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Numerical approximation of SDEs with fractional noise and
distributional drift

Ludovic Goudenège∗ El Mehdi Haress†,‡ Alexandre Richard†,§

July 6, 2022

Abstract

We prove weak existence for multi-dimensional SDEs with distributional drift driven by a
fractional Brownian motion. This holds under a condition that relates the Besov regularity of
the drift to the Hurst parameter H of the noise. Then under a stronger condition, we study
the numerical error between a solution X of the SDE with drift b and its Euler scheme with
mollified drift bn. We obtain a rate of convergence in Lm(Ω) for this error, which depends on
the Besov regularity of the drift. This rate holds for any Hurst parameter smaller than the
critical value imposed by the “strong” condition. Close to the critical value, the rate is H − ε.
When the Besov regularity increases and the drift becomes a bounded measurable function,
we recover the optimal rate of convergence 1/2 − ε.

As a byproduct of this convergence, we deduce that pathwise uniqueness holds in a class of
regular Hölder continuous solutions and that any such solution is strong. The proofs rely on
stochastic sewing techniques, especially to deduce new regularising properties of the discrete-
time fractional Brownian motion. We also present several examples and numerical simulations
that illustrate our results.

Keywords and phrases: Numerical approximation, regularisation by noise, fractional Brownian
motion.

MSC2020 subject classification: 60H10, 65C30, 60G22, 60H50, 34A06.

1 Introduction

We are interested in the well-posedness and numerical approximation of the following d-dimensional
SDE:

Xt = X0 +

∫ t

0

b(Xs) ds+Bt, t ∈ [0, 1], (1.1)

where X0 ∈ Rd, b is a distribution in some nonhomogeneous Besov space Bγp and B is an Rd-
fractional Brownian motion (fBm) with Hurst parameter H. When B is a standard Brownian
motion (H = 1/2), this equation received a lot of attention when the drift is irregular, see for
instance [35, 37] for bounded measurable drift or [19] under some integrability condition. Strong
well-posedness were obtained in those cases, which contrasts with the non-uniqueness and some-
times non-existence that can happen for the corresponding equations without noise. In the case B
is a fractional Brownian motion, the results are more recent and we refer to Nualart and Ouknine
[26] for Hölder continuous drifts, then to Baños et al. [4], Catellier and Gubinelli [7] and Anzeletti
et al. [1] for distributional drifts when the Hurst parameter is smaller than 1/2.
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The most simple approximation scheme for (1.1) is given by the Euler scheme with a time-step h

Xh
t = X0 +

∫ t

0

b(Xh
rh

) dr +Bt, t ∈ [0, 1],

where rh = hb rhc. For the numerical analysis of Brownian SDEs with smooth coefficients, including
the previous scheme and higher-order approximations, we point to a few classical works by Pardoux,
Talay and Tubaro [28, 34], see also [18]. The strong error ‖Xt−Xh

t ‖Lm(Ω) is known to be of order h

(and h1/2 when the noise is multiplicative). When the coefficients are irregular, Dareiotis et al. [8]
obtained recently a strong error with the optimal rate of order 1/2 for merely bounded measurable
drifts, even if the noise is multiplicative. We also refer to the review [33] and references therein
for discontinuous coefficients, and the recent weak error analysis of Jourdain and Menozzi [17] for
integrable drifts. Besides, we mention that when the drift is a distribution in a Bessel potential
space with negative regularity, De Angelis et al. [10] have obtained a rate of convergence for the
so-called virtual solutions of a (Brownian) SDE, using a 2-step mollification procedure of the drift.

Let us now recall briefly what is known when B is a fractional Brownian motion. First,
Neuenkirch and Nourdin [25] considered one-dimensional equations with H > 1/2, smooth co-
efficients and multiplicative noise, i.e. the more general case with B replaced by a symmetric
Russo-Vallois [32] integral

∫ t
0
σ(Xs) d

oBs in (1.1). They proved that the rate of convergence for
the strong error is exactly of order 2H − 1. Then Hu et al. [16] introduced a modified Euler
scheme to obtain an improved convergence rate of order 2H − 1/2, still in the multiplicative case.
They also derived an interesting weak error rate of convergence. Recently, Butkovsky et al. [6]
considered (1.1) with any Hurst parameter H ∈ (0, 1) and Hölder continuous drifts in Cα, for
α ∈ [0, 1]. They obtained the strong error convergence rate h(1/2+αH)∧1−ε, which holds whenever
α ≥ 0 and α > 1− 1/(2H). The latter condition is optimal in the sense that it corresponds to the
existence and uniqueness result for (1.1) established in [7]. Our main contribution in this paper is
an extension of their result to negative values of α.

First, we prove an extension of [1, Theorem 2.8] to dimension d ≥ 1. Namely we prove that
if b is in the Besov space Bγp and that γ − d/p > 1/2− 1/(2H), then there exists a weak solution
(X,B) to (1.1) which has some Hölder regularity. This condition allows negative values of γ and
therefore b can be a genuine distribution. Solutions to (1.1) are then understood as processes of

the form Xt = X0 +Kt+Bt, where Kt is the limit of
∫ t

0
bn(Xs) ds, for any approximating sequence

(bn)n∈N. We see in particular that this approach is well suited for numerical approximation. Hence
we propose a numerical scheme to approximate (1.1).

To that end, for a time-step h and a sequence (bn)n∈N that converges to b in a Besov sense,
we consider the following Euler scheme that we define on the same probability space and with the
same fBm B as X:

Xh,n
t = X0 +

∫ t

0

bn(Xh,n
rh

) dr +Bt. (1.2)

Choosing bn = g 1
n
∗ b as a convolution of b with the Gaussian density, and for a careful choice of n

as a function of h, we prove under the stronger condition γ − d/p > 1− 1/(2H) that the following
rate of convergence holds

sup
t∈[0,1]

‖Xt −Xh,n
t ‖Lm(Ω) ≤ Ch

1

2(1−γ+ d
p
)
−ε
, ∀h ∈ (0, 1).

A more general version of this result is presented in Theorem 2.5 and discussed thereafter, in
particular concerning the value of the rate. This extends the result of Butkovsky et al. [6] to
α ≡ γ−d/p < 0, and matches the 1/2−ε rate of convergence obtained in the limit case γ−d/p = 0.

As a byproduct, we deduce that under the condition γ−d/p > 1−1/(2H), X is in fact a strong
solution and it is unique in a class of Hölder continuous processes.

Our proof relies on regularisation properties of the d-dimensional fBm and of the discrete-time
fBm which somehow extend Davie’s lemma [9, Prop. 2.1]. Namely, for functions f in Besov spaces
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of negative regularity (resp. bounded f for the discrete-time fBm), we obtain upper bounds on

the moments of quantities such as
∫ t
s
f(x + Br) dr in terms of x and (t − s), see Lemma 3.5,

Propositions 5.1 and 5.4. These upper bounds are sharper than if B was replaced by any smooth
function, which explains that we refer to regularisation properties of the fBm. The main tool to
prove these results is the stochastic sewing lemma developed by Lê [20].

Organisation of the paper. We start with definitions and notations in Subsection 2.1, then
state our main results in Subsection 2.2. In Section 3, we prove the existence of weak solutions to
(1.1) and then use the convergence of the Euler scheme to establish strong existence and uniqueness.
First we recall some Besov estimates in Subsection 3.1, then state a first regularisation property
of the fBm in Subsection 3.2. We prove tightness and stability results in Subsection 3.3, and
conclude the proof of weak existence in Subsection 3.4. The strong convergence of the numerical
scheme (1.2) to the solution of (1.1) is established in Section 4. This proof relies strongly on the
regularisation lemmas for fBm and discrete-time fBm which are stated and proven in Section 5.
Finally in Section 6, we provide examples of SDEs that can be approximated with our result. We
also run simulations of the scheme (1.2) to study its empirical rate of convergence and compare
it with the theoretical result. In the Appendix, we gather some technical proofs based on the
stochastic sewing lemma that are used to prove weak existence.

2 Framework and results

2.1 Notations and definitions

In this section, we define notations that are used throughout the paper. On a probability space
(Ω,F ,P), we denote by F = (Ft)t∈[0,1] a filtration that satisfies the usual conditions. The condi-
tional expectation given Ft is denoted by Et when there is no risk of confusion on the underlying
filtration. An Rd-valued stochastic process (Xt)t∈[0,1] is said to be adapted if for all t ∈ [0, 1], Xt

is Ft-measurable. The Lm(Ω) norm of Xt is denoted by ‖Xt‖Lm .

For α ≥ 0, I a subset of [0, 1] and E a Banach space, we denote by CαI E the space of E-
valued mappings that are α-Hölder continuous on I. The corresponding semi-norm for a function
f : [0, 1]→ E reads

[Z]CαI E := sup
s,t∈I
t 6=s

‖ft − fs‖E
|t− s|α

.

The space Lm(Ω), m ∈ [1,∞], will be simply denoted by Lm. In that case we denote by CαI Lm the
space of Lm(Ω)-valued mappings that are α-Hölder continuous on I. For an Rd-valued process X,
the corresponding semi-norm is then denoted by [Z]CαI Lm . When E is R or Rd, we simply denote
CαI the corresponding space and when α = 0, we use the notation CI .

We write L∞ for the space of bounded measurable functions and L∞I L
m := L∞(I, Lm(Ω)).

The corresponding norm for a process Z : [0, 1]× Ω→ Rd is

‖Z‖L∞I Lm := sup
s∈I
‖Zs‖Lm . (2.1)

Moreover, for all S, T ∈ [0, 1], define the simplex ∆S,T by

∆S,T = {(s, t) ∈ [S, T ], s < t}.

For a process Z : ∆0,1 × Ω→ Rd, we still write

[Z]CαI Lm = sup
s,t∈I
s<t

‖Zs,t‖Lm
|t− s|α

and ‖Z‖L∞I Lm= sup
s∈I
‖Z0,s‖Lm .

For a Borel-measurable function f : Rd → Rd, denote the classical L∞ and C1 norms of f by

‖f‖∞= supx∈Rd |f(x)| and ‖f‖C1= ‖f‖∞+ supx6=y
|f(x)−f(y)|
d(x,y) .
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Heat kernel. For any t > 0, denote by gt the Gaussian kernel on Rd of variance t:

gt(x) =
1√

2π td/2
exp

(
−|x|

2

2t

)
,

and by Gt the associated Gaussian semigroup on Rd: for f : Rd → Rd,

Gtf(x) =

∫
Rd
gt(x− y) f(y) dy. (2.2)

Besov spaces. We use the same definition of nonhomogeneous Besov spaces as in [5], which we
write here for any dimension d. Let χ, ϕ : Rd → R be the smooth radial functions which are given
by [5, Proposition 2.10], with χ supported on a ball while ϕ is supported on an annulus. Let v−1

and v respectively be the inverse Fourier transform of χ and ϕ. Denote by F the Fourier transform
and F−1 its inverse.

The nonhomogeneous dyadic blocks ∆j , j ∈ N ∪ {−1} are defined for any Rd-valued tempered
distribution u by

∆−1u = F−1 (χFu) and ∆ju = F−1
(
ϕ(2−j ·)Fu

)
for j ≥ 0.

Let γ ∈ R and p ∈ [1,∞]. We denote by Bγp the nonhomogeneous Besov space Bγp,∞(Rd,Rd) of

Rd-valued tempered distributions f such that

‖f‖Bγp= sup
j≥−1

2jγ‖∆jf‖Lp(Rd)<∞.

Let 1 ≤ p1 ≤ p2 ≤ ∞. The space Bγp1 continuously embeds into Bγ−d(1/p1−1/p2)
p2 , which we write

as Bγp1 ↪→ B
γ−d(1/p1−1/p2)
p2 , see e.g. [5, Prop. 2.71].

Finally, we denote by C a constant that can change from line to line and that does not depend
on any parameter other than those specified in the associated lemma, proposition or theorem.
When we want to make the dependence of C on some parameter a explicit, we will write C(a).

To give a meaning to equation (1.1) with distributional drift, we first need to precise in which
sense those drifts are approximated.

