∣∣∣∣∣
mN∑
k=1

(cos(`ωk)− 1)

∣∣∣∣∣
≤ 2

∑
|`|<N

|γ(`)|
mN∑
k=1

|cos(`ωk)− 1| ≤ 2
∑
|`|<N

|γ(`)|
mN∑
k=1

1

2

(
2πk`

N

)2

=
8π2

N2

∑
|`|<N

`2|γ(`)|
mN∑
k=1

k2 = O

(
m3
N

N2

)
since

∑
|`|∈Z `

2|γ(`)| ≤ σ2
∑

`∈Z
∑

j≥0 |aj ||aj+l|`2 ≤ σ2(
∑

j≥0 |aj |)(
∑

j≥0 |aj |j2) < ∞, where
O does not depend on j.

Hence,(
E(f̂N (ωj))− f(ωj)

)2
=

(
O

(
1

N

)
+O

(
m2
N

N2

))2

= O

(
1

N2

)
+O

(
m2
N

N3

)
= o

(
1

mN

)
,

(33)
since mN/N → 0 as N tends to infinity.

By (29), (30), (32) and (33), the result follows. �

Lemma 2. Under the assumptions of Theorem 2, for each j ∈ {0, 1, . . . , }, IMN (ωj) defined by
(12) satisfies

IMN (ωj) =
1

2πκ2N

(
N∑
i=1

ψ(Yi)
2

)
+

1

2πκ2

∑
0<|`|<N

cos(`ωj)
( 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)
)

+ oP (1),

as N → ∞, where the term oP (1) is uniform in j, κ = 2Φ(c) − 1, Φ is the cumulative
distribution function of a standard Gaussian random variable and c is the constant appearing
in (14).

Proof of Lemma 2. Let j in {0, 1, . . . , } and β̂N (ωj) = (β̂N,1(ωj), β̂N,2(ωj))
′ in (13). By (Wu,

2007, Propositions 1, 4 and Example 1), the assumptions of (Wu, 2007, Theorem 1) hold.
Thus, β̂N,1(ωj) and β̂N,2(ωj) satisfy

β̂N,1(ωj) =
2

Nκ

N∑
i=1

ψ(Yi) cos(iωj) + oP (1/
√
N),

β̂N,2(ωj) =
2

Nκ

N∑
i=1

ψ(Yi) sin(iωj) + oP (1/
√
N),

(34)

as N tends to infinity, where oP (1/
√
N) does not depend on j. Moreover,√

N

2
κβ̂N (ωj)

d−→ N
(
0,∆(j)

)
, as N →∞.

where
∆(j) =

∑
k∈Z

E{ψ(Y0)ψ(Yk)}∆
(j)
k ,
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and

∆
(j)
k = lim

N→∞

2

N

N−|k|∑
`=1

c`(ωj)c`+k(ωj)
′.

For each fixed k ∈ Z, we have

∆
(j)
k = lim

N→∞

2

N

N−|k|∑
`=1

[
cos(`ωj) cos((`+ k)ωj) cos(`ωj) sin((`+ k)ωj)
sin(`ωj) cos((`+ k)ωj) sin(`ωj) sin((`+ k)ωj)

]

= lim
N→∞

N − |k|
N

[
cos(kωj) sin(kωj)
− sin(kωj) cos(kωj)

]
+ lim
N→∞

1

N

N−|k|∑
`=1

[
cos((2`+ k)ωj) sin((2`+ k)ωj)
sin((2`+ k)ωj) − cos((2`+ k)ωj)

]

=

[
1 0
0 1

]
+ lim
N→∞

1

N

N−|k|∑
`=1

[
cos((2`+ k)ωj) sin((2`+ k)ωj)
sin((2`+ k)ωj) − cos((2`+ k)ωj)

]
.

