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ABSTRACT
Recently, a detection methodology based on anchor estimation and the Mahalanobis distance, named
the local Mahalanobis distance (LMD) technique, has been proposed for incipient fault detection. As
an extension, this paper proposes the LMD based faulty variable isolation and fault severity estimation
methods to offer an integrated incipient fault diagnosis solution. The LMD technique has been proved
to be highly sensitive to incipient faults, robust to outliers, and free of distribution assumptions. Within
the LMD framework, the faulty variable is recognized by analyzing the relative position of faulty
samples and their corresponding anchors. Then an analytical expression of fault severity derived from
the LMD index is established for the fault severity estimation task. Performance evaluations of the
proposed methods based on a benchmark case of the Continuous-flow Stirred Tank Reactor (CSTR)
process are provided in this work.The result shows that even for tiny deviation, such as 5dB fault
to noise ratio, the total isolation performance still achieves 100% accuracy, and the relative error of
two tricky faults in the case of severity estimation is less than 10%. The comparison study of different
methods indicates that our solution outperforms divergence based techniques and reconstruction based
contribution (RBC) methods for the two tasks.

Nomenclature
CSTR Continuous-flow Stirred Tank Reactor
EPD Empirical Probability Density
FNR Fault to Noise Ratio
JSD Jensen-Shannon Divergence
KLD Kullback-Leibler Divergence
LMD Local Mahalanobis Distance
LMDA Local Mahalanobis Distance Analysis
MD Mahalanobis Distance
MSE Mean Squared Error
MSPM Multivariate Statistical Process Monitoring
PCA Principal Component Analysis
RBC Reconstruction Based Contribution
SPE Squared Prediction Error

1. Introduction
Fault diagnosis and prognosis are mandatory for mod-

ern complex systems surveillance due to the high require-
ments of reliability, availability, maintainability, and safety.
Usually, a fault is conventionally defined as "the unpermit-
ted deviation of at least one process parameter from an ac-
ceptable condition”, which can be distinguished according
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to their time dependencies, such as abrupt fault (stepwise),
intermittent fault (pulsewise), and gradual fault [9, 15].

Figure 1 exhibits the evolution of three kinds of faults
along with time. Abrupt fault suddenly appearing with a
high amplitude may immediately cause system breakdown
or severe performance degeneration. Intermittent fault ap-
pears randomly with a short time duration in the process,
affecting system’s performance for its repeated occurrence.
In contrast to abrupt and intermittent faults, gradual fault
does not affect system’s performance dramatically at its early
stage but, later, may result in severe system failures without
taking any protective actions. Therefore, early diagnosis of
gradual fault in their incipient stage is crucial to discover the
potential risk of system breakdown, which is also becom-
ing a hot topic in the fault diagnosis domain. Then incipient
faults are defined as gradual ones with very low severities
and possibly slowly varying evolution.

! ! !
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Figure 1: Three kinds of faults: a) abrupt fault; b) intermittent
fault; c) gradual fault.

As pointed out in [26, 25, 39], incipient fault diagno-
sis is more challenging than other faults. Indeed, incipient
fault creates tiny deviation that can easily be confused with
noise or other disturbances, leading to the low effectiveness
of conventional fault diagnosis methods. This work mainly
involves the challenging problem of incipient fault diagno-
sis.

Generally, a fault diagnosis scheme includes three main
tasks [9], fault detection, faulty sources isolation (sometimes
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treated as faults identification or classification), and fault sever-
ity assessment, as shown in Figure 2. They link to real appli-
cations like process state monitoring [6], anomaly detection
[4], fault-tolerant control [37], remaining useful life estima-
tion [28]. Fault detection is the first step in the fault diagno-
sis framework, aiming to recognize a faulty behavior with a
short delay time. Then if a fault is detected, the isolation pro-
cedure proceeds to locate the key factors affecting the sys-
tem’s performance, which is usually realized based on some
necessary assumptions, such as a defined fault type. Finally,
the fault severity estimation module assesses how severe the
fault is and helps to predict the fault evolution.

Samples !

Fault detection

Fault isolation

Fault severity 
estimation

Faulty
No

Yes

End

Figure 2: General incipient fault diagnosis framework

Fault detection is the foundation base for fault diagnosis
and prognosis, naturally attracting huge attention in the liter-
ature and yielding various fault detection approaches. In par-
ticular, Multivariate Statistical Process Monitoring (MSPM)
technique is one of the promising methodology branches.
For example, it can be developed based on Principal Com-
ponent Analysis (PCA), Independent Component Analysis
(ICA), Fisher Discriminant Analysis (FDA), Partial Least
Squares (PLS), Canonical Variate Analysis (CVA), General-
ized Canonical Correlation Analysis (GCCA), etc. [20, 32,
23, 27, 7].

Commonly, the space partition idea is adopted in MSPM
methods to obtain principal and residual subspace. Then,
two statistics named Hotelling T 2 index and Squared Pre-
diction Error (SPE) are often calculated based on the two
subspaces, respectively, for fault detection purposes [32].

Further, additional statistic combining the T 2 and SPE
indexes has been proposed, significantly improving the de-
tection capability of MSPM methods [36]. Alternatively,

several distance measures can be used in this area [3] and
particular attention can be paid to the Mahalanobis distance
[16]. The global Mahalanobis distance can be employed for
fault detection problems with the benefit of avoiding the loss
of information caused by space partition and dimension re-
duction [19].

