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Abstract

This document presents the numerical experiments described in the article

“Bayesian multi-objective optimization for stochastic simulators: an extension of

the Pareto Active Learning method”.

This document is organized as follows:

1. Influence of the parameter β of PALS.

2. Influence of the parameter ε of PALS.

3. Using intersections in PALS.

4. Influence of the batch size.5

5. Comparison of two random-based proposed alternatives.

6. Comparison with other approaches.

1. Influence of the parameter β of PALS

The average volume of the symmetric difference for problems g1 to g9 is

illustrated in figures 1 to 18 for the three different noise levels considered.10

While figures 19 to 36 illustrate the classification error metric, for the same

problems g1 to g9 for the three different noise levels considered.
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Figure 1: Average volume of the symmetric difference for problem g1 for different β values
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Figure 2: Average volume of the symmetric difference for problem g1 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 3: Average volume of the symmetric difference for problem g2 for different β values
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Figure 4: Average volume of the symmetric difference for problem g2 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 5: Average volume of the symmetric difference for problem g3 for different β values
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Figure 6: Average volume of the symmetric difference for problem g3 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 7: Average volume of the symmetric difference for problem g4 for different β values
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Figure 8: Average volume of the symmetric difference for problem g4 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 9: Average volume of the symmetric difference for problem g5 for different β values
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Figure 10: Average volume of the symmetric difference for problem g5 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 11: Average volume of the symmetric difference for problem g6 for different β values
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Figure 12: Average volume of the symmetric difference for problem g6 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 13: Average volume of the symmetric difference for problem g7 for different β values
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Figure 14: Average volume of the symmetric difference for problem g7 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 15: Average volume of the symmetric difference for problem g8 for different β values
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Figure 16: Average volume of the symmetric difference for problem g8 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 17: Average volume of the symmetric difference for problem g9 for different β values
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Figure 18: Average volume of the symmetric difference for problem g9 for different β values,
with the problem noise standard deviation divided by 10 (left) and by 100 (right)
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Figure 19: Classification error for problem g1 for different β values
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Figure 20: Classification error for problem g1 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 21: Classification error for problem g2 for different β values

8



0 50 100 150 200 250

Iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

Problem g2 - noise std divided by 10

0.10

0.25

0.50

0.75

0.90

0.99

Increasing

Coverage

0 50 100 150 200 250

Iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

C
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

Problem g2 - noise std divided by 100

0.10

0.25

0.50

0.75

0.90

0.99

Increasing

Coverage

Figure 22: Classification error for problem g2 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 23: Classification error for problem g3 for different β values
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Figure 24: Classification error for problem g3 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 25: Classification error for problem g4 for different β values
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Figure 26: Classification error for problem g4 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 27: Classification error for problem g5 for different β values
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Figure 28: Classification error for problem g5 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 29: Classification error for problem g6 for different β values
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Figure 30: Classification error for problem g6 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 31: Classification error for problem g7 for different β values
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Figure 32: Classification error for problem g7 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 33: Classification error for problem g8 for different β values
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Figure 34: Classification error for problem g8 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)
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Figure 35: Classification error for problem g9 for different β values
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Figure 36: Classification error for problem g9 for different β values, with the problem noise
standard deviation divided by 10 (left) and by 100 (right)

13



2. Influence of the parameter ε of PALS

When considering the impact of ε on the metric value, at final iteration, the

result for the average volume of the symmetric difference is presented in Figure15

37, while the average classification error in figure 38.

The average metrics evolution, for problems g1 to g9, for the different ε

values is presented in Figures 39 to 47 for the average volume of the symmetric

difference metric, in Figures 48 to 56 for the average classification error metric, in

Figures 57 to 65 for the average Hausdorff distance of the Pareto front prediction,20

and in Figures 66 to 74 for the average Hausdorff distance of the Pareto set

prediction.

The use of ε allows establishing a trade-off between accurate prediction and

classification speed. To illustrate classification speed, Figures 75 to 83 present

the evolution of the average cardinality of the unclassified set for each problem,25

for different values of ε.
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Figure 37: Average volume of the symmetric difference at final iteration for all the problems,
for different ε choices when compared to ε = 0.
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Figure 38: Average classification error at final iteration for all the problems, for different ε
choices when compared to ε = 0.
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Figure 39: Average volume of the symmetric difference metric for problem g1 for different ε
values.
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Figure 40: Average volume of the symmetric difference metric for problem g2 for different ε
values.
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Figure 41: Average volume of the symmetric difference metric for problem g3 for different ε
values.
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Figure 42: Average volume of the symmetric difference metric for problem g4 for different ε
values.
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Figure 43: Average volume of the symmetric difference metric for problem g5 for different ε
values.
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Figure 44: Average volume of the symmetric difference metric for problem g6 for different ε
values.
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Figure 45: Average volume of the symmetric difference metric for problem g7 for different ε
values.
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Figure 46: Average volume of the symmetric difference metric for problem g8 for different ε
values.
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Figure 47: Average volume of the symmetric difference metric for problem g9 for different ε
values.
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Figure 48: Average classification error metric for problem g1 for different ε values.
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Figure 49: Average classification error metric for problem g2 for different ε values.
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Figure 50: Average classification error metric for problem g3 for different ε values.
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Figure 51: Average classification error metric for problem g4 for different ε values.
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Figure 52: Average classification error metric for problem g5 for different ε values.
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Figure 53: Average classification error metric for problem g6 for different ε values.
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Figure 54: Average classification error metric for problem g7 for different ε values.

