
HAL Id: hal-03714535
https://centralesupelec.hal.science/hal-03714535v2

Preprint submitted on 19 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Bayesian multi-objective optimization for stochastic
simulators: an extension of the Pareto Active Learning

method
Bruno Barracosa, Julien Bect, Héloïse Dutrieux Baraffe, Juliette Morin,

Josselin Fournel, Emmanuel Vazquez

To cite this version:
Bruno Barracosa, Julien Bect, Héloïse Dutrieux Baraffe, Juliette Morin, Josselin Fournel, et al..
Bayesian multi-objective optimization for stochastic simulators: an extension of the Pareto Active
Learning method. 2022. �hal-03714535v2�

https://centralesupelec.hal.science/hal-03714535v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Bayesian multi-objective optimization
for stochastic simulators: an extension of

the Pareto Active Learning method

Bruno Barracosaa,b, Julien Bectb, Hélöıse Dutrieux Baraffea, Juliette Morina,
Josselin Fournela, Emmanuel Vazquezb,∗

aEDF, Research and Development, Power Systems and Energy Markets, Palaiseau, France
bUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes,

91190, Gif-sur-Yvette, France.

Abstract

This article focuses on the multi-objective optimization of stochastic simulators

with high output variance, where the input space is finite and the objective

functions are expensive to evaluate. We rely on Bayesian optimization algorithms,

which use probabilistic models to make predictions about the functions to be

optimized. The proposed approach is an extension of the Pareto Active Learning

(PAL) algorithm for the estimation of Pareto-optimal solutions that makes it

suitable for the stochastic setting. We named it Pareto Active Learning for

Stochastic Simulators (PALS). The performance of PALS is assessed through

numerical experiments over a set of bi-dimensional, bi-objective test problems.

PALS exhibits superior performance when compared to a selection of alternative

approaches based on scalarization or random-search.

Keywords: Multi-objective simulation optimization, Bayesian optimization,

Stochastic simulator, Gaussian process modeling, Kriging

∗Corresponding author
Email address: emmanuel.vazquez@centralesupelec.fr (Emmanuel Vazquez)

Preprint submitted to . . . July 19, 2022

1. Introduction

We consider the problem of multi-objective optimization with stochastic

evaluations, also known as multi-objective simulation optimization (Hunter et al.,

2019). More precisely, let f1, . . . fq be q real-valued objective functions defined

on a search domain X ⊂ Rd, and assume that these objectives can only be

observed with some random errors: each evaluation of the objectives at a given

point x ∈ X in the search domain yields random responses Zj = fj(x) + εj ,

1 ≤ j ≤ q, where the εjs are zero-mean random variables (the distribution of

which may depend on x), mutually independent and independent from past

evaluations. Our objective is to estimate the Pareto-optimal solutions of the

problem:

min f1, . . . , fq . (1)

This setting has many applications in the industry when stochastic simulators

are used to make decisions about uncertain systems with several, often conflict-

ing, criteria. Examples can be found in all areas of engineering and science,

for instance plant breeding (Hunter & McClosky, 2016), aircraft maintenance

(Mattila & Virtanen, 2014) or electric network planning (Dutrieux et al., 2015b).

In this work, we choose to focus on Bayesian optimization algorithms, which

use probabilistic models to make predictions about the functions to be opti-

mized. One of the classical algorithms for Bayesian deterministic multi-objective

optimization is the ParEGO algorithm (Knowles, 2006). It relies on a scalar-

ization approach to extend the very popular single-objective Efficient Global

Optimization (EGO) algorithm (Jones et al., 1998), based on the Expected Im-

provement (EI) criterion. Another scalarization approach, called multi-attribute

Knowledge Gradient (Astudillo & Frazier, 2017), uses the Knowledge Gradient

(KG) criterion instead of the EI criterion. Several Bayesian multi-objective opti-

mization methods that do not rely on scalarization have been proposed as well.

These are, for instance, the well-known Expected Hypervolume Improvement

(EHVI) algorithms (Emmerich et al., 2006; Feliot et al., 2017), the Stepwise

Uncertainty Reduction (SUR) approach suggested in Picheny (2015), the Pre-

dictive Entropy Search for Multi-objective Bayesian Optimization (PESMO)

algorithm (Hernández-Lobato et al., 2016), the Max-value Entropy Search for

Multi-objective Bayesian Optimization (MESMO) (Belakaria et al., 2020), and

the Pareto Active Learning (PAL) algorithm (Zuluaga et al., 2013).

In this article, we choose to focus on PAL because it is easy to implement

and inexpensive in terms of computational time, contrarily to other Bayesian

approaches based on computationally-intensive criteria for point selection. The

main idea of PAL consists in using confidence intervals from the posterior

distribution of a Gaussian process to balance exploration and exploitation, in a

way inspired by the Gaussian Process Upper Confidence Bound rule (GP-UCB)

(Srinivas et al., 2010) for single-objective optimization. Zuluaga et al. (2013)

present PAL as a multi-objective Bayesian optimization tool directed at cases

2

where “evaluating the objective function is expensive and noisy”. However, as

will be discussed in this article, PAL is fundamentally an algorithm designed for

the optimization of deterministic objective functions over a finite input space,

and significant limitations arise when considering truly stochastic (random)

evaluations.

This article brings two contributions: (1) an extension of the PAL algorithm,

called PALS, making it suitable for stochastic evaluations, and (2) a numerical

benchmark comparing the performance of the proposed approach with several

competing approaches based on scalarization and random-search.

The article is organized as follows. Section 2 introduces in more detail the

problem of multi-objective optimization for stochastic simulators. Section 3

describes the original PAL algorithm. Section 4 presents the proposed extension

for stochastic simulators. Section 5 details the numerical experiments and their

main results. Section 6 draws conclusions and suggests several perspectives. A

separate supplementary material file is available.

2. Bayesian multi-objective optimization for stochastic simulators

Consider a black-box stochastic simulator whose outputs are noisy evaluations

of q latent functions f1, . . . , fq : X 7→ R over a search space X ⊂ Rd, d ∈ N. The

vector of function values (f1(x), . . . , fq(x)) will be denoted by f(x). Suppose

that the functions f1, . . . , fq represent (possibly conflicting) costs that we want

to minimize.

In a multi-objective optimization problem, the goal is to identify the solutions

that represent the best possible trade-offs among the q objectives. This is usually

defined using the Pareto domination rule: for any two points x, x′ ∈ Rd with

images z = (z1, . . . , zq) = f(x), z′ = (z′1, . . . , z
′
q) = f(x′) ∈ Rq, we write z ≺ z′

(z dominates z′ in the sense of Pareto), when zj ≤ z′j for all j, with at least one

of the inequalities being strict. The set P of all non-dominated points is called

the Pareto set :

P = {x ∈ X : @x′ ∈ X, f(x′) ≺ f(x)} . (2)

The Pareto front F ⊂ Rq is by definition the image f(P) of the Pareto set by

the objective functions. Figure 1 illustrates the Pareto front of a finite set of

evaluations of two objective functions.