Despite those improvements, to the best of our knowl-
edge, the aforementioned approaches are still not sensitive
enough to incipient faults [25, 29, 31]. Therefore, other types
of MSPM approaches for incipient fault diagnosis have been
proposed to improve the detection capability, such as Canon-
ical Variate Dissimilarity Analysis (CVDA) [25] and Lo-
cal Mahalanobis Distance Analysis (LMDA) [29, 31], where
the latter is highly sensitive for incipient faults and effective
for non-Gaussian distributed data. Alternatively, method-
ologies based on Kullback-Leibler Divergence (KLD) and
Jensen-Shannon Divergence (JSD) are also effective for in-
cipient fault detection [11, 33, 39].

Compared to the considerable progress of the fault detec-
tion problem using the previously mentioned techniques, the
studies for incipient fault isolation and severity assessment
are more tedious. Fault isolation problem aims at finding
out the parameters or signals sources affected by a fault, and
fault severity assessment is usually achieved by estimating
the characteristics of the fault (amplitude, occurrence time,
evolution function). Accurate solutions to both problems are
necessary for fault tolerant control [17, 37], but also for the
components’ remaining useful life prediction [22] and the
risk assessment of system breakdown [35] in industrial ap-
plications.

Concerning fault isolation and severity estimation prob-
lems, numerous model based methods specific to particular
systems have been proposed, but they usually suffer from
weak generalization capability for other systems. General
methods for fault isolation and fault severity estimation prob-
lems are therefore attracting researchers’ attention. Addi-
tionally, to take advantage of existing detection approaches’
excellent characteristics, such as high sensitivity, reliabil-
ity, and robustness, researchers tend to develop fault isola-
tion and fault severity estimation methods based on the fault
monitoring index.

For instance, KLD and JSD serve as fault detection in-
dexes and subsequently are used for fault isolation and sever-
ity estimation [13, 10, 39]. The Reconstruction Based Con-
tribution (RBC) technique is another promising branch de-
veloped on existing monitoring indexes for fault isolation
and severity estimation, such as PCA based T 2 and SPE
statistics [1], Mahalanobis Distance (MD), and Exponen-
tially Weighted Moving Average (EWMA) [17, 18]. How-
ever, they are not sensitive enough to incipient faults es-
pecially when these low fault severities occur in extremely
noisy environments. Besides, to the best of our knowledge,
the discussion on the influence of fault severity relative to
noise level is usually missing in previous works, but it is still
crucial to evaluate the robustness performance of incipient
fault diagnosis methods.

In order to cope with the major limitations of previous
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works, this paper is dedicated to the development of new
fault isolation and severity estimation approaches based on
the LMD index, which has been proved to be highly sen-
sitive to incipient faults. More specifically, we analyze the
relative position of faulty samples compared to their refer-
ence anchors and calculate the contribution rate of each data
variable being faulty. Subsequently, an analytical expres-
sion describing the relation between the fault amplitude and
LMD index is developed for fault severity estimation. The
benchmark case of the Continuous flow Stirred Tank Reac-
tor (CSTR) process is used to verify and validate the perfor-
mance of our proposal. Different fault severities relative to
noise level are considered in the performance evaluation to
show the performance bounds. Additionally, a comparative
study with different approaches is performed to highlight the
advantages of the proposed method.

Compared to the existed works related to fault diagnosis
problems, the main contributions of this work are threefold.

1. Based on fault detection results, a new faulty vari-
able isolation method indicating the fault contribution
value of each faulty case is further proposed in this
work. The proposed method is simple to implement
and drastically improves isolation accuracy compared
to existing approaches, especially for incipient faults.

2. The analytical expression connecting the fault sever-
ity and LMD index is established for fault severity es-
timation, which succeeds the advantages of LMD in
the estimation procedure. So far, the LMD based in-
cipient fault diagnosis framework, covering fault de-
tection, fault isolation, and fault severity estimation,
is completed.

3. The comprehensive performance evaluation, consid-
ering different fault severity relative to noise level and
comparing different diagnosis approaches, is given in
this work to reveal the different impacts of fault sever-
ity on methods’ performance.

The remaining part of the paper is organized as follows.
The relative works are reviewed in section 2. Section 3 re-
visits the LMD technique proposed for fault detection, in-
cluding the definition of LMD and the anchors-generation
algorithm. Then, the fault isolation method and the analyti-
cal expression for fault severity estimation are developed and
derived in section 4. In section 5, the performance evalua-
tion based on the CSTR process is carried out. Finally, the
conclusion and discussion (section 6) close the paper.

2. Relative works
Several important works have made significant contribu-

tions to fault isolation and fault severity estimation problems
[38, 5, 41, 14, 18], where divergence-based methods and
reconstruction-based contribution techniques deserve partic-
ular attention for their high sensitivity or reliable performance.
This section reviews the basic idea of these two groups of ap-
proaches and summarizes their advantages and limitations to
provide an intuitive comparison with the method proposed
in this work.

KLD combined with PCA feature extraction was first
proposed for incipient fault detection [11, 33, 14]. It ex-
tracts data’s principal components as features and uses KLD
to assess features’ divergences in probability distribution be-
tween healthy reference samples and testing samples. For
that purpose, the features’ probability density functions are
estimated using the kernel density estimation approach. Af-
terwards, the theoretical model estimating the fault severity
coefficient was then developed based on KLD using a known
distributed assumption (Gaussian, Gamma) [12, 13, 10]. To
isolate the single faulty variable, C. Delpha et al. further
proposed the Z-decomposition to linearly combine variables
with binary coefficient and calculated the KLD of the com-
bined signals between reference and testing samples [10].
The detection result of all combined signals is decoded from
binary code to determine a single faulty variable uniquely
(e.g., the result 010 indicates that the third variable is faulty).
Similar to KLD based approach, JSD was proposed with the
same strategy to detect incipient faults, isolate faulty vari-
ables, and estimate fault severity, where the main benefit of
using JSD is its higher sensitivity for incipient faults [39, 40].