Definition 2.1. Let γ ∈ R, p,m ∈ [1,∞]. We say that a sequence of smooth bounded functions
(bn)n∈N converges to b in Bγ−p as n goes to infinity ifsup

n∈N
‖bn‖Bγp≤ ‖b‖Bγp<∞,

lim
n→∞

‖bn − b‖Bγ′p = 0, ∀γ′ < γ.
(2.3)

Following [26], in dimension d = 1, we define a notion of F-fBm which extends the classical
definition of F-Brownian motion. There exists a one-to-one operator AH (which can be written
explicitly in terms of fractional derivatives and integrals, see [1, Definition 2.3]) such that for B
an fBm, the process W := AHB is a Brownian motion. Then we say that B is an F-fBm if W
is an F-Brownian motion. In any dimension d ≥ 1, we say that B is an Rd-valued F-fBm, if each
component is an F-fBm.

We are now ready to introduce the notions of solution to (1.1).

Definition 2.2. Let γ ∈ R, p ∈ [1,∞], b ∈ Bγp , T > 0 and X0 ∈ Rd. As in [1], we define the
following notions.

• Weak solution: a couple ((Xt)t∈[0,1], (Bt)t∈[0,1]) defined on some filtered probability space
(Ω,F ,F,P) is a weak solution to (1.1) on [0, 1], with initial condition X0, if

– B is an Rd-valued F-fBm;
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– X is adapted to F;
– there exists an Rd-valued process (Kt)t∈[0,1] such that, a.s.,

Xt = X0 +Kt +Bt for all t ∈ [0, 1]; (2.4)

– for every sequence (bn)n∈N of smooth bounded functions converging to b in Bγ−p , we have
that

sup
t∈[0,1]

∣∣∣∣∫ t

0

bn(Xr)dr −Kt

∣∣∣∣ −→n→∞0 in probability. (2.5)

If the couple is clear from the context, we simply say that (Xt)t∈[0,1] is a weak solution.

• Pathwise uniqueness: As in the classical literature on SDEs, we say that pathwise uniqueness
holds if for any two solutions (X,B) and (Y,B) defined on the same filtered probability space
with the same fBm B and same initial condition X0 ∈ Rd, X and Y are indistinguishable.

• Strong solution: A weak solution (X,B) such that X is FB-adapted is called a strong solution,
where FB denotes the filtration generated by B.

2.2 Main results

Our first result is decomposed into two parts: first, it gives a condition for existence of a weak
solution to (1.1) and therefore extends [1, Theorem 2.8] to the multidimensional setting. The proof
is presented in Section 3. The second part gives existence and uniqueness of a strong solution
under stronger assumptions, and will be a consequence of the convergence of the Euler scheme
in Theorem 2.5. Thus it provides a multidimensional extension of [1, Theorem 2.9] through a
completely different proof. However the critical case γ − d/p = 1− 1/(2H) is not addressed here.

Theorem 2.3. Let γ ∈ R, p ∈ [1,∞] and b ∈ Bγp .

(a) Assume that

γ − d

p
>

1

2
− 1

2H
. (2.6)

Then there exists a weak solution X to (1.1) such that X0 is F0-measurable and X − B ∈
Cκ[0,1]L

m for any κ ∈ (0, 1 +H(γ − d
p ) ∧ 0] \ {1} and m ≥ 2.

(b) Assume that

H <
1

2
and 1− 1

2H
< γ − d

p
< 0. (2.7)

Then there exists a strong solution X to (1.1) such that X − B ∈ C1/2+H
[0,1] Lm for any m ≥ 2.

Besides, pathwise uniqueness holds in the class of all solutions X such that X−B ∈ C1/2+H
[0,1] L2.

The proof of Theorem 2.3 is given in Section 3.

Remark 2.4. This theorem is consistent with [7], where it is proven that for b in the Hölder space
Cα (= Bα∞ when α /∈ N), path-by-path existence and uniqueness hold for α > 1 − 1/(2H). The
solution in [7] is in the sense of nonlinear Young differential equations, which can be compared to
the present definition (see [1, Theorem 2.14]).

Let (bn)n∈N be a sequence of smooth functions that converges to b in Bγ−p . Consider the Euler
scheme (1.2) associated to (1.1) with a time-step h ∈ (0, 1). The main result of this paper is the
following theorem.
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Theorem 2.5. Let H < 1/2, γ ∈ R, p ∈ [1,∞], b ∈ Bγp and assume (2.7). For m ∈ [2,∞], let

(X,B) be a weak solution to (1.1) such that X−B ∈ C1/2+H
[0,1] Lm and X0 ∈ Lm(Ω) is F0-measurable.

Let ε ∈ (0, 1/2). Then there exists a constant C that depends only on m, p, γ, ε, ‖b‖Bγp such that
for all h ∈ (0, 1) and n ∈ N, the following bound holds:

[X −Xh,n]
C

1
2
[0,1]

Lm
≤ C

(
‖bn − b‖Bγ−1

p
+‖bn‖∞h

1
2−ε + ‖bn‖∞‖bn‖C1h1−ε

)
. (2.8)

Obvisouly, the previous inequality implies that

sup
t∈[0,1]

‖Xt −Xh,n
t ‖Lm ≤ C

(
‖bn − b‖Bγ−1

p
+‖bn‖∞h

1
2−ε + ‖bn‖∞‖bn‖C1h1−ε

)
. (2.9)

Although the Hurst parameter does not appear in the upper bound of the previous inequality, the
first term ‖bn−b‖Bγ−1

p
does depend implicitly on H through the condition (2.7). Observe also that

the second term, ‖bn‖∞h1/2−ε, corresponds to the optimal rate of convergence found in [6].

Since bn converges to b in Bγ−p for γ < 0, we expect in general ‖bn‖∞ and ‖bn‖C1 to diverge as
n→∞. Therefore, it is important to choose carefully the sequence (bn)n∈N to obtain a good rate
of convergence of the numerical scheme.

Choosing bn = G 1
n

for n ∈ N∗, we have thanks to Lemma 3.2 that for γ − d/p < 0,

‖bn − b‖Bγ−1
p
≤ C ‖b‖Bγp n

− 1
2 , (2.10)

‖bn‖∞≤ C ‖b‖Bγp n
− 1

2 (γ− dp ), (2.11)

‖bn‖C1≤ C ‖b‖Bγp n
1
2 n−

1
2 (γ− dp ). (2.12)

Using these results in (2.8) and optimising over m and h, we deduce the following corollary.

Corollary 2.6. Let the same assumptions and notations as in Theorem 2.5 hold. Let h ∈ (0, 1/2)
and define

nh = bh
− 1

1−γ+ d
p c and bnh = G 1

nh

b.

Then there exists a constant C that depends only on m, p, γ, ε, ‖b‖Bγp such that the following bounds
hold:

[X −Xh,nh ]
C

1
2
[0,1]

Lm
≤ C h

1

2(1−γ+ d
p
)
−ε
, (2.13)

sup
h∈(0,1)

[Xh,nh −B]
C

1
2
[0,1]

Lm
<∞. (2.14)

For instance, if each component of b is a signed measure, then b ∈ B0
1 (see [5, Proposition 2.39]).

Hence the previous result yields a rate 1
2(1+d) − ε which holds for H < 1

2(1+d) .

Remark 2.7. In Theorem 2.5, we construct the Euler scheme on a particular probability space that
is given in an abstract way by Theorem 2.3. From Corollary 2.6, we deduce (see Subsection 3.5)
that X is in fact a strong solution. It is then possible to construct the Euler scheme on any
probability space (rich enough to contain an F-fBm). This is important for practical simulations.

For γ−d/p > 0, Bγp is continuously embedded in the Hölder space Cγ−d/p. In [6], it was proved
that the Euler scheme achieves a rate 1/2 +H(γ − d/p)− ε. Moreover, if b a bounded measurable
function, the rate is 1/2 − ε. To close the gap between the present results and [6], we handle the

case γ − d/p = 0. Recall that Bd/pp is continuously embedded into B0
∞, so it is equivalent to work

with γ = 0 and p = +∞. Note that B0
∞ contains strictly L∞(Rd) (see e.g. [5, p.99]) which was

the space considered in [6].
Let b ∈ B0

∞. By the definition of Besov spaces, we know that b ∈ B−η∞ for all η > 0. Choosing
η small enough so that −η > 1− 1/(2H), we can apply Theorem 2.3 and Theorem 2.5, and obtain
a rate of convergence as in Corollary 2.6 when bn = G 1

n
b. This is summarized in the following

Corollary.
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Corollary 2.8. Let the same assumptions of Theorem 2.5 hold. Let B be an F-fBm with H < 1/2,

b ∈ B0
∞ and m ≥ 2. There exists a strong solution X to (1.1) such that X − B ∈ C1/2+H

[0,1] Lm.

Besides, pathwise uniqueness holds in the class of solutions X such that X − B ∈ C1/2+H
[0,1] L2. Let

ε ∈ (0, 1/2) and h ∈ (0, 1/2). There exists a constant C that depends only on m, ε, ‖b‖B0
∞

such
that the following bound holds:

[X −Xh,n]
C

1
2
[0,1]

Lm
≤ C

(
‖bn − b‖B−1

∞
+‖bn‖∞h

1
2−ε + ‖bn‖∞‖bn‖C1h1−ε

)
.

Moreover, for nh = bh−1c and bnh = G 1
nh

b, we have

[X −Xh,nh ]
C

1
2
[0,1]

Lm
≤ Ch 1

2−ε,

sup
h∈(0,1)

[Xh,nh −B]
C

1
2
[0,1]

Lm
<∞.

Theorem 2.5, Corollary 2.6 and Corollary 2.8 are proven in Section 4.

2.3 Discussion on the approach and results

The main novelty of the paper is that we can treat SDEs with unbounded or even distributional
drifts. Usually for bounded drifts, one can use Girsanov’s theorem (see e.g. [6, Lemma 4.2]),
which leads to an exponential dependence on ‖bn‖∞. Using this approach would have led at best
to a logarithmic rate of convergence. Instead, we use the stochastic sewing lemma to regularise
integrals of functions of the discrete noise {Bth}t≥0, see Proposition 5.4. The price to pay is the
C1 norm of bn, which can be compensated by h.

Let us make a few comments on the rate of convergence obtained in Corollaries 2.6 and 2.8:

• For a fixed γ, p and d, one can chose H close to 1
2(1−γ+ d

p )
from below, and get an order of

convergence that will be 1
2(1−γ+ d

p )
− ε ≈ H − ε.

• For a fixed H, one can take b ∈ B1− 1
2H+ε

∞ for any ε > 0, and get an order of convergence that
will be close to H.

• The order of convergence is 1
2 − ε when γ − d

p = 0, for any H < 1
2 .

In view of [6], one could imagine that the order of convergence for γ − d/p ≤ 0 would still be
1/2 + H(γ − d/p). In particular, we point out that our assumption γ − d/p > −1/(2H) + 1 is
equivalent to

1

2
+H

(
γ − d

p

)
>

1

2(1− γ + d
p )
.

Finally, the orders of convergence obtained here and in [6] are summarized in Table 1.

The drift γ − d
p → (1− 1

2H )+ γ − d
p ∈ (1− 1

2H , 0) γ − d
p = 0 γ − d

p > 0

Convergence H − ε 1
2(1−γ+ d

p )
− ε 1

2 − ε
(

1
2 +H

(
γ − d

p

))
∧ 1− ε

Table 1: Order of convergence of the Euler scheme to the solution of the SDE (1.1) for γ − d/p >
1− 1/(2H).
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3 Existence and uniqueness of solutions

In this section, we prove Theorem 2.3. The proof of Theorem 2.3(a) follows the same lines as
the proof of Theorem 2.8 of [1], but requires extensions of some technical lemmas concerning the
regularising effects of the d-dimensional fractional Brownian motion. Subsection 3.5 is dedicated
to the proof of Theorem 2.3(b).

3.1 Besov estimates

The first of these extensions concern estimates of shift of distributions in Besov spaces. It is an
extension to Rd of Lemma A.2 in [3] and follows its proof exactly, so we omit it.

Lemma 3.1. Let f be a tempered distribution on Rd and let γ ∈ R, p ∈ [1,∞]. Then for any
a1, a2, a3 ∈ Rd and α, α1, α2 ∈ [0, 1], one has

(i) ‖f(a+ ·)‖Bγp≤ ‖f‖Bγp .

(ii) ‖f(a1 + ·)− f(a2 + ·)‖Bγp≤ C|a1 − a2|α‖f‖Bγ+αp
.