The goal of multi-objective optimization is to obtain a good approximation P̂n
of P using a sequence (X1, . . . , Xn), n ≥ 1, of evaluation points and the

corresponding evaluation results. (The use of capital letters to denote the

evaluation points indicates that these points depend on past evaluation results.)

In this article, we assume a stochastic setting, where evaluations are corrupted

by additive, normally distributed, homoscedastic noise. In other words, instead of

3

z1

z2

z3

z4

z5

z6

f1(x)

f2(x)

Figure 1: Example of a Pareto front F = {z1, z2, z3}, in a bi-objective example with finite
search domain X = {x1, . . . , x6}.

observing the values of f1, . . . , fq at X1, . . . , Xn, we observe random responses

Zi,j = fj(Xi) + εi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ q,

where the random variables εi,j are mutually independent, with Gaussian distri-

butions N (0, σ2
j) for some unknown σ2

j > 0.

Using a Bayesian framework provides a practical solution to handle this

stochastic setting. The main idea is to use a prior probability distribution,

often simply called the prior, to model each objective fj as a sample path of

a random process ξj . For convenience, we assume moreover that the ξjs are

independent Gaussian processes, since it makes it possible to easily obtain the

posterior distributions of the models ξj conditional on the observations Zi,j . In

this case indeed, the ξjs remain independent and Gaussian a posteriori (i.e.,

given the evaluation results). We denote by µn,j and kn,j their posterior mean

and covariance functions, which can be derived by solving systems of linear

equations (see, e.g. Chiles & Delfiner, 1999; Rasmussen & Williams, 2006).

Posterior distributions based on past observations can be used simultaneously

to choose additional evaluation points, and to generate predictions of the Pareto

front. Pareto front predictions can be generated through conditional simulations

(Figure 2), making it possible not only to estimate the Pareto front, but also to

quantify the remaining uncertainty (Binois et al., 2015).

As pointed out in the introduction, several Bayesian multi-objective optimiza-

tion algorithms have been proposed in the literature, but few of them can actually

be used under a stochastic framework. Astudillo & Frazier (2017) propose an

algorithm that takes as input a user preference and converges to a particular

solution of the Pareto front (i.e., does not provide an estimate of the entire

4

0.7 0.75 0.8 0.85 0.9 0.95 1

f
1

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

f 2

Figure 2: Bi-objective example of normalized random realizations of Pareto fronts constructed
from probabilistic models.

Pareto set and front). The PESMO algorithm (Hernández-Lobato et al., 2016)

on the other hand, which has been proposed in the machine learning literature,

can be used to jointly estimate the Pareto set and front, as considered in this

article. However, this algorithm has a high implementation complexity and a

non-negligible execution cost—it relies at each iteration on conditional simula-

tions of the GP models, a genetic algorithm and an expectation-propagation

algorithm.

Unlike PESMO, the PAL algorithm proposed by Zuluaga et al. (2013) is a

simple algorithm, but it is not as such suitable for the stochastic case. In the

next sections, we introduce the original PAL algorithm, discuss its limitations,

and propose modifications to deal with the stochastic case.

Remark 1. It is worth noting that several algorithms from the literature of budget

allocation / ranking and selection, namely MOCBA (Lee et al., 2010), SCORE

(Pasupathy et al., 2014), and M-MOBA (Branke & Zhang, 2015) algorithms, use

similar ideas to those outlined above, but with one notable difference: they assume

no correlation between the values of the objective functions at distinct points in

the search space. Recently, an algorithm using a mix of Bayesian optimization

and ranking and selection approaches was proposed by Rojas Gonzalez et al.

(2020) and named SK-MOCBA.

3. The original PAL algorithm

In the following, we assume that X ⊂ Rd is a (possibly large) finite set, corre-

sponding for instance to a discrete grid or a large random sample from a uniform

5

distribution on a bounded set. The PAL algorithm builds a sequence (Xn)n≥1
of evaluation points using, at each iteration, a classification of all the points

x ∈ X of the search space as potentially Pareto-optimal or not, based on the

posterior distributions of the Gaussian processes ξj . More precisely, the algo-

rithm partitions X into three sets at iteration n: a set Pn of points that are

deemed Pareto-optimal, a set Nn of points that are deemed dominated, and

the set Un = X \ (Pn ∪Nn) of points that remain unclassified. Then, the PAL

algorithm improves the approximation of the Pareto set by choosing an additional

evaluation point in Pn ∪ Un, where uncertainty is maximal (in a sense defined

below).

To build Pn, Un and Nn, each x of the search space is associated to a region

Rn(x) ⊂ Rq, n ≥ 0, in the objective space, which quantifies the uncertainty

about the values of the objectives at that point. For each n ≥ 0, the region

Rn(x) is constructed as follows. First, for each x ∈ X and each j ∈ {1, . . . , q},
compute the posterior means µn,j(x) and posterior variances σ2

n,j(x) = kn,j(x, x)

of the Gaussian random variables ξj(x) modeling the unknown values of the fjs

at x, given observations Z1,j , . . . , Zn,j (for n = 0, they are equal to the prior

means and variances). Then, define hyper-rectangles Qn(x) ⊂ Rq capturing the

uncertainty of the predictions, as illustrated in Figure 3:

Qn(x) =
{
z ∈ Rq : µn(x)− β1/2σn(x) ≺ z ≺ µn(x) + β1/2σn(x)

}
, (3)

where µn(x) = (µn,1(x), . . . , µn,q(x)), σn(x) = (σn,1(x), . . . , σn,q(x)), and β > 0

is a positive scaling factor. Finally, for each x ∈ X, the regions used for

classification are defined as

Rn(x) =

{
{µn(x)} if x ∈ {X1, . . . , Xn} ,
Rn−1(x) ∩Qn(x) otherwise,

(4)

with the convention that R−1(x) = Rq. (NB: in the original article by Zuluaga

et al. (2013), a point x ∈ X already visited is artificially assigned a zero posterior

variance; here, we prefer to state that the corresponding region Rn(x) collapses

to µn(x), which is equivalent.)