Divergence-based methods are highly sensitive to incip-
ient faults and robust to noise. However, they have at least
two limitations. First, these approaches require a mass of
samples to accurately estimate the probability density func-
tion. In addition, the theoretical model for fault severity es-
timation is only derived for Gaussian distributed data.

Another effective fault isolation and fault severity es-
timation approach is the reconstruction-based contribution
(RBC) technique that combines the fault reconstruction idea
and contribution plot technique [1, 18, 17]. To recover healthy
signals from the faulty ones, RBC approaches reconstruct
singles by removing the faulty component at a candidate fault
direction. Subsequently, one of themonitoring indexes, such
as Hotelling’s T 2 statistics, SPE statistics [1], the combined
statistics of T 2 and SPE [36], and Mahalanobis distance [8],
is calculated to decide if the reconstructed signal is correctly
recovered. Once the monitoring index of the reconstructed
signal is lower than the detection threshold, the faulty di-
rection indicating the faulty variables is determined, and the
faulty component is obtained simultaneously.

RBC approaches have a solid theoretical foundation and
can achieve a reliable fault diagnosis performance for severe
fault severities with a distinct deviation from healthy con-
ditions. However, the aforementioned monitoring indexes
are not sensitive enough for tiny faults, leading to the low
accuracy performance of the existing RBC approaches for
incipient faults isolation and fault severity estimation. The
goal of our proposal is then to cope with this limitation and
then propose a robust and accurate solution for the incipient
fault isolation and fault estimation problem.

3. LMD revisited
This section first reminds the LMD technique background

to develop its basic concept. Then the LMD definition and
its computational details are presented in the following sub-
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sections, respectively.
3.1. Healthy region approximation

LMD originated from the healthy region approximation
problem, which aims to specify an optimal healthy region
based on fault-free data. The boundary of the healthy region
is then used to distinguish between healthy and faulty sam-
ples. Due to the lack of fault’s prior knowledge, it is tricky
to obtain an accurate decision boundary. Moreover, outliers
contained in fault-free data can also enlarge the healthy re-
gion. These two issues usually lead to the low sensitivity of
typical methods for incipient fault diagnosis.

To cope with this issue, in our previous work [31], we
proposed the LMD approach that can adaptively generate a
healthy region for fault-free data. The adaptive healthy re-
gion consists of multiple overlapping sub-regions with dif-
ferent centers but the same radius, as shown in Figure 3 (a).
In the training step, the centers of sub-regions, also referred
to as anchors, are obtained by the anchors-generation algo-
rithm, and the sub-region radius is selected as a threshold to
guarantee a low false alarm rate. Even though the fault-free
samples contain outliers, the generated healthy region is still
accurate for unknown distribution.

When incipient faults occur, only a small part of samples
deviates from the healthy condition, and its change is com-
monly tiny at its early stage, as shown in Figure 3 (b). In the
fault detection procedure, an incipient faulty behavior can
be detected if samples are out of the healthy region, which
is easily realized by calculating the LMD index.

The theoretical analysis of LMD and its application to
incipient fault for the early detection problem have been pi-
oneered in our previous works [31, 29, 30]. In the follow-
ing, we briefly revisit the LMD’s definition and its training
process basis for better understanding the fault isolation and
fault severity estimation methods derived in the proposed
work.

AnchorsFault-free samples
Healthy region Outliers Healthy region

Incipient faulty samples

Figure 3: LMD operation example: (a) LMD training; (b)
incipient fault detection

3.2. Local Mahalanobis distance
Considering two sample vectors X, Y coming from the

same distribution with mean vector � and covariance ma-
trix �, the multivariate Mahalanobis distance of a sample is

calculated as:

dM (X) =
√

(X − �)T�−1(X − �) (1)
Then the Mahalanobis distance between two samples is eas-
ily derived as:

dM (X, Y ) =
√

(X − Y )T�−1(X − Y ) (2)
Based on the above definition, LMD is defined as the clos-
est Mahalanobis distance from a sample to the healthy re-
gion. To enable the LMD calculation, the healthy region is
approximated and represented as a finite number of points
called anchors. If we denote the anchors set with � elements
as S = {C1,⋯ ,Ck,⋯ ,C�}, the LMD of a sample vector x
is calculated as:

D(x;S) = min
k
{dM (x,Ck)|Ck ∈ S} (3)

Accordingly, sample’s corresponding anchor, denoted as
(x), is derived as

(x) = argmin
k
{dM (x,Ck)|Ck ∈ S}, (4)

Obviously, LMD is always a non-negative value for its dis-
tance property. Additionally, according to the definition, a
larger LMD value usually implies a potential fault behav-
ior since the observed sample is far from the healthy region.
Therefore, based on this characteristic, LMD can be used to
identify faulty samples, which has achieved promising incip-
ient fault detection performance [31]. Besides the applica-
tion for fault detection, LMD can be used to further charac-
terize a fault, such as isolating the faulty variable and esti-
mating the fault severity.
3.3. LMD training

In the LMD unsupervised training step, we aim to define
a healthy region by determining its centers and a radius based
on fault-free samples.

The first goal is achieved via the anchors-generation al-
gorithm, whose basic idea is to extract critical spatial infor-
mation by merging geometrically close fault-free samples as
anchors [31]. Meanwhile, using the local density informa-
tion of training samples, the algorithm identifies outliers and
excludes them from generating anchors to obtain robustness
ability against outliers [30]. Despite the similarity between
the proposed anchors-generation algorithm and clustering
methods to a certain extent, the proposed algorithm with its
optimization procedure is necessary for LMD calculation to
achieve optimal performance.