Observe that

1

N

N−|k|∑
`=1

cos((2`+ k)ωj) =
cos(kωj)

N

N−|k|∑
`=1

cos(2`ωj)−
sin(kωj)

N

N−|k|∑
`=1

sin(2`ωj)

=
cos(kωj)

N
cos(ωj(N − |k|+ 1))

sin(ωj(N − |k|))
sin(ωj)

− sin(kωj)

N
sin(ωj(N − |k|+ 1))

sin(ωj(N − |k|))
sin(ωj)

.

Since sin(ωj(N − |k|))/ sin(ωj)→ −|k| as N tends to infinity, we get that

1

N

N−|k|∑
`=1

cos((2`+ k)ωj)→ 0, as N →∞.

and that the same result holds for N−1
∑N−|k|

`=1 sin((2`+ k)ωj). Thus,√
N

2
κβ̂N,1(ωj)

d−→ N

(
0,
∑
k∈Z

E[ψ(Y0)ψ(Yk)]

)
,

√
N

2
κβ̂N,2(ωj)

d−→ N

(
0,
∑
k∈Z

E[ψ(Y0)ψ(Yk)]

)
, as N →∞.

(35)

By (12) and (34),

IMN (ωj) =
N

8π

( 2

Nκ

N∑
i=1

ψ(Yi) cos(iωj) + oP (1/
√
N)

)2

+

(
2

Nκ

N∑
i=1

ψ(Yi) sin(iωj) + oP (1/
√
N)

)2


=
N

8π

 4

N2κ2

(
N∑
i=1

ψ(Yi) cos(iωj)

)2

+ oP (1/N) +
4

N2κ2

(
N∑
i=1

ψ(Yi) sin(iωj)

)2

+

oP (1/
√
N)

(
2

Nκ

N∑
i=1

ψ(Yi) cos(iωj)

)
+ oP (1/

√
N)

(
2

Nκ

N∑
i=1

ψ(Yi) sin(iωj)

)]
,
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where, by (34) and (35),

2

Nκ

N∑
i=1

ψ(Yi) cos(iωj) = OP (1/
√
N),

2

Nκ

N∑
i=1

ψ(Yi) sin(iωj) = OP (1/
√
N), as N →∞.

Thus,

IMN (ωj) =
1

2πκ2N

 ∑
1≤i,i′≤N

ψ(Yi)ψ(Yi′)[cos(iωj) cos(i′ωj) + sin(iωj) sin(i′ωj)]

+ oP (1)

=
1

2πκ2N

(
N∑
i=1

ψ(Yi)
2

)
+

1

2πκ2N

 ∑
1≤i 6=i′≤N

ψ(Yi)ψ(Yi′) cos[(i− i′)ωj ]

+ oP (1),

as N →∞, which gives the result. �

Lemma 3. For each j ∈ {0, 1, . . . , },

f̂MN (ωj)−
fψ(ωj)

κ2
=

1

2πκ2

∑
0<|`|<N


 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)

− γψ(`)

 cos(`ωj)AN (`) + oP (1), as N →∞,

where the term oP (1) is uniform in j and

AN (`) =
1

2mN + 1

mN∑
k=−mN

cos(`ωk).

Proof of Lemma 3. By (15) and Lemma 2,

f̂MN (ωj) =
1

2mN + 1

mN∑
k=−mN

IMN (ωj+k) =
1

2πκ2N

(
N∑
i=1

ψ(Yi)
2

)
+

1

2πκ2
1

2mN + 1

∑
0<|`|<N

 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)

 mN∑
k=−mN

cos(`ωj+k) + oP (1).

Using that
∑mN

k=−mN cos(`ωj+k) =
∑mN

k=−mN cos(`ωj) cos(`ωk), we get that

f̂MN (ωj) =
1

2πκ2N

(
N∑
i=1

ψ(Yi)
2

)
+

1

2πκ2

∑
0<|`|<N

 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)

 cos(`ωj)

 1

2mN + 1

mN∑
k=−mN

cos(`ωk)

+ oP (1).
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By (22),

fψ(ωj) =
1

2π

(
γψ(0) +

∑
`∈Z∗

γψ(`) cos(`ωj)

)
.