For each Rn(x), define an optimistic outcome Rmin
n (x) and a pessimistic

outcome Rmax
n (x) as the best possible outcome and the worst possible outcome

within Rn(x) according to the Pareto domination rule (see Figure 4). Then,

each point x ∈ X is classified in Pn, Un or Nn according to the following rules

illustrated in Figure 5:

Pn =
{
x ∈ X

∣∣ @x′ ∈ X, Rmin
n (x′) + ε ≺ Rmax

n (x)− ε
}
, (5)

where ε ∈ Rq+ is a vector of margin parameters controlling the acceptation

in Pn and Nn. In other words, x ∈ Pn when the (ε–shifted) pessimistic out-

come Rmax
n (x) is not dominated by the (ε–shifted) optimistic outcome Rmin

n (x′)

6

f1(x)

f2(x)

µn(x)− β1/2σn(x)

µn(x) + β1/2σn(x)

µn(x)

Qn(x)

Figure 3: Bi-objective example of a prediction uncertainty region Qn(x).

of any other point x′. Conversely,

Nn =
{
x ∈ X

∣∣ ∃x′ ∈ X \ {x} , Rmax
n (x′)− ε ≺ Rmin

n (x) + ε
}
, (6)

or in other words, x ∈ Nn when the (ε–shifted) optimistic outcome Rmin
n (x) is

dominated by at least one of the the (ε–shifted) pessimistic outcome Rmax
n (x′)

of another point x′; and finally Un = X \ (Pn ∪Nn).

According to Zuluaga et al. (2013), the margin parameter ε provides flexibility

around the uncertainty region, and can be defined globally or individually for

each objective.

The parameter β plays the role of a scaling factor for the uncertainty regions

and is defined at each iteration. Zuluaga et al. (2013) suggest using an increasing

sequence βn defined at each iteration n as

βn = 2 log(q|X|π2n2/6δ) , (7)

with δ ∈ [0, 1]. The proposed approach allows to ensure an upper bound of the

hypervolume error with probability 1− δ, by specifying δ. Actual convergence

and upper bound on the maximal number of needed iterations are presented for

the case where intersecting regions are used, and a squared exponential kernel is

adopted with parameters that are not re-estimated at each iteration (refer to

Corollary 2 in the original paper for details).

The last step of the algorithm consists in selecting a new evaluation pointXn+1

among the non-visited points in the union Pn ∪ Un for which uncertainty is

maximal, in the sense of the Euclidean distance between the pessimistic and the

7

f1(x)

f2(x)

Rmin
n (x)

Rmax
n (x)

Qn(x)

Rn−1(x)

Rn(x)

Figure 4: Bi-objective example of the construction of a classification region Rn(x) (filled
region), and the respective optimistic Rmin

n (x) and pessimistic Rmax
n (x) outcomes.

f1(x)

f2(x)

Rmin
n (x)

Rmax
n (x)

f1(x)

f2(x)

Rmax
n (x)

Rmin
n (x)

Figure 5: Illustration of the classification of a Pareto-optimal point (left) presented in light
gray, and the classification of a non-Pareto-optimal point (right) presented in dark gray, while
unclassified points remain as non-filled square dashed outlines.

8

optimistic outcomes (i.e., the diameter of Rn(x)):

Xn+1 = argmax
x∈(Un∪Pn)\Sn

∥∥Rmin
n (x)−Rmax

n (x)
∥∥
2
, (8)

where Sn denotes the set of visited points.

Algorithm 1 summarizes the PAL algorithm.

Remark 2. It appears from the right-hand side of (8) that PAL expects the

objectives to be suitably normalized, in order to be comparable. Indeed, the

criterion at any given point involves a sum of differences of objective values:

∥∥Rmin
n (x)−Rmax

n (x)
∥∥2
2

=

q∑
j=1

(
Rmin
n,j (x)−Rmax

n,j (x)
)2
.

We will assume for simplicity that such a normalization has been made beforehand.

When this is not possible, the range of the objective functions can be learned

on-the-fly as done, e.g., by Feliot et al. (2017).

Remark 3. In practice, in Bayesian optimization, it is advisable to start the

optimization procedure using a set of n0 preliminary evaluations, which make it

possible to select the parameters of the Gaussian process model before sequential

selection of points. This initial set of results is called “training set” by Zuluaga

et al. (2013), or more traditionally initial design of experiments. In this case,

the index n in Algorithm 1 corresponds to the number of simulations performed

after the initial design, and the posterior means and variances at iteration n are

in fact computed with respect to n+ n0 evaluation results.

4. PALS: modification of the PAL algorithm for stochastic simulators

The original PAL algorithm presents limitations that make it unsuitable

for stochastic evaluations. To circumvent these limitations, we propose several

modifications, which can in fact be seen as simplifications of the original algorithm.

The simplifications, together with an extension to batch evaluations, are detailed

below. As in PAL, it is assumed that X is a finite set. The resulting algorithm,

summarized in Algorithm 2, is called PALS (S for Stochastic).

Modification 1: Taking into account prediction variance at visited points. By

artificially setting the prediction variance at visited points to zero (equivalently,

by collapsing Rn(x) to µn(x) as in (4)), Zuluaga et al. (2013) prevent the PAL

algorithm from visiting any point of the search space more than once. This

behavior is also enforced by the explicit requirement (see (8)) that Xn+1 should

belong to the set (Pn ∪ Un) \ Sn, where Sn denotes the set of visited points. In

fact, this approach can be seen as using a “nugget” component (Matheron, 1963)

in the GP prior, which would be appropriate for a very irregular deterministic

9

Algorithm 1: The original PAL algorithm

Input : input space X; GP priors; εq; βn
Output : predicted Pareto set P̂
P−1 = ∅, N−1 = ∅, U−1 = X, S−1 = ∅
R−1(x) = Rq for all x ∈ X
n = 0, all classified = false
repeat

Obtain µn(x) and σn(x) for all x ∈ X,
{µn(Xi) = (Zi,1, . . . , Zi,q) and σn(Xi) = 0,∀Xi ∈ Sn}
Rn(x) = Rn−1(x) ∩Qµn,σn,βn

(x) for all x ∈ X
Pn = Pn−1, Nn = Nn−1, Un = ∅
forall x ∈ Un−1 do

if
(
@x′ ∈ X \ {x} : Rmin

n (x′) + ε ≺ Rmax
n (x)− ε

)
then

Pn = Pn ∪ {x}
else if

(
∃x′ ∈ X \ {x} : Rmax

i (x′)− ε ≺ Rmin
i (x) + ε

)
then

Nn = Nn ∪ {x}
else

Un = Un ∪ {x}

if Un = ∅ then
all classified = true

else
Choose Xn+1 = argmaxx∈(Un∪Pn)\Sn

∥∥Rmin
n (x)−Rmax

n (x)
∥∥
2

Sn+1 = Sn ∪ {Xn+1}
Sample Zn+1,j = fj(Xn+1) + εn+1,j for all j ∈ {1, . . . , q}
n = n+ 1

until all classified;

return P̂ = Pn

10

simulator, but is not for a stochastic simulator—where replicated simulations at

a given point yield independent and identically distributed random responses.