(iii) ‖f(a1 + ·)−f(a2 + ·)−f(a3 + ·)+f(a3 +a2−a1 + ·)‖Bγp≤ C|a1−a2|α1 |a1−a3|α2‖f‖Bγ+α1+α2
p

.

Then we have the following estimates for the Gaussian semigroup in Besov spaces. They are
either borrowed or adapted from [3, 5].

Lemma 3.2. Let γ ∈ R, p ∈ [1,∞] and f ∈ Bγp . Then

(i) If γ < 0, ‖Gtf‖Lp(Rd)≤ C ‖f‖Bγp t
γ
2 , for all t > 0.

(ii) If γ − d
p < 0, ‖Gtf‖∞≤ C ‖f‖Bγp t

1
2 (γ− dp ), for all t > 0.

(iii) ‖Gtf − f‖Bγ−εp
≤ C t

ε
2 ‖f‖Bγp for all ε ∈ (0, 1] and t > 0. In particular, it follows that

limt→0‖Gtf − f‖Bγ̃p= 0 for every γ̃ < γ.

(iv) supt>0‖Gtf‖Bγp≤ ‖f‖Bγp .

(v) If γ − d
p < 0, ‖Gtf‖C1≤ C ‖f‖Bγp t

1
2 (γ− dp−1) for all t > 0.

Proof. (i) The proof of Lemma A.3(i) in [3] extends right away to dimension d ≥ 1.

(ii) Using (i) for γ − d
p instead of γ and the embedding Bγp ↪→ B

γ− dp
∞ , there is

‖Gtf‖L∞(Rd)≤ C ‖f‖Bγ−d/p∞
t
1
2 (γ− dp ) ≤ C ‖f‖Bγp t

1
2 (γ− dp ).

(iii) This is a direct adaptation of Lemma A.3(ii) in [3] to dimension d ≥ 1 that we detail briefly.
From [24, Lemma 4], we have that for g such that the support of Fg is in a ball of radius
λ ≥ 1, there is for all t ≥ 0,

‖Gtg − g‖Lp(Rd)≤ C (tλ2 ∧ 1)‖g‖Lp(Rd).

For any j ≥ −1, the support of F(∆jf) is included in a ball of radius 2j . Hence,

2j(γ−ε)‖Gt(∆jf)−∆jf‖Lp(Rd) ≤ C 2j(γ−ε)(t22j ∧ 1)‖∆jf‖Lp(Rd)

≤ C 2−jε(t22j ∧ 1)
ε
2 2jγ‖∆jf‖Lp(Rd)

≤ C t ε2 2jγ‖∆jf‖Lp(Rd).

The result follows.
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(iv) – (v) The proof is the same as in the one-dimensional, see [3, Lemma A.3(iii)] and [3, Lemma
A.3(iv)].

The next lemma describes some time regularity estimates of random functions of the fractional
Brownian motion in Besov norms.

Lemma 3.3. Let (Ω,F ,F,P) be a filtered probability space and B be an F-fBm. Let γ < 0,
p ∈ [1,∞] and e ∈ N∗. Let f : Rd ×Re → Rd be a bounded measurable function. Then there exists
a constant C > 0 such that for any (s, t) ∈ ∆0,1 and for Ξ an Fs-measurable Re-valued random
variable satisfying ‖f(·,Ξ)‖C1<∞ almost surely, there is

(i) Es[f(Bt,Ξ)] = Gσ2
s,t
f(Es[Bt],Ξ), where G is the Gaussian semigroup introduced in (2.2) and

σ2
s,t := Var (B

(i)
t − Es[B(i)

t ]), for any component B(i) of the fBm;

(ii) |Esf(Bt,Ξ)|≤ C‖f(·,Ξ)‖Bγp (t− s)H(γ− dp );

(iii) ‖f(Bt,Ξ)− Esf(Bt,Ξ)‖L1≤ C‖‖f(·,Ξ)‖C1‖L2(t− s)H .

Proof. The proofs of (i), (ii) and (iii) are similar to (a), (b) and (c) in [1, Lemma 5.1] and we do
not reproduce the proofs. We just note that the local nondeterminism property is used on each
independent component of B, and that we now rely on Lemma 3.1(i).

3.2 Regularisation effect of the d-dimensional fBm

Let 0 ≤ S ≤ T ≤ 1. Let A : ∆S,T → Lm. For every triplet of times (s, u, t) such that S ≤ s ≤ u ≤
t ≤ T , we denote

δAs,u,t := As,t −As,u −Au,t.

We use the stochastic sewing lemma of [20] (recalled in Lemma A.1) to establish the key regular-
isation result (Proposition 3.5) that will be used to prove existence of weak solutions. Note that the
results in this subsection and the next one have slightly simpler proofs than in the one-dimensional
framework developed in [1]. This is because we are not aiming here at proving uniqueness, which
requires milder assumptions on the coefficients γ, p and H than here and requires to work with
the semi-norm [·]Cτ

[s,t]
Lm,n instead of [·]Cτ

[s,t]
Lm that is used here.

First, we have the following lemma, which extends [1, Lemma D.2] to dimension d ≥ 1. Its
proof, which is also close to the proof of [1, Lemma D.2], is postponed to the Appendix A.1.

Lemma 3.4. Let γ − d/p ∈ (−1/(2H), 0), m ≥ 2 and p ≥ 1. Then there exists a constant C > 0
such that for any 0 ≤ S ≤ T , any FS-measurable random variable Ξ in Re and any bounded
measurable function f : Rd × Re → Rd fulfilling

(i) E
[
‖f(·,Ξ)‖2C1

]
<∞;

(ii) E
[
‖f(·,Ξ)‖mBγp

]
<∞,

we have for any t ∈ [S, T ] that∥∥∥∫ t

S

f(Br,Ξ) dr
∥∥∥
Lm
≤ C ‖‖f(·,Ξ)‖Bγp ‖Lm (t− S)1+H(γ− dp ). (3.1)

As a consequence of Lemmas A.1 and 3.4, we get the following property of regularisation of
the d-dimensional fBm. It can be compared to [1, Lemma 7.1], which is stated for one-dimensional
processes but involves a slightly more accurate quantity. The proof is postponed to Appendix A.2.
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Proposition 3.5. Let (ψt)t∈[0,1] be an Rd-valued stochastic process adapted to F. Let m ∈ [2,∞),
p ∈ [1,∞] and γ < 0 such that (γ−d/p)H > −1/2. Let τ ∈ (0, 1) such that H(γ−d/p−1)+τ > 0.
There exists a constant C > 0 such that for any f ∈ C∞b (Rd,Rd) ∩ Bγp and any (s, t) ∈ ∆0,1 we
have ∥∥∥∫ t

s

f(Br + ψr) dr
∥∥∥
Lm
≤C ‖f‖Bγp (t− s)1+H(γ− dp )

+ C‖f‖Bγp [ψ]Cτ [s,t]Lm (t− s)1+H(γ− dp−1)+τ .

(3.2)

3.3 Tightness and stability

The proof of existence of a weak solution is based on a classical argument: first, we construct a
tight approximating sequence of processes (Proposition 3.8), then we prove the stability, i.e. that
any converging subsequence is a solution of the SDE (1.1) (Proposition 3.9).

First we need the two following a priori estimates, which are direct consequences of Proposition
3.5: Lemma 3.6 (resp. Lemma 3.7) extends [1, Lemma 7.3] (resp. [1, Lemma 7.4]) to dimension
d ≥ 1.

Lemma 3.6. Let m ∈ [2,∞) and assume that 1/2− 1/(2H) < γ − d/p < 0. There exists C > 0,
such that, for any b ∈ C∞b (Rd,Rd) ∩ Bγp ,

[X −B]C1+H(γ−d/p)
[0,1]

Lm
≤ C (1 + ‖b‖2Bγp ), (3.3)

where X is the strong solution to (1.1) with drift b.

Proof. Without loss of generality, assume that X0 = 0 and denote K = X − B. Then [K]Cτ
[0,1]

Lm

is finite for any τ ∈ (0, 1] as |Kt −Ks|= |
∫ t
s
b(Br +Kr) dr|≤ ‖b‖∞|t− s|.

We aim to apply Proposition 3.5 with τ = 1 + H(γ − d/p) and considering b ∈ Bγ−d/p∞ after
an embedding (so that γ − d/p < 0). Remark that τ − H > 1/2 − H/2 > 0, thus τ ∈ (0, 1). In
addition, H(γ − d/p) > H/2 − 1/2 > −1/2 and H(γ − d/p − 1) + τ > 0. So, the assumptions of
Proposition 3.5 are fulfilled. Then we get

‖Kt −Ks‖Lm ≤ C ‖b‖Bγ−d/p∞

(
(t− s)1+H(γ− dp ) + [K]Cτ

[s,t]
Lm(t− s)1+H(γ− dp )+τ−H

)
= C‖b‖Bγp (t− s)1+H(γ− dp )

(
1 + [K]Cτ

[s,t]
Lm(t− s)τ−H

)
. (3.4)

Choose l = (4C‖b‖Bγp )1/(H−τ) so that C‖b‖Bγp lτ−H < 1/2. Let u ∈ [0, 1]. Divide both sides in (3.4)

by (t− s)1+H(γ−d/p) and take the supremum over (s, t) ∈ ∆u,(u+l)∧1 to get

[K]C1+H(γ−d/p)
[u,(u+l)∧1] Lm

≤
(
C‖b‖Bγp+

1

2
[K]Cτ

[u,(u+l)∧1]L
m

)
,

and therefore

[K]C1+H(γ−d/p)
[u,(u+l)∧1] Lm

≤ 2C‖b‖Bγp .

The end of the proof consists in iterating the previous inequality in order to control the Hölder
norm on the whole interval [0, 1], and is completely identical to the proof of [1, Lemma 7.3].

Lemma 3.7. Let b, h ∈ C∞b (Rd,Rd) ∩ Bγp . Let X be the strong solution to (1.1) with drift b. Let
δ ∈ (0, 1 +H(γ − d/p)). Then there exists a constant C > 0 which is independent of X0, b and h,
and a nonnegative random variable Z which satisfies E[Z] ≤ C‖h‖Bγp (1 + ‖b‖2Bγp ) such that

∣∣∣ ∫ t

s

h(Xr) dr
∣∣∣ ≤ Z |t− s|δ. (3.5)
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The proof relies on Proposition 3.5, Lemma 3.6 and Kolmogorov’s continuity criterion. We
omit it, as it is identical to the proof of [1, Lemma 7.4].

We now obtain tightness of the sequence that approximates X.

Proposition 3.8. Let (bn)n∈N be a sequence of smooth bounded functions converging to b in Bγ−p .
For n ∈ N, let Xn be the strong solution to (1.1) with initial condition X0 and drift bn. Then there
exists a subsequence (nk)k∈N such that (Xnk , B)k∈N converges weakly in the space [C[0,1](Rd)]2.

Proof. This short proof is close to the proof of [1, Proposition 7.5]. We reproduce it here for the
reader’s convenience.

Let Kn
t :=

∫ t
0
bn(Xn

r ) dr. For M > 0 and some δ ∈ (0, 1 +H(γ − d/p)), let

AM := {f ∈ C[0,1] : f(0) = 0, |f(t)− f(s)|≤M(t− s)δ, ∀(s, t) ∈ ∆0,1}.

By Arzelà-Ascoli’s theorem, AM is compact in C[0,1]. Applying Lemma 3.7 to h = bn, this gives
a nonnegative random variable Zn such that E[Zn] ≤ C‖bn‖Bγp (1 + ‖bn‖2Bγp ) and (3.5) is satisfied.

Thus by Markov’s inequality we get

P(Kn /∈ AM ) ≤ P(∃(s, t) ∈ ∆0,1 : |Kn
s,t|> M(t− s)δ)

≤ P(Zn > M)

≤ C sup
n∈N
‖bn‖Bγp (1 + sup

n∈N
‖bn‖2Bγp )M−1.

Hence, the sequence (Kn)n∈N is tight in C[0,1]. So (Kn, B)n∈N is tight in (C[0,1])
2. Thus by

Prokhorov’s Theorem, there exists a subsequence (nk)k∈N such that (Knk , B)k∈N converges weakly
in the space (C[0,1])

2, and so does (Xnk , B)k∈N.

Finally, the stability is expressed in the following proposition, which extends [1, Proposition
7.7] to dimension d ≥ 1.