23



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Problem g8 - Classification Error

PAL

PAL1

PAL32

PAL512

Figure 55: Average classification error metric for problem g8 for different ε values.
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Figure 56: Average classification error metric for problem g9 for different ε values.
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Figure 57: Average Hausdorff distance of the Pareto front prediction for problem g1 for different
ε values.
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Figure 58: Average Hausdorff distance of the Pareto front prediction for problem g2 for different
ε values.
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Figure 59: Average Hausdorff distance of the Pareto front prediction for problem g3 for different
ε values.
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Figure 60: Average Hausdorff distance of the Pareto front prediction for problem g4 for different
ε values.
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Figure 61: Average Hausdorff distance of the Pareto front prediction for problem g5 for different
ε values.
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Figure 62: Average Hausdorff distance of the Pareto front prediction for problem g6 for different
ε values.
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Figure 63: Average Hausdorff distance of the Pareto front prediction for problem g7 for different
ε values.
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Figure 64: Average Hausdorff distance of the Pareto front prediction for problem g8 for different
ε values.
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Figure 65: Average Hausdorff distance of the Pareto front prediction for problem g9 for different
ε values.
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Figure 66: Average Hausdorff distance of the Pareto set prediction for problem g1 for different
ε values.
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Figure 67: Average Hausdorff distance of the Pareto set prediction for problem g2 for different
ε values.
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Figure 68: Average Hausdorff distance of the Pareto set prediction for problem g3 for different
ε values.
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Figure 69: Average Hausdorff distance of the Pareto set prediction for problem g4 for different
ε values.
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Figure 70: Average Hausdorff distance of the Pareto set prediction for problem g5 for different
ε values.
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Figure 71: Average Hausdorff distance of the Pareto set prediction for problem g6 for different
ε values.
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Figure 72: Average Hausdorff distance of the Pareto set prediction for problem g7 for different
ε values.
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Figure 73: Average Hausdorff distance of the Pareto set prediction for problem g8 for different
ε values.
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Figure 74: Average Hausdorff distance of the Pareto set prediction for problem g9 for different
ε values.
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Figure 75: Average cardinality of the unclassified set for problem g1 for different ε values.
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Figure 76: Average cardinality of the unclassified set for problem g2 for different ε values.

34



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 104

0

50

100

150

200

250

300

350

400

C
a
rd

in
a
lit

y
 o

f 
U

n

Problem g3 - Cardinality of U set

 = 0%

 = 0.001%

 = 0.032%

 = 0.512%

Figure 77: Average cardinality of the unclassified set for problem g3 for different ε values.
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Figure 78: Average cardinality of the unclassified set for problem g4 for different ε values.
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Figure 79: Average cardinality of the unclassified set for problem g5 for different ε values.
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Figure 80: Average cardinality of the unclassified set for problem g6 for different ε values.
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Figure 81: Average cardinality of the unclassified set for problem g7 for different ε values.
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Figure 82: Average cardinality of the unclassified set for problem g8 for different ε values.
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Figure 83: Average cardinality of the unclassified set for problem g9 for different ε values.

3. Using intersections in PALS

Figure 84 presents the ratio of average metric values for volume of the

symmetric difference (left) and classification error (right), when compared to the

random approach, for the situations where half the budget us used (circles) and30

total budget (diamonds). What is observed is that intersections do not improve

the algorithm efficiency at neither stages of the process.

If instead of considering the average metrics, we look at the metric value

at each of the experiments, for each problem, for the volume of the symmetric

difference (Figure 85) and for the clssification error (Figure 86) we obtain similar35

conclusions. The fact that the scatter plots present symmetric clouds around

the diagonal dashed line indicate that there seems to be no interest to adopt

one of the methods when compared to the other.

Considering these numerical experiment results, it seems to be no interest in

the use of intersection in the PALS algorithm, given that it bring no advantage40

and can generate problems in the algorithm execution.
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Figure 84: Ratio comparison between PALS algorithm performance (with and without inter-
section) and a random approach. Average hypervolume difference (left) and classification error
(right) considering 500 random initialization, obtained after a budget of 25000 evaluations
(circles) and 50000 evaluations (diamonds).
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Figure 85: Ratio comparison between PALS algorithm performance (with and without inter-
section) and a random approach for all problems. Hypervolume difference for each of the 500
random initialization, obtained after a budget of 50000 evaluations.
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Figure 86: Ratio comparison between PALS algorithm performance (with and without intersec-
tion) and a random approach for all problems. Classification error for each of the 500 random
initialization, obtained after a budget of 50000 evaluations.