To circumvent this limitation, we remove the requirement that Xn+1 should

belong to X \ Sn and use the correct posterior variance at all points, visited or

not; more explicitly, we replace (4) and (8) with

Rn(x) = Rn−1(x) ∩Qn(x) . (9)

and

Xn+1 = argmax
x∈Un∪Pn

∥∥Rmin
n (x)−Rmax

n (x)
∥∥
2
. (10)

As a consequence, PALS can visit a given point several times and thus the number

of iterations of the algorithm is not bounded as in PAL by the cardinality of the

search domain. We introduce a user-defined maximum budget of evaluations nmax,

which will constitute our main stopping criterion (since it is often extremely

costly, in the problems that we consider, to reach a situation where all the points

are classified in Pn or in Nn). We note, however, that keeping the cardinality

of Un as an additional stopping criterion is the only reason why the distinction

between Un and Pn is still relevant.

Modification 2: Removing the intersection of uncertainty regions. Zuluaga et al.

(2013) define Rn at each iteration as the intersection of Rn−1 and Qn in (4) in

order to get a non-increasing sequences of regions—a monotonicity property

which plays a role in the proof of their theoretical results. However, problematic

situations can arise as a result of this definition, where Qn(x) is not contained

in Rn−1(x) for some x at some iteration n. When this happens, Rn(x) is empty

and the subsequent behavior of the algorithm is not properly defined since the

pessimistic and optimistic outcomes at x, Rmax
n (x) and Rmin

n (x), are not defined.

In the PALS algorithm we remove intersections to address this issue, and thus

further simplify (9) to

Rn(x) = Qn(x). (11)

As a consequence, the subsets Pn and Nn defined by (5)–(6) loose their mono-

tonicity property as well, and thus membership of all the points in X to Pn, Nn
or Un must be re-evaluated at each iteration.

Remark 4. As an alternative, it is possible to keep the original idea of us-

ing intersections and simply “correct” the sets Rn(x) so that Rn(x) always

contains µn(x). This can be achieved by taking Rn(x) to be the smallest hyper-

rectangle that contains both Rn−1 ∩ Qn(x) and {µn(x)}. Note that doing so

artificially fixes the problem of empty regions, but nonetheless destroys the mono-

tonicity property, which was the original motivation of Zuluaga et al. (2013) for

introducing intersections. For the sake of completeness, this approach will also

be assessed in our experimental section.

11

Modification 3: Batches of simulations. When the output variability is large, a

single simulation provides a very noisy evaluation of the quantities of interest,

which are the expected responses fj of the simulator, and therefore yields by

itself little progress in the optimization procedure. A natural idea to gain more

information, when parallel computing resources are available, is to perform

several simulations at the same point at each iteration of the algorithm. An

approach of this type has been proposed for instance by Binois et al. (2019).

We denote by k the size the simulation batches, i.e., the number of simulations

performed at the same point at each iteration.

The number of simulation results available after n iterations with batch

size k is equal to N = nk, and thus grows quickly if k is large (for instance

k = 200 or more in Section 5). Such a large number of results poses apparently

a challenge for Gaussian process regression, whose computational complexity

is O(N3). However, this complexity can be reduced, without any approximation,

since Gaussian process regression with Gaussian noise only uses the empirical

mean and variance of the simulation results at each point x ∈ X where at least

one simulation was made (see, e.g., Dutrieux et al., 2015a; Binois et al., 2018): a

careful implementation leveraging this fact has a complexity that scales cubically

with the number of “visited” points, which does not grow with k.

Remark 5. Another approach, not pursued in this article, would consist in

sampling simultaneously multiple locations at each iteration, as proposed by Habib

et al. (2016), for instance.

Predicting the Pareto front and set. PAL uses the condition Un = ∅ as a stopping

criterion, and then estimates the unknown Pareto set using the set Pn obtained at

the final iteration. With the introduction of a budget-based stopping condition,

however, PALS typically stops before all points are classified. A first approach

to estimate the Pareto front and set consists in applying Pareto domination

rule directly to the posterior means of the GP models, in a “plug-in” manner.

This approach, however, does not take the residual uncertainty into account.

An alternative approach would be to generate conditional sample paths of the

Gaussian processes instead to represent possible realizations of the objective

functions, and then use them to estimate for each point in the objective space

the probabilities of that point being dominated (also called empirical attainment

function in Binois et al. (2015)), and for each point in the input space, the

probabilities of belonging to the Pareto set (also called coverage probabilities).

An illustration is provided for the Pareto front and set in Figure 6. It is worth

noting that a high confidence about the Pareto front location does not imply a

high confidence about the location of the Pareto set, and vice versa.

Although providing enriched information about the Pareto front and set,

this approach entails a higher computational cost. Therefore, for the remaining

sections, the plug-in approach is used to compute estimates of the Pareto front

and the Pareto set (at the final iteration, but also at each iteration for the

12

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input space

0.05

0.50

0.95

0%

25%

50%

75%

100%

Figure 6: Bi-objective and bi-dimensional example of a normalized heat map representing the
probability of a point being dominated for the objective space (top) and the probability of
belonging to the Pareto set (bottom) constructed from a probabilistic model (built from the
same data and model as in Figure 2, using 40 sample paths). Level curves shown for 5%, 50%,
and 95% levels.

13

Algorithm 2: The PALS algorithm

Input : input space X; GP priors µ0,j , σ0,j , kj ,∀j; εj ; βi; nmax; k.

Output : predicted Pareto set P̂.
n = 0, all classified = false
repeat

Obtain µn(x) and σn(x) for all x ∈ X
Rn(x) = Qµn,σn,βn

(x) for all x ∈ X
Pn = ∅, Nn = ∅, Un = ∅
forall x ∈ X do

if
(
@x′ ∈ X \ {x} : Rmin

n (x′) + ε ≺ Rmax
n (x)− ε

)
then

Pn = Pn ∪ {x}
else if

(
∃x′ ∈ X \ {x} : Rmax

n (x′)− ε ≺ Rmin
n (x) + ε

)
then

Nn = Nn ∪ {x}
else

Un = Un ∪ {x}

if Un = ∅ then
all classified = true

else
Choose Xn+1 = argmaxx∈(Un∪Pn)

∥∥Rmin
n (x)−Rmax

n (x)
∥∥
2

Obtain k samples:

Z
(`)
n+1,j = fj(Xn+1) + ε

(`)
n+1,j , 1 ≤ j ≤ q, 1 ≤ ` ≤ k

n = n+ 1

until all classified or n ≥ nmax;

return P̂

purpose of algorithm monitoring and, in our benchmarks, for error assessment).

5. Numerical experiments

5.1. Methodology

In this section, PALS is compared with a set of alternative optimization

methods: 1) a pure random search approach (PRS), where evaluation points are

drawn from the uniform probability distribution on X; 2) an alternative random

search approach, where evaluation points are drawn from a model-based proba-

bility distribution concentrated on “promising” regions; and 3) two scalarization

approaches, which are modifications of the ParEGO algorithm (Knowles, 2006).

More precisely, the alternative random search approach consists in drawing

the next evaluation point from a distribution proportional to the probability

of that point being misclassified, according to the posterior distributions of the

Gaussian processes ξj .