Proposition 3.9. Let (b̃k)k∈N be a sequence of smooth bounded functions converging to b in Bγ−p .

Let B̃k have the same law as B. We consider X̃k the strong solution to (1.1) for B = B̃k, initial
condition X0 and drift b̃k. Assume that there exist stochastic processes X̃, B̃ : [0, 1] → Rd such
that (X̃k, B̃k)k∈N converges to (X̃, B̃) on [C[0,1](Rd)]2 in probability. Then X̃ fulfills (2.4) and (2.5)
from Definition 2.2 and for any m ∈ [2,∞), there exists C > 0 such that

[X̃ − B̃]C1+H(γ−d/p)
[0,1]

(Lm)
≤ C (1 + sup

k∈N
‖b̃k‖2Bγp ) <∞. (3.6)

The proof is postponed to Appendix A.3.

3.4 Proof of Theorem 2.3(a)

Let (bn)n∈N be a sequence of smooth bounded functions converging to b in Bγ−p . By Proposition 3.8,

there exists a subsequence (nk)k∈N such that (Xnk , B)k∈N converges weakly in (C[0,1](Rd))2. With-
out loss of generality, we assume that (Xn, B)n∈N converges weakly. By the Skorokhod represen-
tation Theorem, there exists a sequence of random variables (Y n, B̂n)n∈N defined on a common
probability space (Ω̂, F̂ , P̂ ), such that

Law(Y n, B̂n) = Law(Xn, B), ∀n ∈ N, (3.7)

and (Y n, B̂n) converges a.s. to some (Y, B̂) in (C[0,1](Rd))2. As Xn solves (1.1) with drift bn, we

know by (3.7) that Y n also solves (1.1) with drift bn and B̂n instead of B. As Xn is a strong

solution, we have that Xn is adapted to FB . Hence by (3.7), we know that Y n is adapted to FB̂n

as the conditional laws of Y n and Xn agree and therefore it is a strong solution to (1.1) with B̂n

instead of B.
By Proposition 3.9, we know that Y fulfills (2.4) and (2.5) from Definition 2.2 with B̂ instead

of B and it is adapted with respect to the filtration F̂ defined by F̂t := σ(Ys, B̂s, s ∈ [0, t]). It
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remains to check that B̂ is an F̂-fBm, which is completely analogous to the one-dimensional case
treated in the proof of Theorem 2.8 in [1]. Hence Y is a weak solution.

Finally, (3.6) gives that
[Y − B̂]C1+H(γ−d/p)

[0,1]
(Lm)

<∞,

which concludes the proof.

3.5 Proof of Theorem 2.3(b)

Although it will be proven in the next sections, we will use Theorem 2.5 to prove Theorem 2.3(b).
Assuming the strong conditions (2.7) on H, γ and p, we let (X,B) and a filtered probability

space (Ω,F ,F,P) be a weak solution to (1.1) given by Theorem 2.3(a). On this probability space
and with the same fBm B, we define the Euler scheme (Xh,n)h>0,n∈N.

First, observe that the Euler scheme Xh,n is FB-adapted. In view of (2.9), Xh,n
t converges to

Xt in Lm, for each t ∈ [0, 1]. Hence Xt is FBt -measurable and X is therefore a strong solution.

As for the uniqueness, if X and Y are two processes such that X−B ∈ C1/2+H
[0,1] L2 and Y −B ∈

C1/2+H
[0,1] L2, then by Theorem 2.5, Xh,n approximates both X and Y . So X and Y are modifications

of one another. Since they are continuous processes, they are indistinguishable.

4 Convergence of the Euler scheme

4.1 Proof of Theorem 2.5

In this section, we prove Theorem 2.5. Let (X,B) be a weak solution to (1.1) defined on a filtered
probability space (Ω,F ,F,P). On this probability space and with the same fBm B, we define the
Euler scheme (Xh,n)h>0,n∈N.

For all t > 0, recall from (2.4) that Kt := Xt −Bt −X0 and define

Kn
t :=

∫ t

0

bn(Xr) dr and Kh,n
t :=

∫ t

0

bn(Xh,n
rh

) dr. (4.1)

Assume that the solution X starts from an F0-measurable random variable ξ and that Xh,n starts
from another F0-measurable random variable η. Allowing different random initial conditions will
be necessary later to deduce the result of the theorem by reasoning on short time intervals. With
these notations in mind, we set the notation for the error as

Eh,nt := Xt −Xh,n
t , t ≥ 0.

Decompose the error as

[Eh,n]
C

1
2
[s,t]

Lm
≤ [K −Kn]

C
1
2
[s,t]

Lm
+ [Kn −Kh,n]

C
1
2
[s,t]

Lm

= [K −Kn]
C

1
2
[s,t]

Lm
+ [Eh,n]

C
1
2
[s,t]

Lm
(4.2)

≤ [K −Kn]
C

1
2
[s,t]

Lm
+ [E1,h,n]

C
1
2
[s,t]

Lm
+ [E2,h,n]

C
1
2
[s,t]

Lm
,

where for all s < t, we denote

Eh,ns,t := Kn
t −Kn

s − (Kh,n
t −Kh,n

s ),

E1,h,n
s,t :=

∫ t

s

(bn(ξ +Kr +Br)− bn(η +Kh,n
r +Br)) dr,

E2,h,n
s,t :=

∫ t

s

(bn(η +Kh,n
r +Br)− bn(η +Kh,n

rh
+Brh)) dr.

In order to prove Theorem 2.5, we will provide bounds on the quantities that appear in (4.2),
and combine them eventually. The two technical bounds that concern E1,h,n and E1,h,n will be
stated in Corollaries 5.2 and 5.6, and proven in Section 5.
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Bound on K−Kn. By Proposition 3.5 (taking f = bk−bn), we have that for all n, k ∈ N, s < t,
and (u, v) ∈ ∆s,t,

‖Kk
v −Kk

u −Kn
v +Kn

u‖Lm ≤ C‖bk − bn‖Bγ−1
p

(v − u)1+H(γ−1− dp ).

Hence (Kk
v −Kk

u)k∈N is a Cauchy sequence in Lm(Ω) and therefore it converges. We also know by
definition of X that Kk

v −Kk
u converges in probability to Kv −Ku. Thus Kk

v −Kk
u converges in

Lm to Kv −Ku. Now by the convergence of bk to b in Bγ−1
p , we get

‖Kv −Ku −Kn
v +Kn

u‖Lm ≤ C‖b− bn‖Bγ−1
p

(v − u)1+H(γ−1− dp ).

Dividing by |v−u| 12 and taking the supremum over (u, v) in ∆s,t (recall that 1
2 +H(γ−1−d/p) > 0),

we have

[K −Kn]
C

1
2
[s,t]

Lm
≤ C‖b− bn‖Bγ−1

p
. (4.3)

Bound on E1,h,n. By Corollary 5.2, we have that for all s < t, n ∈ N, h ∈ (0, 1),

‖E1,h,n
s,t ‖Lm ≤ C‖b‖Bγp

(
1 + [X −B]

C
1
2
+H

[s,t]
Lm

)(
[K −Kh,n]

C
1
2
[s,t]

Lm
+ ‖ξ − η‖Lm

)
(t− s)1+H(γ−1− dp ).

Since K −Kh,n = K −Kn + Eh,n, it comes from the previous inequality and (4.3) that

‖E1,h,n
s,t ‖Lm ≤ C

(
[Eh,n]

C
1
2
[s,t]

Lm
+ ‖b− bn‖Bγ−1

p
+‖ξ − η‖Lm

)
(t− s)1+H(γ−1− dp ). (4.4)

Bound on E2,h,n. By Corollary 5.6, we have the following bound for ε ∈ (0, 1
2 ) and s < t,

‖E2,h,n
s,t ‖Lm ≤ C

(
‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
(t− s) 1

2 . (4.5)

This is where we avoid using Girsanov’s theorem and rely instead on a bound on E2,h,n that
involves the C1 norm of bn. This bound is again obtained by a stochastic sewing argument.

Conclusion. Use (4.4) and (4.5) to get

‖Eh,ns,t ‖Lm ≤ C
(

([Eh,n]
C

1
2
[s,t]

Lm
+ ‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm)(t− s)1+H(γ−1− dp )

+ (‖bn‖∞h
1
2−ε + ‖bn‖C1‖bn‖∞h1−ε)(t− s) 1

2

)
.

(4.6)

Let S < T ∈ [0, 1]. Since 1 +H(γ− 1− d/p) > 1/2, divide by (t− s)1/2 in (4.6) to get that for any
s < t ∈ [S, T ],

‖Eh,ns,t ‖Lm
|t− s| 12

≤ C
(

([Eh,n]
C

1
2
[S,T ]

Lm
+ ‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm)(T − S)

1
2 +H(γ−1− dp )

+ ‖bn‖∞h
1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
.

Taking the supremum over s, t in [S, T ], we get

[Eh,n]
C

1
2
[S,T ]

Lm
≤ C

(
([Eh,n]

C
1
2
[S,T ]

Lm
+ ‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm)(T − S)

1
2 +H(γ−1− dp )

+ ‖bn‖∞h
1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
.

(4.7)
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Observe now that [Eh,n]C1/2
[S,T ]

Lm
is finite. Indeed, in view of (4.3), the quantity [K −Kn]C1/2

[S,T ]
Lm

is finite and the term [Kn −Kh,n]C1/2
[S,T ]

Lm
is bounded by 2‖bn‖∞.

Let ` = (2C)
−1

1/2+H(γ−1−d/p) ∧ 1. We have 1−C`1/2+H(γ−1−d/p) ≥ 1/2, thus choosing T −S ≤ `,
we get from (4.7) that

[Eh,n]
C

1
2
[S,T ]

Lm
≤ 2C

(
‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm+‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
.

Now take S = 0 and T = l. Plugging the above result and (4.3) in (4.2) (with s = 0 and t = l),
we obtain

[Eh,n]
C

1
2
[0,l]

Lm
≤ C

(
‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm+‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
(4.8)

If ` = 1, the desired result is proved. Otherwise, repeat the same argument on [`, 2` ∧ 1], viewing

ξ ≡ X` and η ≡ Xh,n
` as the new initial conditions. This yields

[Eh,n]
C

1
2
[l,2l∧1]L

m
≤ C

(
‖bn − b‖Bγ−1

p
+‖X` −Xh,n

` ‖Lm+‖bn‖∞h
1
2−ε + ‖bn‖C1h1−ε

)
≤ C

(
‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm+[Eh,n]

C
1
2
[0,l]

Lm
+ ‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
,

using that ‖X` −Xh,n
` ‖Lm≤ ‖ξ − η‖Lm+[X −Xh,n]C1/2

[0,l]
Lm

in the last inequality. In view of (4.8),

this implies

[Eh,n]
C

1
2
[l,2l∧1]L

m
≤ (C + C2)

(
‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm+‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
. (4.9)

Combining (4.8) and (4.9) gives a bound on [Eh,n]C1/2
[0,2l∧1]L

m . If 2l ≥ 1, we get the desired result.

Otherwise, we iterate the argument. Recalling that ` does not depend on h or n, we finally have

[Eh,n]
C

1
2
[0,1]

Lm
≤ C

(
‖bn − b‖Bγ−1

p
+‖ξ − η‖Lm+‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
, (4.10)

which concludes the proof of Theorem 2.5.

4.2 Proof of Corollary 2.6

First, let bn = G 1
n
b and let n be given by n = bh−αc for some α > 0 and h > 0. In view of

Lemma 3.2, bn satisfies (2.10), (2.11), (2.12). Using (4.10) with ξ = η, we have

[Eh,n]
C

1
2
[0,1]

Lm
≤ C

(
bh−αc− 1

2 + bh−αc−
1
2 (γ− dp )h

1
2−ε + bh−αc

1
2−(γ− dp )h1−ε

)
.

Since − 1
2 (γ − d

p ) > 0 and 1
2 − (γ − d

p ) > 0, we have

bh−αc
1
2−(γ− dp ) ≤ h−α2 hα(γ− dp ) and bh−αc−

1
2 (γ− dp ) ≤ h

α
2 (γ− dp ).

Moreover, since h ∈ (0, 1
2 ) and bh−αc > h−α − 1, we have

bh−αc− 1
2 ≤ (1− hα)−

1
2h

α
2

≤ (1− 1

2α
)−

1
2h

α
2 ≤ Chα2 .