Thus,

f̂MN (ωj)−
fψ(ωj)

κ2
=

1

2πκ2

(
1

N

N∑
i=1

ψ(Yi)
2 − γψ(0)

)

+
1

2πκ2

∑
0<|`|<N


 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)

− γψ(`)

 cos(`ωj)AN (`)

+
1

2πκ2

∑
0<|`|<N

γψ(`) cos(`ωj)(AN (`)− 1)

+
1

2πκ2

∑
0<|`|<N

γψ(`) cos(`ωj)−
1

2πκ2

∑
`∈Z∗

γψ(`) cos(`ωj) + oP (1).

(36)

By the ergodic theorem, the first term in the r.h.s of (36) tends to 0 in probability as N tends
to infinity. By straightforward computation, we get

AN (`) =
1

2mN + 1

1 + 2 cos

(
π`mN

N

) sin
(
π`(mN−1)

N

)
sin(π`N )


which tends to 1 as N tends to infinity for each fixed ` ∈ Z∗. Since γψ is absolutely summable
the dominated convergence theorem implies that∑

0<|`|<N

γψ(`) cos(`ωj)(AN (`)− 1)→ 0, as N →∞.

Moreover, since γψ is absolutely summable, the difference between the fourth and fifth term
in the r.h.s of (36) tends to 0 as N →∞, which concludes the proof. �

Proof of Theorem 2. Let

ΓψN = (γψ(i− j))1≤i,j≤N , (37)

where γψ is defined by (19). By (Brockwell and Davis, 1991, Proposition 4.5.2),

ΓψN = 2πP ′N D
ψ
N PN +P ′N RN PN , (38)

where PN is defined by (4), Dψ
N is defined by (5) where f is replaced by fψ given by (22),

and RN =
(
R

(i,j)
N

)
1≤i,j≤N

is a N ×N matrix such that sup1≤i,j≤N

∣∣∣R(i,j)
N

∣∣∣ → 0, as N tends

to infinity. For any h ∈ {0, . . . , N − 1}, it follows from (16), (17) (37) and (38) that,

γ̂MN (h)−
γψ(h)

κ2
= e′h+1Γ̂

M

N e1 − e′h+1

ΓψN
κ2

e1

= 2πe′h+1P
′
N

(
D̂
M

N −
Dψ
N

κ2

)
PN e1 −

1

κ2
e′h+1P

′
N RN PN e1.
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By Lemma 1, we have e′h+1P
′
N RN PN e1 → 0, as N → ∞. Thus, to prove Theorem 2, it is

enough to prove that

e′h+1P
′
N

(
D̂
M

N −
Dψ
N

κ2

)
PN e1 = oP (1), as N →∞.

We have

e′h+1P
′
N

(
D̂
M

N −
Dψ
N

κ2

)
PN e1 =

1
N (f̂MN (0)− fψ(0)

κ2
) + 2

N

∑[N/2]
j=1 (f̂MN (ωj)−

fψ(ωj)

κ2
) cos(hωj) if N is odd,

1
N (f̂MN (0)− fψ(0)

κ2
) + 2

N

∑N/2−1
j=1 (f̂MN (ωj)−

fψ(ωj)

κ2
) cos(hωj)

+ 1
N (f̂MN (π)− fψ(π)

κ2
)) cos(hπ) if N is even.

By Lemma 3 and by using the same arguments as those used for proving Theorem 1, it is
enough to prove that

sup
0≤j≤[N/2]

E

 ∑
0<|`|<N


 1

N

N−|`|∑
i=1

ψ(Yi+|`|)ψ(Yi)

− γψ(`)

 cos(`ωj)AN (`)

2→ 0, as N →∞.

Let

BN (`) =

(
1

N

N−∑̀
i=1

ψ(Yi+`)ψ(Yi)

)
− γψ(`).