For the scalarization techniques, we consider two modified versions of the

ParEGO algorithm suitable for a stochastic setting. ParEGO relies on the use of

14

EI as an infill criterion which is suitable only for deterministic observations. The

first version, hereafter named ParEGO-EIm, uses the EIm criterion defined in

Vazquez et al. (2008), which considers the Expected Improvement with respect

to the best prediction over the visited points (as seen used in the implementation

in the PESM branch of Spearmint (Spearmint, 2016)). The second one, hereafter

named ParEGO-KG, uses the Knowledge Gradient (KG) sampling criterion

instead, which is suitable for a stochastic setting (Frazier et al., 2009).

For the PALS approach, when an increasing β is considered (cf. Equation (7)),

the parameter δ is taken equal to 0.05 as in the original article. We consider ε = 0

for all experiments, given that this parameter has not shown a significant effect

in our numerical experiments (details available in the supplementary material).

Numerical experiments are performed over a set of nine bi-objective and

bi-dimensional test problems subject to additive homoscedastic Gaussian noise

and defined over a finite 21× 21 input space (see Appendix A). A total of 200

optimization runs are performed for each problem and optimization method.

All the methods except PRS rely on GP modeling: the GP priors on the two

objectives are independent, with a constant unknown mean and a Matérn 5/2

covariance function. The unknown mean is integrated out using an improper

uniform prior (“ordinary kriging”), and the parameters of the covariance function

are estimated at each iteration by the Restricted Maximum Likelihood (ReML)

method (see, e.g., Santner et al., 2003).

Parameters are initialized based on an initial design which is built by choosing

among 1000 initializations of 20 randomly selected points so as to maximize

the minimal distance among them. The initial observations are obtained by

performing 10 evaluations at each initial point. A total budget nmax of 50000

evaluations is allowed at each experiment in addition to the initial 20× 10 = 200

evaluations. At each iteration, a batch of k evaluations is performed at the

selected point. The Pareto set and front predictions are generated, for all

methods, using the plug-in approach described in Section 4.

The performance of the methods is assessed using two metrics, averaged over

the 200 runs: 1) the volume of the symmetric difference between the predicted

dominated region and the true dominated region, and 2) the misclassification

rate, meaning the percentage of points incorrectly classified in the Pareto set

prediction. See Appendix B for details. These metrics provide quantitative

information on the error between the prediction and the correct Pareto set or

front.

Unless otherwise mentioned, the setup used for experiments is as follows:

no intersection considered, a constant value for β corresponding to the 0.50

probability interval, a null value for ε, and a value of 200 for k.

5.2. Results

Each of the numerical experiments presented in this section has been carried

out on the nine test problems. For brevity, only some representative results are

presented; the remaining results are available in the supplementary material.

15

0 50 100 150 200 250

Iterations

10-2

10-1

V
o

lu
m

e
 o

f
th

e
 s

y
m

m
e

tr
ic

 d
if
fe

re
n

c
e

 (
lo

g
 s

c
a

le
)

p=0.10

p=0.25

p=0.50

p=0.75

p=0.90

p=0.99

Increasing

Coverage

Figure 7: Comparison of average volume of the symmetric difference for problem g2, between
the increasing-β approach and fixed β for coverage values of 0.10, 0.25, 0.50, 0.75, 0.90, and
0.99.

Influence of the parameter β of PALS. We are interested in testing the usefulness

of an increasing β value for the algorithm’s performance. For this purpose, several

constant β values were chosen to generate intervals with different coverage

probabilities p. More precisely, in this context, we define the coverage probability

as the probability that, for any particular objective j, at any point x ∈ X, the

function value lies within the region µj(x)± β1/2σj(x). Since the posterior is

Gaussian, this definition implies that
√
β = Φ−1(0.5+0.5p), where Φ denotes the

standard normal cumulative distribution function. These values are compared

with the increasing-β approach proposed in the original PAL algorithm (cf.

Equation (7)).

The choice of β impacts the size of the uncertainty region around the pre-

diction. A small β allows the algorithm to focus only on the most promising

regions, by quickly excluding those that seem less interesting. On the other

hand, a large β favors exploration by taking longer to exclude points from being

visited.

In terms of algorithm performance, an example is presented in Figure 7 for

problem g2, for the volume of the symmetric difference error metric, comparing

the increasing-β approach with fixed β for coverage values of 0.10, 0.25, 0.50,

0.75, 0.90, and 0.99.

When looking at the other problem results (as presented in the supplementary

material), the choice of the ideal β seems to be problem-dependent and varies

depending on whether the metric used focuses on the quality of Pareto front or

Pareto set predictions. However, constant values corresponding to 0.50 and 0.75

probability regions have shown an overall interesting performance.

16

Additionally, experiments were performed to assess the impact of the noise

level on the choice of the ideal β. Figure 8 presents the same problem as Figure 7

but with two different noise levels. In our benchmark, reduced noise levels seem

to render the β choice less important given the similar performance observed

among choices. Small coverage levels (10% or 25%), although promising to

accelerate classification, should be avoided given the low performance when

considering the Pareto front prediction quality metric. Coverage levels between

50% and 90% have shown satisfying results across a multitude of problems and

noise levels for both metrics. The increasing-β approach (in the form proposed

by the PAL authors) brings no significant advantage when compared to a fixed β

for the classification error metric, but usually underperforms for the volume of

the symmetric difference metric.

Considering the results obtained, a β with constant value corresponding to

the 0.50 probability interval is used in PALS in the following experiments.

About intersections. In the PALS algorithm, intersecting hyper-regions does

not seem to accelerate or improve the results. Figure 9 presents a comparison

between the non-intersecting and intersecting variants of PALS by showing

for the different problems the average performance metrics of using (or not)

intersections, normalized by the reference PRS performance. It turns out that

average results in the middle and final iterations are very similar, with a slightly

better performance of PALS without intersection for the misclassification rate

metric. Detailed results can be consulted in supplementary material. Given

these results, only the non-intersecting version of PALS will be considered for

the remainder of the article.

Influence of the batch size. When using a large budget of evaluations, the results

show no significant impact of the batch size k in the average metrics obtained at

the final iteration. However, it is worth noting that a smaller batch size for most

problems allowed a faster reduction in metric value at initial iterations. Figure 10

depicts the comparison between the average metrics for problem g5 for k values

of 200, 500, 1000 and 2000. This acceleration of the initial convergence can also

be observed for the other problems on the plots available in the supplementary

material. Given the results, k = 200 will be used for the remainder of the article.

Comparison with other approaches. This section compares the results of the

different approaches: PRS, an alternative random search approach (we will

name it “Concentrated Random Sampling” (CoRS)), two modified ParEGO

approaches, and PALS. For PALS, the default parameters are used: a β with

constant value corresponding to the 0.50 probability interval, an ε of 0, no

intersections, and a k value of 200.