Here, we summarize the up-to-date anchors-generation
procedure as Algorithm 1. For more details please refer to
[30] and [31].

Given different parameters, this algorithm yields differ-
ent anchors leading to diverse approximation performance.
To achieve optimal performance, two parameters should be
precisely tuned:
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Algorithm 1 Anchor generating procedure
Require: Fault-free samples X∗ = {xi}Ki=1, local radius 
 ,minimum number of local samples �
Ensure: Anchors set S
1: �←

∑K
i=1 xi
K2: C1 ← �

3: � ← cov(X∗,X∗)
4: dM (xi)←

√

(xi − �)Σ−1(xi − �)T
5: Rearrange fault-free samples as ℚ in ascending order

according to dM (xi)
6: k← 2
7: repeat
8: Take one sample xi from ℚ
9: Find out Zk = {xl|dM (xi, xl) < 
, l > i, xl ∈ ℚ}

10: nk ← samples number in Zk
11: if nk < � then Continue
12: end if
13: Ck ←

1
nk

∑nk
q=1 xq(xq ∈ Zk)

14: Remove Zk from ℚ
15: k← k + 1
16: until ℚ is empty
17: S ← {C1,⋯ ,Ck,⋯ , }
18: return S;

• On the one hand, � indicating the minimum allowed
samples number is designed to identify potential out-
liers, which should be firstly tuned according to out-
liers’ number. The experiment results given in [30]
indicates that � = 2 is the usual setting for outliers’
number less than 10%, otherwise a larger � should be
considered when data contain lots of outliers.

• On the other hand, the local radius 
 specifies the size
of a local region for sample merging, which affects the
approximation accuracy. A large local radius usually
leads to a small anchors’ number and a rough descrip-
tion of the healthy domain. Conversely, a small local
radius increases the accuracy but may cause an over-
fitting problem.
To explicitly analyze this factor, the approximation er-
ror related to 
 value is quantified as:

Err =
K
∑

i=1
D(xi;S), (xi ∈ X∗) (5)

The example shown in Figure 4 indicates that the error
revolution against the local radius is always convex re-
gardless of � value. The optimization procedure then
can be implemented by searching the corresponding

opt that minimizes Eq.(5).

The second part of LMD training is to select the healthy
local radius, also called healthy region margin. To that end,
the distribution model of the LMD index in the null case is
established by using the generalized extreme value distribu-
tion model. For the given significance level, the margin is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

Er
r

Figure 4: Evolution of approximation error for di�erent

 and �

then determined based on this estimated probability model.
Since this part is only relative to fault detection, no more ad-
ditional details of margin selection will be presented here,
but they are accessible from [31].

In the following, for the proposed incipient fault diag-
nosis procedure, the optimal anchors set is computed and
directly used for LMD calculation.

4. Fault isolation and estimation procedure
Let’s assume that a fault was detected by using the LMD-

based detection method. Subsequently, in this section, we
propose the LMD-based fault isolation method to identify
the faulty source, and then assess its fault severity degree by
estimating the amplitude of the faulty component. In con-
trast to the fault detection process, fault’s prior knowledge
is required in these two diagnosis procedures. Therefore, a
fault model and the necessary assumptions are first given.
4.1. Assumptions and fault modeling

In this work, we do not make any assumptions about data
distribution since the LMD technique can adapt to unknown
distributions. However, the following assumptions are re-
quired for developing the proposed fault isolation and esti-
mation methods.

• Assumption 1: The fault type is confined to additive
fault with incipient nature for simplifying the fault’s
behavior. The additive form indicates that any faulty
signal can be split up into a healthy part and a faulty
component, which is a conventional way to describe
the fault’s influence on data.

• Assumption 2: This work only considers the single
faulty source situation. This assumption is reasonable
because single faults are more common, and our iso-
lation method can be easily generalized to multiply
cases without additional modification.

Based on these assumptions, we develop a fault model
for the subsequent fault diagnosis methods. Let us consider
a faulty dataset X = (x1,⋯ ,xj ,⋯ ,xm) with m variables
andN observations, where the observation of xj is denoted
as xj = [x1j ,⋯ , xij ,⋯ , xNj]T . Then let a fault occurs fromthe bth observations at the cth variable. In other words, the
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lastN − b+1 observation of the cth variable are faulty. Ac-
cording to [11], a faulty signal xc with an additive fault can
be decomposed into fault-free signal x∗c and faulty compo-
nent f , such as:

xc = x∗c + f (6)
For the given fault occurrence position b, the faulty com-

ponent can be written as:
f = [0,⋯ , 0, fb,⋯ , fN ]T (7)

Further, we use the first-order model to describe the evolu-
tion of incipient faults, such as

fi = � ⋅ (i − b + 1) ⋅ Te, (i ≥ b) (8)
where � is the fault severity that can be seen as a constant in
small duration, and Te is the sampling time.

For incipient fault diagnosis, the discussion of fault sever-
ity without considering noise is meaningless. Therefore, the
fault-to-noise ratio (FNR) is considered and widely used in
the incipient fault diagnosis topic. It is defined as:

FNR = 10 log
pf
pn

(9)

where pn is the noise power, and pf is the power of faulty
component.

Based on the fault model derived in Eq.(8), the fault power
pf can be developed as:

pf =
∑N
i=b f

2
i

N
=

∑N−b+1
i=1 �2i2T 2e

N

=
�2T 2e (N − b + 1)(N − b + 2)(2N − 2b + 3)

6N

(10)

Using this Eq.(10), the FNR can be derived and the influence
of the fault severity for a given noisy environment can be
studied.