Then, it is enough to prove that

sup
0≤j≤[N/2]

∑
1≤`,`′<N

E
[
BN (`)BN (`′)

]
cos(`ωj) cos(`′ωj)AN (`)AN (`′)→ 0, as N →∞. (39)

Observe that

E
[
BN (`)BN (`′)

]
=

1

N2

∑
1≤i≤N−`,1≤i′≤N−`′

E [ψ(Yi+`)ψ(Yi)ψ(Yi′+`′)ψ(Yi′)]

−
(

1− `

N

)
γψ(`)γψ(`′)−

(
1− `′

N

)
γψ(`′)γψ(`) + γψ(`)γψ(`′). (40)

Using (20), we get that

1

N2

∑
1≤i≤N−`,1≤i′≤N−`′

E [ψ(Yi+`)ψ(Yi)ψ(Yi′+`′)ψ(Yi′)]

=
1

N2

∑
1≤i≤N−`,1≤i′≤N−`′

E
[
ψσ

(
Yi+`
σ

)
ψσ

(
Yi
σ

)
ψσ

(
Yi′+`′

σ

)
ψσ

(
Yi′

σ

)]
=

∑
p1,p2,p3,p4≥1

cp1
p1!

cp2
p2!

cp3
p3!

cp4
p4! 1

N2

∑
1≤i≤N−`,1≤i′≤N−`′

E
[
Hp1

(
Yi+`
σ

)
Hp2

(
Yi
σ

)
Hp3

(
Yi′+`′

σ

)
Hp4

(
Yi′

σ

)] . (41)
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By (Rosenblatt, 1985, Equation (33), p. 69),

E [H`1(Xi1) . . . H`m(Xim)] = `1! . . . `m!
∑

{`1,...,`m}

ρν

ν!
, (42)

where it is understood that ρν =
∏

1≤q<k≤m
ρ(iq − ik)νq,k , ρ(iq − ik) denoting the correlation

between Xiq and Xik , ν! =
∏

1≤q<k≤m
νq,k!, and

∑
{`1...,`m} indicates that we are to sum over

all symmetric matrices ν with nonnegative integer entries, νii = 0 and the row sums equal to
`1, . . . , `m.

We shall prove that among all the terms in the r.h.s of (42), the leading ones in (41)
correspond to the case where we have the two following pairs of equal indices in the set
{`1, . . . , `4}: `1 = `2, `3 = `4 and ν1,2 = `1, ν3,4 = `3, the others νi,j being equal to zero. This
gives:

E [H`1(Xi1) . . . H`4(Xi4)] = (`2!)
2(`4!)

2 ρ(i2 − i1)`2ρ(i4 − i3)`4
`2!`4!

.

The corresponding term in (41) is thus given by

1

N2

∑
p2,p4,≥1

c2p2c
2
p4

p2!p4!
ρ(i2 − i1)p2ρ(i4 − i3)p4 ,

where i1 = i+ `, i2 = i, i3 = i′ + `′, i4 = i′.
Thus, in the case where |{p1, p2, p3, p4}| = 2, (41) becomes:

∑
p2,p4≥1

c2p2
p2!

c2p4
p4!

 1

N2

∑
1≤i≤N−`,1≤i′≤N−`′

ρ(`)p2ρ(`′)p4


=

(
1− `

N

)(
1− `′

N

) ∑
p2,p4≥1

c2p2
p2!

c2p4
p4!

ρ(`)p2ρ(`′)p4

=

(
1− `

N

)(
1− `′

N

)
γψ(`)γψ(`′).

In the other situations of pairs of equal indices, it is straightforward to prove that the terms
can be neglected.

In the cases where |{p1, p2, p3, p4}| ≥ 3 then the matrices ν that have to be considered are
symmetric matrices, with nonnegative integer entries such that νii = 0 and the row sums equal
to `1, . . . , `4 and such that there are at least two non null values of νq,k on a row of ν. This
last point implies that in the expression of

E
[
Hp1

(
Yi+`
σ

)
Hp2

(
Yi
σ

)
Hp3

(
Yi′+`′

σ

)
Hp4

(
Yi′

σ

)]
we will have at least a product of three terms with γ which makes all of these terms negligible
and gives (39).

�
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