Figure 11 presents the evolution of the performance metrics on problem g8
for the considered methods. Performance illustration for the remaining problems

is available in the supplementary material. We can observe that PALS presents

17

0 50 100 150 200 250

Iterations

10-3

10-2

10-1
V

o
lu

m
e

 o
f

th
e

 s
y
m

m
e

tr
ic

 d
if
fe

re
n

c
e

 (
lo

g
 s

c
a

le
)

p=0.10

p=0.25

p=0.50

p=0.75

p=0.90

p=0.99

Increasing

Coverage

0 50 100 150 200 250

Iterations

10-4

10-3

10-2

10-1

V
o

lu
m

e
 o

f
th

e
 s

y
m

m
e

tr
ic

 d
if
fe

re
n

c
e

 (
lo

g
 s

c
a

le
)

p=0.10

p=0.25

p=0.50

p=0.75

p=0.90

p=0.99

Increasing

Coverage

Figure 8: Average volume of the symmetric difference for problem g2 for different β values,
with the problem noise standard deviation divided by 10 (top) and by 100 (bottom)

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PALS without intersection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
A

L
S

 w
it
h
 i
n
te

rs
e
c
ti
o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PALS without intersection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
A

L
S

 w
it
h
 i
n
te

rs
e
c
ti
o
n

Figure 9: Performance comparison between PALS algorithm with and without intersection,
normalized by the reference PRS performance. Average performance, for each problem for
the volume of the symmetric difference (top) and misclassification rate (bottom), considering
200 random initialization, obtained after a budget of 25000 evaluations (circles) and 50000
evaluations (diamonds).

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 104

10-2

10-1

V
o
lu

m
e
 o

f
th

e
 s

y
m

m
e
tr

ic
 d

if
fe

re
n
c
e
 (

lo
g
 s

c
a
le

) k = 200

k = 500

k = 1000

k = 2000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

k = 200

k = 500

k = 1000

k = 2000

Figure 10: Average performance metrics volume of the symmetric difference (top) and misclas-
sification rate (bottom) for problem g5, when considering k of 200, 500, 1000 and 2000.

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 104

10-2

10-1

V
o
lu

m
e
 o

f
th

e
 s

y
m

m
e
tr

ic
 d

if
fe

re
n
c
e
 (

lo
g
 s

c
a
le

)

Random

ParEGO EI
m

ParEGO KG

CoRS

PALS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 104

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

 (
lo

g
 s

c
a

le
)

Random

ParEGO EI
m

ParEGO KG

CoRS

PALS

Figure 11: Average volume of the symmetric difference (top) and misclassification rate (bottom)
on test problem g8 for PRS, CoRS, ParEGO-EIm, ParEGO-KG and PALS.

a good performance level on both metrics, allowing for better Pareto set and

front estimations in most cases.

A summary of the numerical results obtained when comparing the proposed

PALS approach and the reference methods over the set of benchmark problems

is presented in Table 1. PALS consistently outperforms the other methods

in terms of the ability to better estimate the Pareto set (as seen through the

misclassification rate metric). For Pareto front estimation (see volume of the

symmetric difference metric), the most efficient algorithm depends on the problem

considered, with PALS presenting an overall very good performance—although

not being the best performer for problems g7 and g9, it places second with a

metric value close to the leader. Additionally, PALS performs significantly better

than pure random search on both metrics for all problems.

21

Table 1: Average metrics (value in percentage), for the volume of the symmetric difference (Vd)
and misclassification rate (M) at final iteration, for PRS, CoRS, ParEGO-EIm, ParEGO-KG,
and PALS. The best metric values are highlighted in bold with a gray background. Metrics
at 10% of the best metric are highlighted with a light gray background and considered as
acceptable performance.

PRS CoRS ParEGO-EIm ParEGO-KG PALS

g Vd M Vd M Vd M Vd M Vd M

g1 0.793 7.568 0.660 7.501 0.786 11.418 0.687 6.211 0.596 6.061
g2 0.968 1.222 0.712 1.058 0.638 1.330 0.502 1.103 0.443 0.966
g3 1.098 3.491 1.143 3.456 0.707 3.388 0.711 3.019 0.700 2.930
g4 1.245 2.050 1.214 2.180 1.025 2.203 0.756 1.827 0.744 1.594
g5 1.076 3.815 0.749 3.321 0.920 7.975 0.683 5.743 0.594 2.842
g6 1.451 0.712 0.727 0.391 0.467 1.545 0.429 1.049 0.394 0.383
g7 0.872 2.492 0.624 2.539 0.512 4.675 0.295 3.022 0.408 2.230
g8 0.868 4.553 0.776 4.752 0.731 6.517 0.568 4.320 0.552 3.658
g9 1.068 1.471 0.694 1.169 0.639 2.720 0.359 1.466 0.385 0.850

6. Conclusions and future work

In this article, an extension of the Pareto Active Learning (PAL) algorithm

was presented, which makes it suitable for stochastic simulators with possibly

high output variability. This new version was named Pareto Active Learning

for Stochastic Simulators (PALS) and showed promising results in a numerical

benchmark on nine bi-objective test problems in dimension two. Performance

was compared with a Pure Random Search (PRS) approach, a Concentrated

Random Sampling (CoRS) approach and two modified ParEGO algorithms. For

the considered benchmark, PALS is the best algorithm to estimate the Pareto set

solutions of the problem. It is also the best performer for Pareto front estimation

for most of the problems. The modified ParEGO algorithm named ParEGO-KG

also presents promising results when considering the Pareto front estimation.

We believe that, for future work, comparing the proposed algorithm with

alternative approaches such as SK-MOCBA (Rojas Gonzalez et al., 2020) or

PESMO (Hernández-Lobato et al., 2016) should be envisaged. Additionally, we

could be interested in comparisons with algorithms from the Multi-objective

Evolutionary Algorithms (MOEA) literature. Interesting perspectives could also

include creating hybrid algorithms that could leverage the different advantages

of each algorithm.

A difference in PALS with regards to PAL is that each point selected during

the optimization process is evaluated several times. This is especially advanta-

geous when multiple parallel computing units are available or when the infill

criterion to choose the next point to evaluate is expensive to compute with

regards to the actual simulation time. Although the numerical experiments have

shown no significant difference at final iteration between different batch sizes,

the intermediate performances were different. Results show that smaller batch

sizes have better performance at initial stages, which seems to indicate a possible

22

interest in having a noise-level dependent adaptive batch size (Lyu & Ludkovski,

2022) during the optimization process.

A main component in the PAL approach is the β parameter that defines

the size of the uncertainty region considered around the model’s prediction. In

the original work, an increasing β is proposed. Large parameter values tend

to promote exploration, while smaller values promote exploitation. Numerical

experiments have shown, for the problems considered, that selecting a constant

value for the parameter could provide better results than the original approach.