Note that generally, the samples’ number N is widely
large, and N − b is a sufficient number of faulty samples.
For the isolation and estimation procedures, only these faulty
samples are considered. A low number of faulty samples
will reduce the fault power and increase the difficulty of di-
agnosis, particularly in noisy environments.
4.2. Faulty variable isolation method

In the LMDbased fault detection scheme, the correspond-
ing anchor of a sample is first located, serving as a refer-
ence position for fault analysis. When a fault occurs, the
faulty samples dramatically deviate from their references,
while healthy samples are close to the corresponding an-
chors. These two cases can be distinguished by calculat-
ing the Mahalanobis distance between samples and anchors
(LMD). In few words, the distance information is used for
the fault detection task.

Similarly, we consider the change of samples’ relative
position for the fault isolation task. The position’s change is

based on observed samples and their corresponding anchors,
where the latter has been obtained in the previous detection
step. Given a samples vector xi and its corresponding an-
chors vector(xi), the position’s change with normalization
weight is presented as:

Gi = (xi −(xi))T (11)
where  is the diagonal matrix consisting of the standard
deviation �j of each healthy variable, such that:

 = diag{�−11 ,⋯ , �−1m } (12)
The weight is used here to unify the scale of different vari-
ables.

As illustrated in Figure 5, we use a toy example with
two variables to show how the position’s change informa-
tion contributes to faulty source isolation. In fact, when a
variable is affected by a fault, faulty samples will deviate in
a certain direction. In this example, the first variable x1 isaffected, and thus the first element of the sample vector in-
creases from x∗1 to (x∗1 + F ). We show the faulty sample
and its healthy version to highlight this change. However,
the increment F in x1 direction is invisible for the unknownhealthy version until introducing a reference point, the an-
chor. For healthy cases, since samples are close to their an-
chors, the deviation of samples with respect to their anchors
in different directions is small. In contrast, faulty samples
are far away from their anchors. With the single fault as-
sumption, there is always a distinct shift of faulty samples
in one direction. In other words, the single faulty variable
can effectively be isolated by observing the increment of
faulty samples in different directions, which is reflected by
the change vector G.

LMD

Anchors
Healthy samples
Faulty sample
Healthy region

Figure 5: Two-dimensional example for LMD based fault iso-
lation

Regarding the incipient faults, the reliability of sample
based resultsGi is easily impacted by noise, especially at its
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early stage. Therefore, a number of sequential faulty samples
are used for the final decision to increase the reliability and
isolation accuracy. Suppose a fault is detected at the b′th
observation, and then the average position change vector can
be calculated as:

Ḡ =
N
∑

i=b′
Gi (13)

Let Ḡ = [g1,⋯ , gj ,⋯ , gm]. The Softmax function is
further applied to elements of Ḡ for the unifying purpose.
Then the fault contribution Pj of each variable is calculated
as:

Pj =
e|gj |

∑m
k=1 e

|gk|
, 0 ≤ Pj ≤ 1 (14)

Finally, for a single faulty variable case, the faulty vari-
able index number is recognized as:

ĉ = argmax
j
Pj (15)

The corresponding xĉ faulty variable is then isolated.Remarkably, even though the proposed isolation method
is dedicated to the single faulty source situation, its general-
ization to multiple fault cases is possible. The most distinct
faulty source can be isolated first by using this method. Then
we can reduce the isolated faulty signal from the data, and
reuse the proposed isolation method to identify the second
faulty source. This work will not further analyze the isolat-
ing performance of the proposed method for multiple faults
cases.
4.3. Fault severity estimation method

Once the faulty variable is isolated, the fault severity esti-
mation procedure is activated. This latter is dedicated to the
estimation of the coefficient � of the first-order approxima-
tion written in Eq.(8) by explicitly establishing its expression
based on the LMD index.

Similarly to Eq.(6), a faulty sample vector xi also can bedecomposed as:
xi = x∗i + fi, (i ≥ b) (16)

Substituting Eq.(4) and Eq.(16) into Eq.(3), we can develop
LMD as

D(xi, S) = dM (xi,(xi))

=
√

[xi −(xi)]TΣ−1[xi −(xi)]

=∥ [xi −(xi)]TΣ
− 12 ∥2

=∥ [x∗i + fi −(xi)]TΣ
− 12 ∥2

(17)

where ∥ ⋅ ∥2 corresponds to the L2 norm.
For simplicity, we define the following three notations:
�i = x∗i −(xi) (18)

� ′i = �iΣ
− 12 = [�

′

i1,⋯ , �
′

ij ,⋯ , �
′

im] (19)

Σ−
1
2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

&11 ⋯ &1j ⋯ &1m
⋮ ⋮ ⋮
&j1 ⋯ &jj ⋯ &jm
⋮ ⋮ ⋮
&m1 ⋯ &mj ⋯ &mm

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

With the above notations and first-order approximationmodel
Eq.(8), we further develop Eq.(17) to Eq.(21).

Although Eq.(21) establishes the link between � and LMD
index, � can not be calculated directly through this equation
for the unknown � ′ij . However, Eq.(21) is the quadratic func-tion of sample index i, which can be simplified as:

D2(xi;S) = a2i2 + a1i + a0 (22)
where

a2 = �2T 2e
m
∑

j=1
&2cj (23)

a1 = 2�Te
m
∑

j=1
�
′

ij&cj + 2(1 − b)�
2T 2e

m
∑

j=1
&2cj (24)

a0 = 2(1 − b)�Te
m
∑

j=1
(&2cj + �ij&cj)+ ∥ �

′

i ∥
2
2 (25)

In fact,D2(xi;S) has been calculated for fault detection,and i is known. Therefore, the coefficients a0, a1, a2 can be
easily estimated by the polynomial curves fitting technique.
More accurately, the solution for Eq.(22) is obtained by min-
imizing the sum of squared errors between the true and esti-
mated D2 values based on samples from b′ toN .