It follows that

[Eh,n]
C

1
2
[0,1]

Lm
≤ C

(
h
α
2 + h

α
2 (γ− dp )h

1
2−ε + h−

α
2 hα(γ− dp )h1−ε

)
.
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Now we optimize over α. For the sake of readability, let γ̄ = γ− d
p ∈ (1− 1

2H , 0) and introduce the
following functions:

f1(α) =
α

2
, f2(α) =

γ̄

2
α+

1

2
and f3(α) = (γ̄ − 1

2
)α+ 1, α > 0.

Observe that f1 is increasing and f2, f3 are decreasing. Moreover, we have

f1(α) = f2(α) = f3(α)⇔ α? =
1

1− γ̄
. (4.11)

It follows that the error is minimized at α = α?. Let nh = h−α
?

. This yields rate of convergence
of order 1

2(1−γ̄) − ε, which proves (2.13). Moreover, we deduce (2.14) directly from (2.13) and the

following decomposition:

[Xh,nh −B]
C

1
2
[0,1]

Lm
≤ [X −Xh,nh ]

C
1
2
[0,1]

Lm
+ [X −B]

C
1
2
[0,1]

Lm
.

4.3 Proof of Corollary 2.8

Assume that b ∈ B0
∞. Let ε ∈ (0, 1

2 ), then fix η ∈ (0, 1/(2H)−1) and δ ∈ (0, 1
2 ) such that η+δ = ε.

Then b also belongs to B−η∞ and Theorem 2.3 states that there exists a strong solution X to (1.1)

which satisfies X −B ∈ C1/2+H
[0,T ] Lm, which is pathwise unique in the class of solutions that satisfy

X −B ∈ C1/2+H
[0,T ] L2.

To prove the second part of the corollary, apply Theorem 2.5 with γ = −η, p =∞ and ε = δ,
and note that ‖bn − b‖B−η−1

∞
≤ C‖bn − b‖B−1

∞
to get that

[X −Xh,n]
C

1
2
[0,1]

Lm
≤ C

(
‖bn − b‖B−1

∞
+‖bn‖∞h

1
2−δ + ‖bn‖C1‖bn‖∞h1−δ

)
.

Now we take bn = G 1
n
b and n = bh−αc for some α > 0. Using (2.10), (2.11) and (2.12) as in

Subsection 4.2, this leads to

[X −Xh,n]
C

1
2
[0,1]

Lm
≤ C

(
h
α
2 + h

1
2−δ−

αη
2 + h1−δ−α2−αη

)
.

Optimising over α as before, we find α? = 1/(1 + η), which yields a rate of convergence of order
1

2(1+η) − δ. Since 1
2(1+η) ≥ 1/2− η, it finally comes that

[X −Xh,n]
C

1
2
[0,1]

Lm
≤ C h 1

2−η−δ = C h
1
2−ε.

5 Regularisation effect of fBm and discrete-time fBm

In this section, X always denotes a weak solution to (1.1) with drift b ∈ Bγp , with γ ∈ R and
p ∈ [1,∞] satisfying (2.7). For such X, recall that the process K is defined by (2.4). Let (bn)N a be
sequence of smooth functions that converges to b in Bγ−p . For n ∈ N and h ∈ (0, 1), Xh,n denotes

the Euler scheme (1.2), and recall that the process Kh,n is defined by (4.1). As in Section 4.1,
we allow different random initial conditions for the solution and the Euler scheme (respectively
denoted ξ and η).

5.1 Regularisation in the strong well-posedness regime

In this subsection, we state and prove the bound on E1,h,n. The following proposition is close to
Proposition 3.5 but it requires the stronger assumption (2.7).
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Proposition 5.1. Let (ψt)t∈[0,1], (φt)t∈[0,1] be two Rd-valued stochastic processes adapted to F.

Let f ∈ C∞b (Rd,Rd) ∩ Bγp , m ≥ 2, and let τ ∈ (0, 1) be such that

τ +H(γ − 1− d

p
) > 0. (5.1)

There exists a constant C > 0 such that for any (s, t) ∈ ∆0,1,∥∥∥∫ t

s

(f(ψr +Br)− f(φr +Br)) dr
∥∥∥
Lm

≤ C ‖f‖Bγp
(

1 + [ψ]
C

1
2
+H

[s,t]
Lm

)(
[ψ − φ]Cτ

[s,t]
Lm + ‖ψs − φs‖Lm

)
(t− s)1+H(γ−1− dp ).

(5.2)

Proof. Let 0 ≤ S < T ≤ 1. For (s, t) ∈ ∆S,T , let

As,t =

∫ t

s

(
f(ψs +Br)− f(φs +Br)

)
dr and At =

∫ t

S

(
f(ψr +Br)− f(φr +Br)

)
dr. (5.3)

Assume without any loss of generality that [ψ]C1/2+H
[S,T ]

Lm
and [ψ−φ]Cτ

[S,T ]
Lm are finite, otherwise the

result is trivial. In the following, we check the conditions in order to apply Lemma A.1. To show
that (A.1) and (A.2) hold true with ε1 = τ ∧ 1

2 +H(γ−1−d/p) > 0 and ε2 = 1/2+H(γ−d/p) > 0,
we prove that there exists a constant C > 0 independent of s, t, s and t such that for u = (s+ t)/2,

(i) ‖Es[δAs,u,t]‖Lm≤ C ‖f‖Bγp ([ψ]C1/2+H
[S,T ]

Lm
+1)([ψ−φ]Cτ

[S,T ]
Lm+‖ψS−φS‖Lm)(t−s)1+τ∧ 1

2 +H(γ−1−d/p);

(ii) ‖δAs,u,t‖Lm≤ C ‖f‖Bγp ([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)(t− s)1+H(γ−1− dp );

(iii) If (i) and (ii) are satisfied, (A.3) gives the convergence in probability of
∑Nn−1
i=1 Atki ,tki+1

along

any sequence of partitions Πk = {tki }
Nk
i=1 of [S, t] with mesh converging to 0. We will prove

that the limit is the process A given in (5.3).

Assume for now that (i), (ii) and (iii) hold. Applying Lemma A.1, we obtain that∥∥∥∫ t

s

f(Br + ψr) dr
∥∥∥
Lm
≤ C ‖f‖Bγp ([ψ − φ]Cτ

[S,T ]
Lm + ‖ψS − φS‖Lm)(t− s)1+H(γ−1− dp )

+ C ‖f‖Bγp ([ψ]C1/2+H
[S,T ]

Lm
+ 1)([ψ − φ]Cτ

[S,T ]
Lm + ‖ψS − φS‖Lm)(t− s)1+τ∧ 1

2 +H(γ−1−d/p)

+ ‖As,t‖Lm .

We will see in (5.5) that ‖As,t‖Lm≤ C ‖f‖Bγp ([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)(t − s)1+H(γ−1− dp ).

Then, choosing (s, t) = (S, T ) we get (5.2).
We now check that the conditions (i), (ii) and (iii) actually hold.

Proof of (i): For u ∈ [s, t], by the tower property of conditional expectation, we have

EsδAs,u,t = Es
∫ t

u

Eu
[
f(ψs +Br)− f(φs +Br)− f(ψu +Br) + f(φu +Br)

]
dr

=: Es
∫ t

u

Eu[F (Br, s, u) +G(Br, s, u)] dr, (5.4)

where

F (·, s, u) = f(ψs + ·)− f(φs + ·)− f(ψu + ·) + f(ψu + φs − ψs + ·),
K(·, s, u) = f(ψu + φs − ψs + ·)− f(φu + ·).
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By Lemma 3.3(ii), we have that

|EuF (Br, s, u)|≤ ‖F (·, s, u)‖Bγ−2
p

(r − u)H(γ−2− dp ),

|EuK(Br, s, u)|≤ ‖K(·, s, u)‖Bγ−1
p

(r − u)H(γ−1− dp ).

Moreover, by Lemma 3.1(iii), it comes that

‖‖F (·, s, u)‖Bγ−2
p
‖Lm ≤ ‖f‖Bγp ‖ψs − ψu‖Lm‖ψs − φs‖Lm

≤ C ‖f‖Bγp [ψ]
C

1
2
+H

[S,T ]
Lm

(u− s) 1
2 +H‖ψ − φ‖L∞

[S,T ]
Lm

≤ C ‖f‖Bγp [ψ]
C

1
2
+H

[S,T ]
Lm

([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)(u− s) 1
2 +H ,

and

‖‖K(·, s, u)‖Bγ−1
p
‖Lm ≤ ‖f‖Bγp ‖ψs − ψu − φs + φu‖Lm

≤ C ‖f‖Bγp [ψ − φ]Cτ
[S,T ]

Lm (u− s)τ .

Plugging the previous bounds in (5.4), we obtain

‖EsδAs,u,t‖Lm ≤ C ‖f‖Bγp
(

[ψ]
C

1
2
+H

[S,T ]
Lm

+ 1
)

([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)

×
(

(t− s)1+τ+H(γ−1− dp ) + (t− s)1+ 1
2 +H+H(γ−2− dp )

)
≤ C ‖f‖Bγp

(
[ψ]
C

1
2
+H

[S,T ]
Lm

+ 1
)

([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)(t− s)1+τ∧ 1
2 +H(γ−1− dp ).

Proof of (ii): we write

‖δAs,u,t‖Lm≤ ‖As,t‖Lm+‖As,u‖Lm+‖Au,t‖Lm

and we will apply Lemma 3.4 for each term in the right-hand side of the previous inequality,
respectively for Ξ = (ψs, φs), (ψs, φs) again and (ψu, φu). We only detail the first one. As
f is smooth and bounded, the first assumption of Lemma 3.4 is verified. By Lemma 3.1(i),
‖f(· + ψs) − f(· + φs)‖Bγp≤ 2‖f‖Bγp , hence the second assumption of Lemma 3.4 is verified. It
follows that

‖As,t‖Lm ≤ C ‖‖f(ψs + ·)− f(φs + ·)‖Bγ−1
p
‖Lm (t− s)1+H(γ−1− dp )

≤ C ‖f‖Bγp ‖ψs − φs‖Lm (t− s)1+H(γ−1− dp )

≤ C ‖f‖Bγp ([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm) (t− s)1+H(γ−1− dp ). (5.5)

Hence combining similar inequalities on As,u and Au,t with (5.5), we get

‖δAs,u,t‖Lm≤ C ‖f‖Bγp ([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm) (t− s)1+H(γ−1− dp ).

Proof of (iii): Finally, for a sequence (Πk)k∈N of partitions of [s, t] with Πk = {tki }
Nk
i=1 and mesh

size |Πk| converging to zero, we have

‖At −
Nk−1∑
i=1

Atki ,tki+1
‖Lm≤

∑
i

∫ tki+1

tki

∥∥∥f(ψr +Br)− f(φr +Br)− f(ψtki +Br) + f(φtki +Br)
∥∥∥
Lm

dr

≤ C ‖f‖C2
∑
i

∫ tki+1

tki

(
|Πk|τ [ψ − φ]Cτ

[S,T ]
Lm + |Πk|

1
2 +H [ψ]

C
1
2
+H

[S,T ]
Lm

([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)

)
dr,
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where we used again the decomposition with the functions F and G defined above in the proof.
Hence

‖At −
Nk−1∑
i=1

Atki ,tki+1
‖Lm

≤ C ‖f‖C2 t
(
|Πk|τ [ψ − φ]Cτ

[S,T ]
Lm + |Πk|

1
2 +H [ψ]

C
1
2
+H

[S,T ]
Lm

([ψ − φ]Cτ
[S,T ]

Lm + ‖ψS − φS‖Lm)

)
−→
k→+∞

0.

Corollary 5.2. Recall that the process Kh,n was defined in (4.1). Let m ≥ 2. There exists a
constant C > 0 such that for any 0 ≤ S < T ≤ 1, any FS-measurable random variables ξ and η
and any (s, t) ∈ ∆S,T , we have∥∥∥ ∫ t

s

(bn(ξ +Kr +Br)− bn(η +Kh,n
r +Br)) dr

∥∥∥
Lm

≤ C‖bn‖Bγp
(

1 + [X −B]
C

1
2
+H

[s,t]
Lm

)(
[K −Kh,n]

C
1
2
[s,t]

Lm
+ ‖ξ − η‖Lm

)
(t− s)1+H(γ−1− dp ).