Nevertheless, the concept of using an increasing β parameter seems relevant,

but further studies should be performed to determine a suitable initial value

and rate of change depending on the problem structure. Therefore, the ideal β

selection seems to depend on the problem and noise level, and should still be

further studied.

Finally, even though PALS is an algorithm suitable for the case where the

input space is finite, we believe that the main idea could be applied—with some

adaptations—to continuous input spaces.

References

Astudillo, R., & Frazier, P. I. (2017). Multi-attribute Bayesian optimization

under utility uncertainty. In NIPS Workshop on Bayesian Optimization,

BayesOpt 2017 . Long Beach, CA, USA. 5 pages.

Belakaria, S., Deshwal, A., & Doppa, J. R. (2020). Max-value entropy search for

multi-objective Bayesian optimization with constraints. In Machine Learning

and the Physical Sciences, NeurIPS ML4PS 2020 . 8 pages.

Binois, M., Ginsbourger, D., & Roustant, O. (2015). Quantifying uncertainty

on Pareto fronts with Gaussian process conditional simulations. European

Journal of Operational Research, 243 , 386–394.

Binois, M., Gramacy, R. B., & Ludkovski, M. (2018). Practical heteroscedastic

Gaussian process modeling for large simulation experiments. Journal of

Computational and Graphical Statistics, 27 , 808–821.

Binois, M., Huang, J., Gramacy, R. B., & Ludkovski, M. (2019). Replica-

tion or exploration: Sequential design for stochastic simulation experiments.

Technometrics, 61 , 7–23.

Branke, J., & Zhang, W. (2015). A new myopic sequential sampling algorithm

for multi-objective problems. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K.

Roeder, C. Macal, & M. D. Rossetti (Eds.), Proceedings of the 2015 Winter

Simulation Conference. December 6–9, Huntington Beach, CA, USA.. IEEE.

Chiles, J.-P., & Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty .

John Wiley & Sons.

23

Dutrieux, H., Aleksovska, I., Bect, J., Vazquez, E., Delille, G., & François, B.

(2015a). The informational approach to global optimization in presence of

very noisy evaluation results. Application to the optimization of renewable

energy integration strategies. In 47èmes Journées de Statistique de la SFdS .

Dutrieux, H., Delille, G., François, B., & Malarange, G. (2015b). An innovative

method to assess solutions for integrating renewable generation into distri-

bution networks over multi-year horizons. In 23rd International Conference

and Exhibition on Electricity Distribution (CIRED 2015). June 15–18, Lyon,

France.

Emmerich, M. T. M., Giannakoglou, K. C., & Naujoks, B. (2006). Single-and

multiobjective evolutionary optimization assisted by Gaussian random field

metamodels. IEEE Transactions on Evolutionary Computation, 10 , 421–439.

Feliot, P., Bect, J., & Vazquez, E. (2017). A Bayesian approach to constrained

single- and multi-objective optimization. Journal of Global Optimization, 67 ,

97–133.

Frazier, P., Powell, W., & Dayanik, S. (2009). The knowledge-gradient policy

for correlated normal beliefs. INFORMS Journal on Computing , 21 , 599–613.

Habib, A., Singh, H. K., & Ray, T. (2016). A multi-objective batch infill strategy

for efficient global optimization. In 2016 IEEE Congress on Evolutionary

Computation. July 24–29, Vancouver, Canada. (pp. 4336–4343). IEEE.

Hernández-Lobato, D., Hernández-Lobato, J. M., Shah, A., & Adams, R. P.

(2016). Predictive Entropy Search for Multi-objective Bayesian Optimization

with Constraints. In 33rd International Conference on Machine Learning.

June 20–22, New York, New York, USA (pp. 1492–1501). PMLR volume 48

of Proceedings of Machine Learning Research.

Hunter, S. R., Applegate, E. A., Arora, V., Chong, B., Cooper, K., Rincón-

Guevara, O., & Vivas-Valencia, C. (2019). An introduction to multiobjective

simulation optimization. ACM Transactions on Modeling and Computer

Simulation, 29 , 1–36.

Hunter, S. R., & McClosky, B. (2016). Maximizing quantitative traits in the mat-

ing design problem via simulation-based Pareto estimation. IIE Transactions ,

48 , 565–578.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization

of expensive black-box functions. Journal of Global Optimization, 13 , 455–492.

Knowles, J. (2006). ParEGO: A hybrid algorithm with on-line landscape approxi-

mation for expensive multiobjective optimization problems. IEEE Transactions

on Evolutionary Computation, 10 , 50–66.

24

Lee, L. H., Chew, E. P., Teng, S., & Goldsman, D. (2010). Finding the non-

dominated Pareto set for multi-objective simulation models. IIE Transactions ,

42 , 656–674.

Lyu, X., & Ludkovski, M. (2022). Adaptive batching for Gaussian process

surrogates with application in noisy level set estimation. Statistical Analysis

and Data Mining: The ASA Data Science Journal , 15 , 225–246.

Matheron, G. (1963). Principles of geostatistics. Economic Geology , 58 , 1246–

1266.

Mattila, V., & Virtanen, K. (2014). Maintenance scheduling of a fleet of fighter

aircraft through multi-objective simulation-optimization. Simulation, 90 ,

1023–1040.

Pasupathy, R., Hunter, S. R., Pujowidianto, N. A., Lee, L. H., & Chen, C. H.

(2014). Stochastically constrained ranking and selection via score. ACM

Transactions on Modeling and Computer Simulation, 25 , 1–26.

Picheny, V. (2015). Multiobjective optimization using Gaussian process emulators

via stepwise uncertainty reduction. Statistics and Computing , 25 , 1265–1280.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning . MIT Press.

Rojas Gonzalez, S., Jalali, H., & Van Nieuwenhuyse, I. (2020). A multiobjective

stochastic simulation optimization algorithm. European Journal of Operational

Research, 284 , 212–226.

Santner, T. J., Notz, W. I., & Williams, B. J. (2003). The Design and Analysis

of Computer Experiments. Springer.

Spearmint (2016). Spearmint: Bayesian optimization codebase - PESM branch.

https://github.com/HIPS/Spearmint/tree/PESM (accessed: 2021-03-30).

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian process

optimization in the bandit setting: no regret and experimental design. In

J. Fürnkranz, & T. Joachims (Eds.), Proceedings of the 27th International

Conference on Machine Learning. June 21–24, Haifa, Israel (pp. 1015–1022).

Omnipress.

Vazquez, E., Villemonteix, J., Sidorkiewicz, M., & Walter, É. (2008). Global

optimization based on noisy evaluations: An empirical study of two statistical

approaches. Journal of Physics: Conference Series, 135 .