In order to derive the calculation process, we let:
W = [a0, a1, a2] (26)

ΞT =
⎡

⎢

⎢

⎣

1 ⋯ 1 ⋯ 1
b′ ⋯ i ⋯ N
b′2 ⋯ i2 ⋯ N2

⎤

⎥

⎥

⎦

(27)

and
Y = [D2(xb′ ;S),⋯ , D2(xi;S),⋯ , D2(xN ;S)]T (28)

The coefficients vectorW can be calculated as:
W = (ΞTΞ)−1ΞT Y (29)

Finally, the fault severity � is estimated as �̂ as follows:

�̂ =
√

a2
T 2e

∑m
j=1 &

2
cj

(30)

Based on this theoretical study, the efficiency of the estima-
tion can be evaluated.
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D2(xi;S) =∥ �
′

i ∥
2
2 +2fi

m
∑

j=1
� ′ij&cj + f

2
i

m
∑

j=1
&2cj

=∥ � ′i ∥
2
2 +2� (i − b + 1) Te

m
∑

j=1
� ′ij&cj +

[

� (i − b + 1) Te
]2

m
∑

j=1
&2cj

= i2
(

�2T 2e

m
∑

j=1
&2cj

)

+ 2i

[

�Te
m
∑

j=1
� ′ij&cj + (1 − b) �

2T 2e

m
∑

j=1
&2cj

]

+ 2 (1 − b) �Te
m
∑

j=1

(

&2cj + �ij&cj
)

+ ∥ � ′i ∥
2
2 (21)

5. Performance analysis
In this section, the CSTR process is used as a case study

to validate the effectiveness of the faulty variable isolation
method and evaluate the performance of the fault severity
estimation model. Note that the proposed methods are not
limited to one specified system but can be applied to other
complex systems [21] and sensor network [2].
5.1. CSTR process

TC

C"($%&/()
*"(+)

,-((/$./)*-"(+) *-(+)

0($%&/()
*(+)

Figure 6: Schematic diagram of the CSTR process

As a benchmark case, the CSTR process is frequently
used to evaluate fault diagnosis methodologies [34, 30, 24].
The schematic diagram of the CSTR process is displayed in
Figure.6, where an exothermic reaction takes place in a re-
actor surrounded by a jacketed tank. In the process, a fluid
stream is fed to the reactor and perfectly mixed with cata-
lysts. The reactor temperature is maintained by feeding a
coolant medium at a lower temperature. The model can be
described as following exothermic first-order reactions,

d
dt

= Q
V
(i − ) − �q0e

( −ER ) + �1 (31)

d
dt

= Q
V
(i− )−�

ΔHrq
'p

−ℎ A
'pV

( −c)+�2E (32)

dc
dt

=
Qc
Vc
(ci − c) + ℎ

A
'cpcVc

( − c) + �3 (33)

where the outputs of the process are the reactor temperature
( ), the concentration in the reactor (), the coolant tem-
perature (c), and the coolant flow rate (c). The system’s

Table 1

Notations for CSTR Process

Parameter Description

 Reactor temperature
c Coolant temperature
i Flow temperature
cii Coolant �ow temperature
 Concentration in the reactor
i Input �ow concentration
c Coolant �ow rate
 Inlet �ow rate
V Tank volume
A Heat transfer coe�cient
Vc Jacket volume
q0 Pre-exponential factor
ΔHr Heat of reaction
', 'c Fluid density
E/R Activation energy
p,pc Fluid heat capacity
�1,2,3 Process noise

inputs are the input flow concentration (i), the flow temper-
ature (i), and the coolant flow temperature (ci). Notationsof the above equations are given in Table 1.

The corresponding simulation model introduced by Karl
Ezra Pilario in [24] is one of the most influential models for
its easy access and professional design. It can simulate the
healthy case and ten different faulty scenarios as defined in
Table 2. Fault 1 and 2 simulate catalyst decay and heat trans-
fer fouling. Fault 3 simulates these two faults’ simultaneous
evolution, and Fault 4 to 10 correspond to additive faults
simulating sensor drifts. Therefore, to satisfy assumption 1,
we only consider Fault 4 to 10 in this validation procedure
and relabeled them as F1 to F7, respectively. Note that thesubscript of F indicates the single faulty variable (assump-
tion 2).

In the validation procedure, the following settings of the
simulation and methods should be noticed:

• The system’s input u = [i i ci] and the output y =
[  c Qc] were concatenated to form the process
data X = [u, y].

• For data generation, the signals were sampled every
minute for a total duration of 20 hours. In other words,
the sampling time Te = 1 (min) and the samples’ num-
berN = 1200.
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Table 2

Description of the faulty scenarios

ID Fault Description Type

- 1 � = �0e−�t Multiplicative
- 2 ℎ = ℎ0e−�t Multiplicative
- 3 fault 1 and 2 Multiplicative
F1 4 i = Ci,0 + �t Additive
F2 5 i = i,0 + �t Additive
F3 6 ci = ci,0 + �t Additive
F4 7  = 0 + �t Additive
F5 8  = 0 + �t Additive
F6 9 c = c,0 + �t Additive
F7 10 c = c,0 + �t Additive

• In the training process, 10 groups of fault-free data
with 1200 samples for each were used to construct the
fault-free data matrix X∗.

• The anchors-generation algorithm was applied onX∗

with � = 2. The optimization procedure is then acti-
vated, yielding the optimal local radius 
opt = 1.448
and 224 anchors.
The parameters were properly tuned to reach a satis-
factory detection performance, and then continue to
be used in this experiment for isolation and fault esti-
mation.