Proof. Choose τ = 1
2 , which satisfies (5.1) since in this case, it is reduced to (2.7). Apply Proposi-

tion 5.1 with τ = 1
2 , f = bn, ψ = ξ+K and φ = η+Kh,n. Also recall from (2.3) that ‖bn‖Bγp≤ ‖b‖Bγp

to get∥∥∥∫ t

s

(bn(Kr + x+Br)− bn(Kh,n
r + y +Br)) dr

∥∥∥
Lm

≤ C‖b‖Bγp
(

1 + [K]
C

1
2
+H

[s,t]
Lm

)(
[K −Kh,n]

C
1
2 [s,t]Lm

+ ‖ξ − η‖Lm
)

(t− s)1+H(γ−1− dp ).

5.2 Sewing bounds for the d-dimensional discrete fBm

In this section, we present general Lemmas that lead to a bound on the term E2,h,m.

Lemma 5.3. Let f ∈ C∞b (Rd,Rd) ∩ Bγp and recall that γ and p satisfy (2.7). Let ε ∈ (0, 1
2 ),

m ∈ [2,∞) and h > 0. There exists a constant C > 0 such that for any 0 ≤ S < T ≤ 1, any
Rd-valued FS-measurable random variable ψ and any (s, t) ∈ ∆S,T , we have∥∥∥∫ t

s

f(ψ +Br)− f(ψ +Brh) dr
∥∥∥
Lm
≤ C ‖f‖∞ h

1
2−ε(t− s) 1

2 + ε
2 .

Proof. We will check the conditions in order to apply Lemma A.1. For (s, t) ∈ ∆S,T , let

As,t = Es
∫ t

s

f(ψ +Br)− f(ψ +Brh) dr and At =

∫ t

S

f(ψ +Br)− f(ψ +Brh) dr.

Let u ∈ [s, t] and notice that EsδAs,u,t = 0, so (A.1) holds with Γ1 = 0. We will prove that (A.2)
holds with

Γ2 = C‖f‖∞h
1
2−ε.

The case t− s ≤ 2h. In this case we have

|As,t|≤ ‖f‖∞(t− s) ≤ ‖f‖∞h
1
2−ε(t− s) 1

2 +ε. (5.6)
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The case t− s > 2h. Here we split As,t in two

As,t = Es
∫ s+2h

s

f(ψ +Br)− f(ψ +Brh) dr + Es
∫ t

s+2h

f(ψ +Br)− f(ψ +Brh) dr.

For the first part, we obtain∣∣∣Es ∫ s+2h

s

f(ψ +Br)− f(ψ +Brh) dr
∣∣∣ ≤ 2h ‖f‖∞≤ C ‖f‖∞h

1
2−ε(t− s) 1

2 +ε.

Denote the second part as

J :=

∫ t

s+2h

Es[f(ψ +Br)− f(ψ +Brh)] dr.

We write Br = Br −EsBr +EsBr, where Br −EsBr is a Gaussian variable independent of Fs and
of variance C(r − s)2H , see [6, Proposition 3.6 (ii)]. Using the Gaussian semigroup G, we get

J =

∫ t

s+2h

(
GC(r−s)2Hf(ψ + EsBr)−GC(rh−s)2Hf(ψ + EsBrh)

)
dr (5.7)

=

∫ t

s+2h

(
GC(r−s)2Hf(ψ + EsBr)−GC(rh−s)2Hf(ψ + EsBr)

)
dr

+

∫ t

s+2h

GC(r−s)2H
[
f(ψ + EsBr)− f(ψ + EsBrh)

]
dr

=: J1 + J2.

For J1, we apply [6, Proposition 3.7 (ii)] with β = 0, δ = 1, α = 0 to get

‖J1‖Lm ≤ C ‖f‖∞
∫ t

s+2h

((r − s)2H − (rh − s)2H)(rh − s)−2H dr.

Now applying the inequalities (r−s)2H−(rh−s)2H ≤ C(r−rh)(rh−s)2H−1 and 2(rh−s) ≥ (r−s),
it comes

‖J1‖Lm ≤ C ‖f‖∞
∫ t

s+2h

(r − rh)(r − s)2H−1(r − s)−2H dr

≤ C ‖f‖∞h
∫ t

s+2h

(r − s)−1 dr

≤ C ‖f‖∞h (|log(2h)|+|log(t− s)|) .

Use again that 2h < t− s to get

‖J1‖Lm ≤ C ‖f‖∞h
1
2−ε(t− s) 1

2 + ε
2 .

As for J2, we have

‖J2‖Lm≤
∫ t

s+2h

‖GC(r−s)2Hf‖C1 ‖EsBr − EsBrh‖Lm dr.

In view of [6, Proposition 3.7 (i)] applied with β = 1, α = 0 and [6, Proposition 3.6 (v)], we get

‖J2‖Lm ≤ C ‖f‖∞
∫ t

s+2h

‖EsBr − EsBrh‖Lm(r − s)−H dr

≤ C ‖f‖∞
∫ t

s+2h

(r − rh)(r − s)H−1(r − s)−H dr

≤ C ‖f‖∞ h (|log(2h)|+|log(t− s)|)

≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 .
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Combining the bounds on J1 and J2, we deduce that

‖J‖Lm≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 .

Hence for all t− s > 2h,

‖As,t‖Lm≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 . (5.8)

Overall, combining (5.6) and (5.8), we obtain that for all s ≤ t,

‖As,t‖Lm ≤ C‖f‖∞h
1
2−ε(t− s) 1

2 + ε
2 .

Thus for any u ∈ [s, t],

‖δAs,u,t‖Lm ≤ ‖As,t‖Lm+‖As,u‖Lm+‖Au,t‖Lm

≤ C‖f‖∞h
1
2−ε(t− s) 1

2 + ε
2 .

The power in (t− s) is strictly larger than 1/2, so (A.2) holds.

Convergence in probability. Finally, for a sequence (Πk)k∈N of partitions of [S, t] with Πk =
{tki }

Nk
i=1 and mesh size converging to zero, we have

∥∥∥At − Nk−1∑
i=1

Atki ,tki+1

∥∥∥
L1
≤
Nk−1∑
i=1

∫ tki+1

tki

E
∣∣∣f(ψ +Br)− f(ψ +Brh)− Et

k
i [f(ψ +Br) + f(ψ −Brh)]

∣∣∣ dr
≤
Nk−1∑
i=1

∫ tki+1

tki

E
∣∣∣f(ψ +Br)− Et

k
i f(ψ +Br)

∣∣∣ dr
+

Nk−1∑
i=1

∫ tki+1

tki

E
∣∣∣f(ψ +Brh)− Et

k
i f(ψ +Brh)

∣∣∣ dr
=: I1 + I2.

In view of Lemma 3.3(iii), it comes that

I1 ≤
Nk−1∑
i=1

∫ tki+1

tki

‖f‖C1(r − tki )H dr ≤ ‖f‖C1 |Πk|H (t− S).

As for I2, note that if rh ≤ tki , then E|f(ψ + Brh) − Etki f(ψ + Brh)|= 0. On the other hand,
when rh ∈ (tki , t

k
i+1] then in view of Lemma 3.3(iii), we have

E|f(ψ +Brh)− Et
k
i f(ψ +Brh)|≤ C‖f‖C1 |Πk|H .

It follows that

I2 ≤
Nk−1∑
i=1

∫ tki+1

tki

‖f‖C1 |Πk|H dr,

and therefore
∑Nk−1
i=1 Atki ,tki+1

converges in probability to At as k → +∞. We can therefore apply

Lemma A.1 with ε1 > 0 and ε2 = ε/2 to conclude that

‖At −As‖Lm ≤ ‖At −As −As,t‖Lm+‖As,t‖Lm

≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 .
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Proposition 5.4. Let (ψt)t∈[0,1] be an Rd-valued stochastic process adapted to F. Let f ∈ C∞b (Rd,Rd)∩
Bγp and recall that γ and p satisfy (2.7). Let ε ∈ (0, 1

2 ) and m ∈ [2,∞). There exists a constant
C > 0 such that for any (s, t) ∈ ∆0,1, we have∥∥∥ ∫ t

s

f(ψr +Br)− f(ψr +Brh) dr
∥∥∥
Lm
≤ C

(
‖f‖∞h

1
2−ε(t− s) 1

2 + ε
2 + ‖f‖C1 [ψ]C1

[s,t]
Lmh

1−ε(t− s)1+ ε
2

)
.

(5.9)

Proof. We will check the conditions in order to apply Lemma A.1. Let and 0 ≤ S < T ≤ 1. For
any (s, t) ∈ ∆S,T , define

As,t =

∫ t

s

f(ψs +Br)− f(ψs +Brh) dr and At =

∫ t

S

f(ψr +Br)− f(ψr +Brh) dr.

To show that (A.1) and (A.2) hold true with ε1 = ε2 = ε/2 > 0, we prove that there exists a
constant C > 0 independent of s, t, S and T such that for u = (s+ t)/2,

(i) ‖Es[δAs,u,t]‖Lm≤ C ‖f‖C1 [ψ]C1
[S,T ]

Lm h
1−ε (t− s)1+ ε

2 ;

(ii) ‖δAs,u,t‖Lm≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 ;

(iii) If (i) and (ii) are satisfied, (A.3) gives the convergence in probability of
∑Nn−1
i=1 Atki ,tki+1

along

any sequence of partitions Πk = {tki }
Nk
i=1 of [S, t] with mesh converging to 0. We will prove

that the limit is the process A given in (5.3).

Assume for now that (i), (ii) and (iii) hold. Applying Lemma A.1, we obtain that∥∥∥ ∫ t

s

f(ψr +Br)− f(ψr +Brh) dr
∥∥∥
Lm
≤ C

(
‖f‖∞h

1
2−ε(t− s) 1

2 + ε
2 + ‖f‖C1 [ψ]C1

[s,t]
Lmh

1−ε(t− s)1+ ε
2

)
+ ‖As,t‖Lm .

We will see in (5.13) that ‖As,t‖Lm≤ C ‖f‖∞h
1
2−ε (t − s) 1

2 + ε
2 . Then choosing (s, t) = (S, T ), we

get (5.9).
We now check that the conditions (i), (ii) and (iii) actually hold.

Proof of (i): For u ∈ [s, t], by the tower property of conditional expectation, we have

EsδAs,u,t = Es
∫ t

u

Eu[f(ψs +Br)− f(ψs +Brh)− f(ψu +Br) + f(ψu +Brh)] dr.

The case u− s ≤ 2h. In this case, using the Lipschitz norm of f , we have

|EsδAs,u,t| ≤ 2‖f‖C1
∫ t

u

|ψs − ψu| dr,

and therefore using the inequality (t− u)(u− s) ≤ (t− u)(u− s)εh1−ε ≤ (t− s)1+εh1−ε,

‖EsδAs,u,t‖Lm ≤ ‖f‖C1‖ψ‖C1
[S,T ]

Lm(t− u)(u− s)

≤ C‖f‖C1‖ψ‖C1
[S,T ]

Lm(t− s)1+εh1−ε.

The case u− s > 2h. We split the integral first between u and u+ 2h and then between u+ 2h
and t as

δAs,u,t =: J1 + J2.
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For J1, we obtain as before that

|EsδAs,u,u+2h| ≤ 2‖f‖C1 |ψs − ψu| (u+ 2h− u),

and using the fact that u− s > 2h, it follows that

‖EsJ1‖Lm= ‖EsδAs,u,u+2h‖Lm ≤ C‖f‖C1‖ψ‖C1
[S,T ]

Lm(t− s)1+εh1−ε. (5.10)

As for J2, we write as in (5.7) that

J2 = Es
∫ t

u+2h

Eu[f(ψs +Br)− f(ψs +Brh)− f(ψu +Br) + f(ψu +Brh)] dr

= Es
∫ t

u+2h

(GC(r−u)2H −GC(rh−u)2H )(f(ψs + EuBr)− f(ψu + EuBr)) dr

+ Es
∫ t

u+2h

GC(rh−u)2H

(
f(ψs + EuBr)− f(ψs + EuBrh)− f(ψu + EuBr) + f(ψu + EuBrh)

)
dr

=: J21 + J22.