Zuluaga, M., Krause, A., Sergent, G., & Püschel, M. (2013). Active learning

for multi-objective optimization. In S. Dasgupta, & D. McAllester (Eds.),

Proceedings of the 30th International Conference on Machine Learning. June

17–19, Atlanta, Georgia, USA (pp. 462–470). PMLR volume 28 of Proceedings

of Machine Learning Research.

25

https://github.com/HIPS/Spearmint/tree/PESM

Table A.1: Definition of functions f1 to f15

f Definition

f1 780000 + 110000x1 − 12000x2 − 36000x1x2 + 280000x21 + 50000x22
f2 0.83 + 0.17x1 − 0.015x2 − 0.0038x1x2 + 0.061x21 + 0.0011x22
f3 e(0.36(x1+x2)) + 0.6x1 + 1.2x22 + 3 sin(0.8πx1)
f4 (x2 − a ∗ x1. ∗ x1 + b ∗ x1 − 6).2 + c ∗ cos(x1) + 10
f5 100(x2 − x21)2 + (1− x1)2

f6 to f15 c1 + c2x1 + c3x2 + c4x1x2
+ c5x

2
1 + c6x

2
2 + c7x

2
1x2 + c8x1x

2
2 + c9x

3
1 + c10x

3
2

Table A.2: Coefficients used for functions f6 to f15

Function coefficients

f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
c1 0.36 0.68 0.094 0.61 -0.38 -0.19 0.78 -0.45 -0.45 0.75
c2 8.1 -9.4 -7.2 5 8.5 4.8 6 7.8 -9.3 7.4
c3 7.5 9.1 7 2.3 1.4 2.1 -4.7 -7.7 -3.5 -8.2
c4 -83 -2.9 49 -5.3 63 42 90 28 14 -98
c5 26 -60 68 30 81 56 -85 34 -9.7 15
c6 -80 72 -49 -66 96 77 -82 -31 22 -31
c7 -440 160 630 -170 -120 410 600 -500 -880 -450
c8 94 -830 -510 -99 -780 360 890 -170 -370 -62
c9 920 -580 860 -830 -480 150 370 -480 550 780
c10 930 -920 -300 430 -180 -16 -740 530 390 -260

Appendix A. Benchmark problems

This section introduces the test problems used for the numerical experiments

of Section 5.

All the test functions are presented in Table A.1 and are defined in [0, 1]
2
.

Functions f1 and f2 mimick a real-life problem presented by Dutrieux et al.

(2015b). Functions f3, f4 (Branin) and f5 (Rosenbrock) are well-known test func-

tions, rescaled to [0, 1]
2
. Functions f6 to f15 correspond to randomly generated

third degree polynomials, whose coefficients are presented in Table A.2. In our

experiments, the values of these 15 test functions are scaled to [0, 1], assuming

that the minimum and maximum values are known (cf. Remark 2).

A total of nine problems denoted by g1 to g9 are proposed based on the

previously defined functions (see Table A.3). For each problem, the input set X
is a 21× 21 regular grid on [0, 1]

2
. The Pareto fronts are presented in Figure A.1

and the Pareto sets in Figure A.2.

26

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
1

All points

Pareto front

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
3

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
4

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
5

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
6

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
7

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
8

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
9

Figure A.1: Pareto front solutions for test problems.

27

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
2

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
3

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
4

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
5

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
6

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
7

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
8

0 0.5 1

0

0.2

0.4

0.6

0.8

1

problem g
9

Figure A.2: Pareto set solutions for test problems.

28

Table A.3: Definition of nine test problems using the test functions presented in Tables A.1–A.2.
For problems g5 to g9 the input argument is shifted by x0: if function fk is indicated in the
table, then the actual objective function is x 7→ fk(x − x0). The last two columns provide
respectively the cardinality of the Pareto set and the proportion of Pareto-optimal solutions in
the 21x21 input set.

objectives noise variance

g fg1 fg2 σ2
1 σ2

2 x0 | P | | P | / | X |
g1 f1 f2 3.6× 109 3.9× 10−3 136 31%
g2 f4 f3 3.1× 102 4.8× 103 10 2%
g3 f4 f5 3.1× 102 5.7× 108 12 3%
g4 f3 f5 4.8× 103 5.7× 108 7 2%
g5 f6 f7 7.0× 102 5.6× 103 (0.5, 0.5) 60 14%
g6 f8 f9 5.8× 102 3.1× 103 (0.5, 0.5) 22 5%
g7 f10 f11 2.1× 103 3.2× 102 (0.5, 0.5) 67 15%
g8 f12 f13 1.4× 104 1.6× 103 (0.3, 0.8)(0.6, 0.6) 63 14%
g9 f14 f15 3.7× 103 2.0× 104 (0.3, 0.8) 36 8%

Appendix B. Performance metrics

We introduce the performance metrics proposed to assess prediction quality.

The volume of the symmetric difference measures a global error in the estimation.

We use it to assess Pareto front estimates. The misclassification rate is used as

a global error metric to evaluate Pareto set estimates.

Appendix B.1. Volume of the symmetric difference

Let the “dominated region” defined between a Pareto front F and a reference

point R be the set of all the points that simultaneously dominate R, and

are dominated by a member of F : D(F) = ∪y?∈F {y ∈ Rq : y? ≺ y ≺ R} .

Recalling that our objective functions are all scaled to [0, 1], we takeR = (1.1, 1.1)

in our (bi-objective) experiments. The volume of the dominated region is denoted

by V (F), and is illustrated in Figure B.1 (left).

We can then define the volume of the symmetric difference of the hypervolumes

defined between the true Pareto front and the estimation, and a reference pointR.

We denote it Vd(F?, F̂):

Vd(F?, F̂) = V (D(F) \D(F?)) ∪ (D(F?) \D(F)), (B.1)

and illustrate it in Figure B.1 (right):

Appendix B.2. Misclassification rate

The misclassification rate provides a measure of the error of a Pareto Set

prediction. Consider a true Pareto set P? and a Pareto set prediction P̂. Then

29

R R

Figure B.1: Hypervolume generated (gray area) between a Pareto front prediction F̂ (filled
line) and a reference point R, in a bi-objective example (left), and volume of the symmetric

difference (gray area) between a Pareto front F (dashed line) and a prediction F̂ (filled line)
using reference point R, in a bi-objective example (right).

the misclassification rate M(P?, P̂) is defined as the proportion of points that

differ between the prediction and true sets:

M(P?, P̂) =
1

|X|
∑
x∈X

(
1x∈P? − 1x∈P̂

)2
. (B.2)

30

	1 Introduction
	2 Bayesian multi-objective optimization for stochastic simulators
	3 The original PAL algorithm
	4 PALS: modification of the PAL algorithm for stochastic simulators
	5 Numerical experiments
	5.1 Methodology
	5.2 Results

	6 Conclusions and future work
	References
	Appendices
	Appendix A Benchmark problems
	Appendix B Performance metrics
	Appendix B.1 Volume of the symmetric difference
	Appendix B.2 Misclassification rate