• In the fault diagnosis procedures, the system regen-
erates all the input and output signals with varying
operation conditions and random noise. A fault was
introduced at 1000minutes for all faulty scenarios, so
that b = 1001.

• The fault is assumed to be detected correctly without
time delay in the experiment, i.e., b′ = b, and the prior
knowledge of the true faulty variable is used for fault
estimation. This setting is not necessary for practice
but allows the independent discussion of performance
for each diagnosis procedure because their effective-
ness highly depends on their previous step. Note that
this setting is the same for all compared methods.

5.2. Fault isolation validation results
Firstly, to validate the proposed faulty variable isolation

method, we generated 1 healthy and 7 faulty cases (F1 to F7)data with SNR=30dB and FNR=20dB. According to Eq.14
derived in section 4.2, the fault contribution of each vari-
able for different cases was calculated and shown in Figure
7. The results are divided into 8 groups, the healthy one
and 7 faulty ones named as F1 to F7. For each group, the
first bar stands for the fault contribution of the first variable,
and so on. In the healthy group, all contribution values are
close and lower than 0.15. This means that all the variables
contribute quite similarly to the healthy case. For the faulty
groups, the contribution calculation highlights one variable
with a larger contribution value than others: it corresponds
to the true faulty variable that has been identified.

For example, in the group F1 whose true faulty variable
is the first one, the contribution of the first variable has the
largest value 0.22. Therefore, the faulty variable of F1 faultycase can be correctly determined by applying the proposed
fault isolation method based on Eq.15.

To evaluate the method’s reliability and discrimination
ability among different faulty variables, we repeated the fault
isolation experiment 1000 times for each faulty case and cal-
culated the confusion matrix, which is shown in Figure 8.
The result demonstrates that our isolation method achieves
100% accuracy for all faulty cases under 20dB FNR condi-
tion. This means that if the noise power is not so close to the
fault severity we can accurately perform the fault isolation
with excellent reliability.

Despite the above promising isolation result, observing
the contribution values of all faulty cases, we notice that
the results of F4 and F7 seem less significant than others,
which implies that these two cases are the most challenging
for isolation procedure. Therefore, to study the impact of
fault severity on the isolation procedure, the accuracy per-
formance was further evaluated for FNR=0dB.

Figure 9 exhibits the confusion matrix under this condi-
tion, showing that the accuracy of F4 and F7 cases signifi-cantly decreases. The case F4 is confused with F1 in 12.5%of realizations and confused with F3 in 7.1% of realizations.
Although, the accuracy for F7 case is slightly better than F4,there are 5.1% of confusing results with F3. Besides, the ac-curacy for F1 and F5 also slightly decrease (at least 99.8%
of accuracy), but they are still at a very high level. Our iso-
lation procedure can then be considered as accurate enough
for identifying correctly the faulty features.

The falling accuracy for decreasing FNR indicates that
the real challenge for incipient fault diagnosis lies in the tiny
fault with power close to or lower than noise power. To in-
tensely discuss this challenge, we considered different FNR
conditions and compared our method with existing isolation
approaches, including two divergence based methods (KLD
and JSD) and two RBC methods based on MD and the com-
bined statistical tests T 2 and SPE.

Figure 10 displays the total accuracy of 5 methods for
the 7 considered faulty cases along with varying FNR val-
ues. The result shows that the proposed method mentioned
as LMD in the figure outperforms others. For FNR> 3dB,
the LMD based proposed method can achieve 100% of ac-
curacy. Only the MD based RBC method can have close
results. The three other types of techniques are not accurate
enough. Although the accuracy of the LMD based method
starts to decrease when FNR< 3dB, its high accuracy per-
formance is satisfying for FNR larger than −5dB. It can be
noticed that the MD based RBC method has the same high
accuracy as the LMD based method when FNR> 8dB, while
its performance significantly decline if tiny fault severities
are considered like for FNR< 5dB. According to these com-
parison results, the other three mentioned approaches are all
ineffective for fault isolation of the CSTR process.

The results displayed in Figure 10 also indicate that the
FNR range from 2dB to 8dB is critical for fault amplitude’s
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Figure 7: Contribution result of each variable for 1 healthy and 7 faulty cases
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Figure 8: Confusion matrix of the proposed method for
FNR=20dB

99.80

0.00

0.00

0.00

0.00

0.00

0.20

0.00

100.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

0.00

0.00

0.00

0.00

12.50

2.10

7.10

72.90

0.80

1.00

3.60

0.00

0.00

0.00

0.00

99.90

0.00

0.10

0.00

0.00

0.00

0.00

0.00

100.00

0.00

0.90

1.10

5.10

1.50

0.90

1.10

89.40

0%

20%

40%

60%

80%

100%

Figure 9: Confusion matrix of the proposed method for
FNR=0dB

change identification. Below 2dB, the fault’s symptom is
too tricky to be diagnosed properly: the fault power is very
close to the noise power. Above 8dB, the difference between
these two powers is sufficient to make the fault recogniz-
able. In this critical range, the accuracy performances of the

Figure 10: Total isolation accuracy performance of di�erent
methods along with varying FNR values

five methods are all degraded with FNR decreasing, where
the T 2/SPE, KLD-based, and JSD-based methods have the
most conspicuous performance degeneration (about 30%).
Although both the LMD-based andMD-based methods have
good performance in large FNR conditions, the performance
of the MD-based method is reduced by 20% in this criti-
cal range, and the LMD-based method is almost unchanged.
The significant performance difference in the critical range
shows that the proposed method is more sensitive to incipi-
ent faults than other approaches.

To appreciate the limitation of those five methods, the
obtained accuracy results of each faulty case for FNR=0dB
are also displayed in Figure 11.