For J21, we apply [6, Proposition 3.7 (ii)] with β = 0, δ = 1, α = 0 to get

‖J21‖Lm ≤ C‖‖f(ψs + ·)− f(ψu + ·)‖∞‖Lm
∫ t

u+2h

((r − s)2H − (rh − s)2H)(rh − s)−2H dr.

Now applying the inequalities (r−s)2H−(rh−s)2H ≤ C(r−rh)(rh−s)2H−1 and 2(rh−s) ≥ (r−s),
it comes

‖J21‖Lm ≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm |u− s|
∫ t

u+2h

(r − rh)(r − s)2H−1(r − s)−2H dr

≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm h (t− s) (|log(2h)|+|log(t− s)|).

Since 2h ≤ t− s, one has

‖J21‖Lm ≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm h
1−ε(t− s)1+ ε

2 . (5.11)

As for J22, observe that∣∣∣GC(rh−u)2H

(
f(ψs + EuBr)− f(ψs + EuBrh)− f(ψu + EuBr) + f(ψu + EuBrh)

)∣∣∣
≤ ‖GC(rh−u)2H (f(ψs + ·)− f(ψu + ·))‖C1 |EuBr − EuBrh |
≤ C ‖f(ψs + ·)− f(ψu + ·)‖∞ (rh − u)−H |EuBr − EuBrh |,

where we used [6, Proposition 3.7 (i)] with β = 1 and α = 0 in the last inequality. Now in view of
[6, Proposition 3.6 (v)], the previous inequality and using 2(rh − u) ≥ r − u, it comes

‖J22‖Lm ≤ C ‖‖f(ψs + ·)− f(ψu + ·)‖∞‖Lm
∫ t

u+2h

‖EuBr − EuBrh‖Lm(rh − u)−H dr

≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm (u− s)
∫ t

u+2h

(r − rh)(r − u)H−1(rh − u)−H dr

≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm h (t− s) (|log(2h)|+|log(t− s)|)

≤ C ‖f‖C1‖ψ‖C1
[S,T ]

Lm h
1−ε (t− s)1+ ε

2 . (5.12)

In view of the inequalities (5.10), (5.11) and (5.12), we have finally

‖EsδAs,u,t‖Lp′ ≤ C ‖f‖C1‖ψ‖C1[S,T ]
Lmh

1−ε(t− s)1+ ε
2 .
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Proof of (ii): we write

‖δAs,u,t‖Lm≤ ‖As,t‖Lm+‖As,u‖Lm+‖Au,t‖Lm

and we apply Lemma 5.3 for each term in the right-hand side of the previous inequality, respectively
for ψ = ψs, ψs again and ψu. We thus have

‖As,t‖Lm≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 , (5.13)

and combining similar inequalities on As,u and Au,t with (5.13) yields

‖δAs,u,t‖Lm≤ C ‖f‖∞ h
1
2−ε (t− s) 1

2 + ε
2 .

Proof of (iii): finally, for a sequence (Πk)k∈N of partitions of [S, t] with Πk = {tki }
Nk
i=1 and mesh

size |Πk| converging to zero, we have

‖At −
N−1∑

0

Ati,ti+1
‖L1 ≤

Nk−1∑
i=1

∫ tki+1

tki

E|f(ψr +Br)− f(ψr +Brh)− f(ψtki +Br) + f(ψtki +Brh)| dr

≤ C
Nk−1∑
i=1

∫ tki+1

tki

‖f‖C1‖ψr − ψtki ‖L1 dr

≤ C‖f‖C1
Nk−1∑
i=1

∫ tki+1

tki

‖ψ‖C1
[0,1]

Lm |Πk| dr −→
k→∞

0.

Corollary 5.5. Let (ψt)t∈[0,1] be an Rd-valued stochastic process adapted to F. Let f ∈ C∞b (Rd,Rd)∩
Bγp and recall that γ and p satisfy (2.7). Let ε ∈ (0, 1

2 ) and m ∈ [2,∞). There exists a constant
C > 0 such that for any (s, t) ∈ ∆0,1,∥∥∥ ∫ t

s

f(ψr +Br)− f(ψrh +Brh) dr
∥∥∥
Lm
≤ C

(
‖f‖∞ h

1
2−ε(t− s) 1

2 + ε
2 + ‖f‖C1 [ψ]C1

[0,1]
Lm h

1−ε(t− s)
)
.

Proof. Introducing the pivot term f(ψr +Brh), we have∥∥∥∫ t

s

f(ψr +Br)− f(ψrh +Brh) dr
∥∥∥
Lm

≤
∥∥∥∫ t

s

f(ψrh +Brh)− f(ψr +Brh) dr
∥∥∥
Lm

+
∥∥∥∫ t

s

f(ψr +Br)− f(ψr +Brh) dr
∥∥∥
Lm

=: J1 + J2.

We first bound J1 using the C1 norm of f :

J1 ≤ ‖f‖C1
∫ t

s

‖ψr − ψrh‖Lm dr ≤ ‖f‖C1‖ψ‖C1[0,1]Lm h (t− s).

Then J2 is bounded by Proposition 5.4. Combining the two bounds, we get the desired result.

Corollary 5.6. Recall the process Kh,n that was defined in (4.1). Let ε ∈ (0, 1
2 ), m ∈ [2,∞) and

let γ, p which satisfy (2.7). There exists a constant C > 0 such that for any 0 ≤ S < T ≤ 1, any
FS-measurable random variable η and any (s, t) ∈ ∆S,T , we have∥∥∥ ∫ t

s

bn(η +Kh,n
r +Br)− bn(η +Kh,n

rh
+Brh) dr

∥∥∥
Lm
≤ C

(
‖bn‖∞h

1
2−ε + ‖bn‖C1‖bn‖∞h1−ε

)
(t− s) 1

2 .
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Proof. Define the process ψt = η + Kh,n
t , t ∈ [0, 1]. Since ψt is Ft-measurable for t ∈ [S, T ] and

bn ∈ C∞b (Rd,Rd) ∩ Bγp , we can apply Corollary 5.5. It comes that∥∥∥∫ t

s

bn(η +Kh,n
r +Br)− bn(η +Kh,n

rh
+Brh) dr

∥∥∥
Lm

≤ C
(
‖bn‖∞h

1
2−ε(t− s) ε2 + ‖bn‖C1 [ψ]C1

[0,1]
Lmh

1−ε(t− s) 1
2

)
(t− s) 1

2

≤ C
(
‖bn‖∞h

1
2−ε + ‖bn‖C1 [ψ]C1

[0,1]
Lmh

1−ε
)

(t− s) 1
2 .

It remains to prove an upper bound on [ψ]C1
[0,1]

Lm . For 0 ≤ u ≤ v ≤ 1, we have

|ψv − ψu|= |
∫ v

u

bn(Xh,n
rh

) dr|≤ |v − u|‖bn‖∞.

Hence [ψ]C1
[0,1]

Lm ≤ ‖bn‖∞.

6 Examples and simulations

In this section, we discuss examples of SDEs of the form (1.1) that can be treated by Theorem 2.5.

6.1 Skew fractional Brownian motion

The skew Brownian motion is a one-dimensional process that behaves like a Brownian motion with
a certain diffusion coefficient above the x-axis, and with another diffusion coefficient below the
x-axis. We refer to [15, 22] for various constructions, and in particular in [21], it is shown to be
the solution of an SDE which involves its local time. This equation reads dXt = αdLXt + dWt, for
α ∈ (−1, 1), where LX is the local time at 0 of the solution. Formally we can write dLXt = δ0(Xt) dt.
More generally in Rd, although this is not the only possible approach (see e.g. [4, 12] for alternative
definitions), we call skew fractional Brownian motion the solution to (1.1) when the drift is αδ0,
α ∈ Rd, that is

dXt = αδ0(Xt) dt+ dBt. (6.1)

Since δ0 ∈ B
−d+ d

p
p , Theorem 2.3 gives strong existence and uniqueness for H < 1

2(d+1) and the

Euler scheme converges for the same values of H by Theorem 2.5.
As an alternative construction of the skew fBm, we also propose to replace the local time by

its approximation b(x) = α
2ε1(−ε,ε)(x), ε > 0. Now we have b bounded and so b ∈ B0

∞, therefore

one can take H < 1
2 and consider the SDE

dXt =
α

2ε
1(−ε,ε)(X) dt+ dBt.

In the Markovian case and dimension d = 1, the skew Brownian motion is reflected on the x-
axis when α = ±1. Unlike the skew Brownian motion, the skew fBm (for H 6= 1/2) is not reflected
for any value of α, since X −B is more regular than B (see Theorem 2.3). To construct reflected
processes, a classical approach is to proceed by penalization, see e.g. [23] in the Brownian case, and

[30] for rough differential equations. This consists in choosing a drift of the form bε(x) = (x)−
ε and

letting ε tend to 0. Note that this approach also works for stochastic partial differential equations
(SPDEs), see for instance [14, 27, 36]. If we consider more specifically the stochastic heat equation,
the solution in time observed at a fixed point in space behaves qualitatively like a fractional SDE
with Hurst parameter H = 1

4 . Hence in the reflected case, it is interesting to consider the following
SDEs:

dXε
t =

(Xε
t )−
ε

κ(Xε
t ) dt+ dBt, (6.2)
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where κ is a smooth cut-off to ensure that the drift is in some Besov space (here B1
∞). Therefore

the analysis of the scheme (1.2) holds for H < 1
2 . One could then provide a rate for convergence

for the Euler scheme approximating the reflected fBm X0, which is the limit as ε → 0 in (6.2).
Indeed in [30], the distance between Xε and X0 is quantified, so denoting Xε,h,n the Euler scheme
of Xε, Theorem 2.5 now permits to control X0 −Xε,h,n.

6.2 Applications in finance

Some models of mathematical finance involve irregular drifts.
First, consider a dividend paying firm, whose capital evolution can be modelled by the following

SDE:

dXt = (r − α(Xt)) dt+ σ dBt,

with r is an interest rate, σ is the volatility of the market and α(x) = 1x≤q for some threshold
q, see e.g [2]. Numerical methods for bounded drifts with Brownian noise exist in the literature,
see e.g. [8, 17]. When B is a fractional Brownian motion with H < 1/2, [6] provides a rate of
convergence for the strong error (and Theorem 2.5 provides the same rate of convergence).

Then, we propose a class of models which can be related heuristically to the rough Heston model
introduced in [11]. Recently, it was observed empirically that the volatility in some high-frequency
financial markets has a very rough behaviour, in the sense that its trajectories have a very small
Hölder exponent, close to 0.1. Formally, the rough Heston model is described by a square root
diffusion coefficient and a very rough driving noise. It would read

dVt = κ(Vt) dt+
√
Vt dBt, (6.3)

if we could make sense of this equation, the difficulty being both to define a stochastic integral when
H is small, and to ensure the positivity of the solution. Note that it is possible to define properly
a rough Heston model, by means of Volterra equations, see [11]. However, we keep discussing (6.3)
at a formal level, and consider the Lamperti transform L(x) =

√
x. Assume that a first order chain

rule holds for the solution of (6.3), then as long as V stays nonnegative, it comes that

L(Vt) = L(V0) +

∫ t

0

κ(Vs)√
Vs

ds+Bt,

which for Ṽt := L(Vt) =
√
Vt also reads

Ṽt = Ṽ0 +
1

2

∫ t

0

1

Ṽs
κ(Ṽ 2

s ) ds+
1

2
Bt. (6.4)

While there are some quantitative numerical approximation results for rough models (e.g. for
the rough Bergomi model [13]), the Euler scheme for the rough Heston model is only known to

converge without a rate [31]. Now we can make sense of the Equation (6.4) with drift b(x) = κ(x2)
2|x|1−ε

as for κ a bump function and for small ε > 0, b ∈ B0
1 (see [5, Prop. 2.21]). Hence Theorem 2.5

can be applied whenever H < 1/4 and in view of Corollary 2.6, this yields a strong error of order
(1/4)−.

Although the model (6.4) was not studied in the financial mathematics literature, it has the
advantage of being rough, it is formally close to the rough Heston model and can be approximated
quantitatively for H < 1/4.