4. Influence of the batch size

A comparison between the use of batches of 200, 500, 1000, and 2000 evalua-

tions is performed. For the classification error metric results are presented on

Figures 87 to 87.45

For the average hypervolume metric results are presented on Figures 96 to

96.

We observe clearly that, although the batch size choice has no impact at the

final iteration average metric value, the smaller batch size presents better results

at early phases.50

We can assume that a smaller batch size allows an initial stage space ex-

ploration that increases the quality of the prediction models. However, in all

observed cases, at a final stage no significant differences were observed.
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Figure 87: Average classification error comparison for problem g1 when considering k of 200,
500, 1000 and 2000.
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Figure 88: Average classification error comparison for problem g2 when considering k of 200,
500, 1000 and 2000.
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Figure 89: Average classification error comparison for problem g3 when considering k of 200,
500, 1000 and 2000.
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Figure 90: Average classification error comparison for problem g4 when considering k of 200,
500, 1000 and 2000.
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Figure 91: Average classification error comparison for problem g5 when considering k of 200,
500, 1000 and 2000.
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Figure 92: Average classification error comparison for problem g6 when considering k of 200,
500, 1000 and 2000.
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Figure 93: Average classification error comparison for problem g7 when considering k of 200,
500, 1000 and 2000.
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Figure 94: Average classification error comparison for problem g8 when considering k of 200,
500, 1000 and 2000.
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Figure 95: Average classification error comparison for problem g9 when considering k of 200,
500, 1000 and 2000.
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Figure 96: Average hypervolume error comparison for problem g1 when considering k of 200,
500, 1000 and 2000.
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Figure 97: Average hypervolume error comparison for problem g2 when considering k of 200,
500, 1000 and 2000.
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Figure 98: Average hypervolume error comparison for problem g3 when considering k of 200,
500, 1000 and 2000.
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Figure 99: Average hypervolume error comparison for problem g4 when considering k of 200,
500, 1000 and 2000.
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Figure 100: Average hypervolume error comparison for problem g5 when considering k of 200,
500, 1000 and 2000.
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Figure 101: Average hypervolume error comparison for problem g6 when considering k of 200,
500, 1000 and 2000.
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Figure 102: Average hypervolume error comparison for problem g7 when considering k of 200,
500, 1000 and 2000.
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Figure 103: Average hypervolume error comparison for problem g8 when considering k of 200,
500, 1000 and 2000.
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Figure 104: Average hypervolume error comparison for problem g9 when considering k of 200,
500, 1000 and 2000.
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5. Comparison of two random-based proposed alternatives

As proposed in the original article, two alternative random approaches are55

considered. We considered an approach based on selecting points randomly

proportional to the probability of misclassification and as an alternative, propor-

cional to the probability of non-domination. Figure 105 presents a scatter plot

comparing the ratios between those approaches and a random approach.

Points placed close to the diagonal dashed line imply that the performance60

was similar for both approaches. While there is no significant difference for the

classification error metric (right), we can see that for some of the test problems

the volume of the symmetric difference metric (left) shows a better performance

of the probability of non-domination approach. For the numerical experiments

we name this approach “Concentrated” Random Sampling.65
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Figure 105: Ratio comparison between alternative random approaches performance (based on
probability of misclassification and probability of non-domination) and a random approach.
Average hypervolume difference (left) and classification error (right) considering 500 random
initialization, obtained after a budget of 25000 evaluations (circles) and 50000 evaluations
(diamonds).

6. Comparison with other approaches

Figures 106 to 114 present the average performance metrics volume of the

symmetric difference for test problems g1 to g9. Comparison is presented between

random approach, “Concentrated” Random Sampling, EIm and PALS.

A similar comparison is presented for classification error metrics on Figures70

115 to 123
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Figure 106: Average hypervolume difference for test problem g1. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 107: Average hypervolume difference for test problem g2. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 108: Average hypervolume difference for test problem g3. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 109: Average hypervolume difference for test problem g4. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 110: Average hypervolume difference for test problem g5. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 111: Average hypervolume difference for test problem g6. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 112: Average hypervolume difference for test problem g7. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 113: Average hypervolume difference for test problem g8. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 114: Average hypervolume difference for test problem g9. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 115: Average classification error for test problem g1. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 116: Average classification error for test problem g2. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Evaluations 104

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

A
v
g
. 
m

is
c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

(l
o
g
)

Average classification error (g
3
)

Random

ParEGO EI
m

ParEGO KG

CoRS

PALS

Figure 117: Average classification error for test problem g3. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 118: Average classification error for test problem g4. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 119: Average classification error for test problem g5. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 120: Average classification error for test problem g6. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 121: Average classification error for test problem g7. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 122: Average classification error for test problem g8. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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Figure 123: Average classification error for test problem g9. Comparison between random
approach, “Concentrated” Random Sampling, EIm and PALS.
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