Consistent with the result of Figure 9, F4 and F7 are thetwo most difficult cases to isolate for all methods. In other
words, the main limitation of these methods lies in the rel-
atively weak isolation ability for F4 and F7 cases. For ex-
ample, the worse total performance of the MD based RBC
method compared to the LMD-basedmethod ismainly caused
by its low accuracy performance for the two challenging cases.
Conversely, although the total performance of T 2∕SPEmethod
is poor, its accuracy for F3 case remains promising.
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Figure 11: Accuracy of di�erent methods for each faulty case with FNR=0dB

5.3. Fault estimation validation results
After the isolation of the faulty variable, the fault sever-

ity estimation procedure, as derived in section 4.3, can start
based on the fault detection and isolation results obtained
from the previous steps.

Firstly, as an example, we show in Figure 12 the LMD re-
sult of the faulty case F4 with SNR=30dB (given noise) and
FNR=20dB (given fault severity). In this figure, the fault oc-
curs at 1000min asmarked by the dotted box. The increasing
trend of the LMD results not only indicates the occurrence
of a fault but also contains its evolution information.

Figure 12: Example of LMD result with SNR=30dB and
FNR=20dB. The fault occurs at 1000 min and a�ects 4tℎ vari-
able

Based on the fault growing tendency, our method is ap-
plied to estimate the value of � using the derived Eq.30 in
section 4.3. Figure 13 demonstrates the different true val-
ues of � versus its estimated ones for F4 case. Basically,
with � value increasing from 4 × 10−4, the evolution of �̂
shows asymptomatic consistency of true fault severity val-
ues. However, with � decreasing to an extremely small value,
such as � < 4 × 10−4, the result highlights an opposite evo-
lution tendency. Moreover, this tendency develops to reach
an overestimated behavior for tiny fault severities.

To unify the estimation error of the different studied faulty
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Figure 13: Estimated result �̂ versus the true value �

cases, the relative error is used such as:

�(%) =
f̂ − f
f

× 100 = �̂ − �
�

× 100 (34)

Figure 14 shows relative errors for all faulty cases with
SNR=30dB and varying FNR from −10dB to 20dB. It can
be noticed that all faulty cases have similar evolution tenden-
cies: with fault severity decreasing (FNR decreasing), the
relative error decrease from a negative value (underestima-
tion) and then increase to be positive (overestimation). Re-
markably, consistent with fault isolation, F4 and F7 are alsothe two most challenging cases for fault severity estimation:
they have the worst estimation performance than the other
faulty cases.

Accordingly, in order to deeply discuss the estimation
performance for these two challenging cases, we calculated
another typical error criterion, the mean square error (MSE),
and compared the result of the proposed method with that of
the previously mentioned methods. Figure 15 displays the
MSE results in the case of F4 for all the considered tech-
niques. It highlights that the LMD based method always
achieves the minimal error for all FNR conditions. Although
theMDbasedmethod has pronounced isolation performance,
its fault severity estimation capability is significantly weaker
than divergence based methods and the LMD one. The two
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Figure 14: Relative errors of the proposed method for the 7
faulty cases
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Figure 15: Mean squared error for di�erent methods in the
case of F4

divergence based methods (KLD and JSD) have almost the
same considerable estimation accuracy, but we can remind
that they are not suitable for fault isolation. The poor per-
formance of T 2∕SPE based RBC method for both fault iso-
lation and severity estimation indicates that it is ineffective
for incipient fault diagnosis.

The estimation error for case F7 exhibited in Figure 16
shows a similar result as F4. The LMD proposed method

-10 -5 0 5 10 15 20
FNR (dB)

10

102

103

M
SE

LMD KLD JSD
T2/SPE MD

Figure 16: Mean squared error for di�erent methods in the
case of F7

achieves the best performance. The two divergence based
methods are slightly worse than LMD’s, and the two RBC
based methods are unreliable. Additionally one can note
that, for this faulty case, the JSD method offers a lower er-
ror than KLD for small fault severity with that noise level,
which actually verifies its higher sensitivity for fault severity
estimation in these noisy environments.

6. Conclusion
In this paper, we propose faulty variable isolation and

fault severity estimation methods based on the LMD index
and its anchors generation algorithm, which, together with
the LMD based fault detection method, completes the LMD
based incipient fault diagnosis framework. These two meth-
ods preserve the intrinsic advantages of LMD, such as ro-
bustness to outliers, distribution-free assumption, and high
sensitivity for incipient faults. By analyzing the relative po-
sition between faulty samples and their corresponding an-
chors, the proposed fault isolation method can efficiently al-
low to recognize the single faulty variable even for tiny faults.
Subsequently, thanks to a theoretical study, the fault severity
estimation approach analytically establishes the relation be-
tween fault severity and the LMD index, offering an effective
way to estimate the severity of incipient faults. In the CSTR
case study, for incipient faults with FNR larger than 5 dB,
the total accuracy of the proposed isolation method reaches
100%, and the relative error of the estimation method is less
than 50%. The comparative study indicates that our approaches
significantly outperform other typical methods for the incip-
ient fault isolation and severity estimation tasks.

Despite the promising performance illustrated in this work,
the LMD-based incipient fault diagnosis method should be
improved in some aspects. First, the proposed isolationmethod
is developed for single faulty source cases. Although its
generalization to multiple faults cases has been discussed in
this paper, reliability is usually hard to guarantee for com-
plex situations. Accordingly, the LMD-based fault isolation
method for multiple faults cases should be designed in fu-
ture work. Secondly, the additive fault assumption and a
first-order model are used to represent the fault’s evolution,
which is effective but less flexible. Therefore, a more gen-
eral fault model for fitting complex evolution will be further
investigated.
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