6.3 Fractional Bessel processes in dimension 1

Bessel processes [29, Chapter XI] play an important role in probability theory and financial math-
ematics.
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As a generalization and motivated by the discussion in the previous subsection, we consider
solutions to the following one-dimensional SDE:

dXt =
κ(Xt)

|Xt|α
dt+ dBt, (6.5)

for some α > 0 and H ∈ (0, 1). When H = 1
2 , α = 1 and κ is the identity function, we know that

the solution always stays positive [29, Chapter XI, Section 1]. By similar computations as in [5,
Prop. 2.21], the drift b(x) = κ(x) |x|−α belongs to B−α∞ for α ∈ (0, 1). In this case, assumption
(2.7) reads H < 1

2(1+α) and the rate of convergence of the Euler scheme is close to 1
2(1+α) .

6.4 Examples in higher dimension

A natural way to extend processes (6.5) to dimension 2 could be the following:

dXi
t =

κ(Xt)

|Xt|α
dt+ dBit, i = 1, 2, (6.6)

where B1 and B2 are two independent fBms and α > 0. By [5, Proposition 2.21], one can prove

that x 7→ b(x) = κ(x)
|x|α belongs to B−α∞ for α ∈ (0, 2). Therefore, the condition on H becomes

H < 1
2(1+α) .

Notice that the SDE (6.6) presents a singularity only at the point (0, 0). To create a singularity
on both the x and y-axes, one could also look at the following SDE

dXi
t =

1

(|X1
t |∧|X2

t |)α
dt+ dBit, i = 1, 2.

Another example to consider in higher dimension is an SDE with discontinuous drift. For
instance, let the drift be an indicator function of some domain D as in (6.7):

dXt = 1
(d)
D (Xt) dt+ dBt, (6.7)

where 1
(d)
D denotes the vector-valued indicator function with identical entries 1D on each compo-

nent. We have 1
(d)
D ∈ B0

∞, and thus one can take H < 1
2 .

6.5 Simulations

In dimension 1, we will simulate two SDEs. First the skew fractional Brownian motion (6.1) with
α = 1. Then we simulate the SDE with bounded measurable drift 1R+ ∈ B0

∞, i.e.

dXt = 1Xt>0 dt+ dBt. (6.8)

The drifts are approximated by convolution with the Gaussian kernel, that is bn(x) = G 1
n
b(x) and

we fix the initial condition to X0 = 0. For the skew fBm, this corresponds to

bn(x) =

√
n

2π
e−

nx2

2 ,

and for (6.8) this yields

bn(x) =

√
n

2π

∫ x

0

e−
ny2

2 dy.

As in Corollary 2.6, we fix the time-step h of the Euler scheme as h = bn
− 1

1−γ+ 1
p c. Our aim is to

observe the rate of convergence numerically, so we need a reference value for the solutions of (6.1)
and (6.8). However these solutions do not have an explicit expression so we do not have an exact
reference value. Instead, we first make a costly computation with very small time-step h = 10−6
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that will serve as reference value. Therefore n = h−2 = 1000 for the skew fBm and n = h−1 for
the SDE with bounded drift. In a second step, we compute the Euler scheme for different values of
h and compare it to the reference value with the same noise and h = 10−6. The result is averaged
over N = 100 realisations of the noise to get an estimate of the strong error.

Recall that according to Corollary 2.6, the theoretical order of convergence is almost 1/4 when
the drift is a Dirac and almost 1/2 when the drift is bounded. We plot the logarithmic strong error
with respect to the time-step h in Figure 1 and conclude that the empirical order of convergence
is coherent with the theoretical one.

0.0001 0.00015 0.0002 0.00025

0.14

0.160.16

0.18
log-error
standard deviation

0.0003 0.00035 0.0004 0.00045
0.04

0.050.050.05
log-error
standard deviation

Figure 1: Plot of the logarithm of the strong error (y-axis) against h (x-axis) when d = 1. Left:
the drift is the Dirac δ0, H = 0.2, the numerical order of convergence (by linear regression) is
approximately 0.27 ± 0.01, which is close to the theoretical order 0.25. Right: bounded drift,
H = 0.4, the numerical order of convergence is approximately 0.55 ± 0.01. The theoretical order
0.5 is not in the interval 0.57± 0.01, which could be explained by other sources of numerical error
(for instance the computation of the reference value).

In dimension 2, we simulate the 2-dimensional SDE (6.7) with X0 = 0 and with D the quadrant
defined by D = {x ≥ 0, y ≥ 0}. The drift b is approximated by

bn(x) = G 1
n
b(x) =

n

2π

∫
R2

e−
n
2 |x−y|

2

1D(y) dy.

We recall that the time-step h is fixed such that h = bn
− 1

1−γ+ 2
p c. In this case, b ∈ B0

∞, thus we
have h = n−1. To obtain a reference value for the SDE, we set h = 10−5. We compute the Euler
scheme for a different values of h between 0.0003 and 0.0005 and compare it to the reference value
with the same noise and h = 10−5. The result is averaged over N = 50 realisations of the noise to
get an estimate of the strong error.

Recall that according to Corollary 2.6, the theoretical order of convergence is almost 1/2 when
the drift is bounded. We plot the logarithmic strong error with respect to the time step h in Figure
2 and observe that the empirical order of convergence is approximately 0.62.

Appendices

A Proofs of regularisation by fBm in dimension d

We start by recalling the following recent stochastic sewing Lemma [20], which will be useful for
the main estimate of this section (Proposition 3.5) and of Section 5.

Lemma A.1 ([20]). Let 0 ≤ S < T and m ≥ 2. Let (Ω,F ,F,P) be a filtered probability space. Let
A : ∆S,T → Lm be such that As,t is Ft-measurable for any (s, t) ∈ ∆S,T . Assume that there exist
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8 × 10 2

9 × 10 2

log-error
standard deviation

Figure 2: Plot of the logarithm of the strong error (y-axis) against h (x-axis) when d = 2. The
drift is bounded, H = 0.4, the numerical order of convergence is approximately 0.62± 0.01, which
is larger than the theoretical order. The theoretical order 0.5 is not in the interval 0.62 ± 0.01,
which could be explained by other sources of numerical error (for instance the computation of the
reference value).

constants Γ1,Γ2 ≥ 0 and ε1, ε2 > 0 such that for every (s, t) ∈ ∆S,T and u := (s+ t)/2,

‖Es[δAs,u,t]‖Lm ≤ Γ1 (t− s)1+ε1 , (A.1)

‖δAs,u,t‖Lm ≤ Γ2 (t− s) 1
2 +ε2 . (A.2)

Then there exists a process (At)t∈[S,T ] such that, for any t ∈ [S, T ] and any sequence of partitions

Πk = {tki }
Nk
i=0 of [S, t] with mesh size going to zero, we have

At = lim
k→∞

Nk∑
i=0

Atki ,tki+1
in probability. (A.3)

Moreover, there exists a constant C = C(ε1, ε2,m) independent of S, T such that for every
(s, t) ∈ ∆S,T we have

‖At −As −As,t‖Lm≤ C Γ1(t− s)1+ε1 + C Γ2(t− s) 1
2 +ε2 ,

and

‖ES [At −As −As,t]‖Lm≤ C Γ1(t− s)1+ε1 .

A.1 Proof of Lemma 3.4

We will apply Lemma A.1 for S ≤ s ≤ t ≤ T ,

At :=

∫ t

S

f(Br,Ξ) dr and As,t := Es
[∫ t

s

f(Br,Ξ) dr

]
.

Notice that we have Es[δAs,u,t] = 0, so (A.1) trivially holds. In order to establish (A.2), we will
show that for some ε2 > 0,

‖δAs,u,t‖Lm≤ Γ2 (t− s)1/2+ε2 . (A.4)
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For u = (s+ t)/2 we have by the triangle inequality, Jensen’s inequality for conditional expectation
and Lemma 3.3(ii) that

‖δAs,u,t‖Lm ≤
∥∥∥∥Es [∫ t

u

f(Br,Ξ) dr

]∥∥∥∥
Lm

+

∥∥∥∥Eu [∫ t

u

f(Br,Ξ) dr

]∥∥∥∥
Lm

≤
∫ t

u

(‖Esf(Br,Ξ)‖Lm+‖Euf(Br,Ξ)‖Lm) dr

≤ 2

∫ t

u

‖Euf(Br,Ξ)‖Lm dr

≤ C
∫ t

u

‖‖f(·,Ξ)‖Bγp ‖Lm(r − u)H(γ− dp ) dr

≤ C ‖‖f(·,Ξ)‖Bγp ‖Lm (t− u)1+H(γ− dp ),

Hence, we have (A.4) for ε2 = 1/2 +H(γ − d
p ) > 0.

Let t ∈ [S, T ]. Let (Πk)k∈N be a sequence of partitions of [S, t] with mesh size converging to
zero. For each k, denote Πk = {tki }

Nk
i=1. By Lemma 3.3(iii) we have that

‖At −
∑
i

Atki ,tki+1
‖L1 ≤

∑
i

∫ tki+1

tki

‖f(Br,Ξ)− Et
k
i f(Br,Ξ)‖L1dr

≤ C ‖‖f(·,Ξ)‖C1‖L2 (t− S) |Πk|H−→ 0.

Hence (A.3) holds true.
Applying Lemma A.1, we get

‖At −AS‖Lm ≤ ‖AS,t‖Lm+C ‖‖f(·,Ξ)‖Bγp ‖Lm (t− S)1+H(γ− dp ).

Applying the triangle inequality and Lemma 3.3(ii), we get that

‖AS,t‖Lm =
∥∥∥ES ∫ t

S

f(Br,Ξ) dr
∥∥∥
Lm

≤
∫ t

S

‖ESf(Br,Ξ)‖Lmdr

≤ C
∫ t

S

‖‖f(·,Ξ)‖Bγp ‖Lm (r − S)H(γ− dp )dr

≤ C ‖‖f(·,Ξ)‖Bγp ‖Lm (t− S)1+H(γ− dp ),

and the result follows.

A.2 Proof of Proposition 3.5

Assume that [ψ]Cα
[s,t]

Lm <∞, otherwise (3.2) trivially holds. For (s̃, t̃) ∈ ∆s,t, let

As̃,t̃ :=

∫ t̃

s̃

f(Br + ψs̃)dr and At :=

∫ t̃

s

f(Br + ψr)dr. (A.5)

In the following, we check the conditions in order to apply Lemma A.1. To show that (A.1) and
(A.2) hold true with ε1 = H(γ − d/p− 1) + τ > 0 and ε2 = 1/2 +H(γ − d/p) > 0, we prove that
there exists a constant C > 0 independent of s, t, s̃ and t̃ such that

(i) ‖Es̃[δAs̃,u,t̃]‖Lm≤ C ‖f‖Bγp [ψ]Cτ [s,t]Lm (t̃− s̃)1+H(γ−1−d/p)+τ ;

(ii) ‖δAs̃,u,t̃‖Lm≤ C ‖f‖Bγp (t̃− s̃)1+H(γ−d/p);
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(iii) If (i) and (ii) are satisfied, (A.3) gives the convergence in probability of
∑Nn−1
i=0 Atki ,tki+1

along

any sequence of partitions Πk = {tki }
Nk
i=0 of [s, t̃] with mesh converging to 0. We will prove

that the limit is the process A given in (A.5).

Assume for now that (i), (ii) and (iii) hold. Applying Lemma A.1, we obtain that∥∥∥∫ t̃

s̃

f(Br + ψr) dr
∥∥∥
Lm
≤C ‖f‖Bγp (t̃− s̃)1+H(γ− dp )

+ C ‖f‖Bγp [ψ]Cτ [s,t]Lm (t̃− s̃)1+H(γ−1− dp )+τ

+ ‖As̃,t̃‖Lm .

We will see in (A.7) that ‖As̃,t̃‖Lm≤ C ‖f‖Bγp (t̃ − s̃)1+H(γ−d/p). Then, choosing (s̃, t̃) = (s, t) we
get (3.2).

We now check that the conditions (i), (ii) and (iii) actually hold.

Proof of (i): For s ≤ s̃ ≤ u ≤ t̃ ≤ t, we have

δAs̃,u,t̃ =

∫ t̃

u

f(Br + ψs̃)− f(Br + ψu) dr.

Hence, by the tower property of conditional expectation and Fubini’s Theorem, we get

|Es̃δAs̃,u,t̃| =
∣∣∣Es̃ ∫ t̃

u

Eu[f(Br + ψs̃)− f(Br + ψu)] dr
∣∣∣.

Now using Lemma 3.3(ii) with the Fu-measurable variable Ξ = (ψs̃, ψu), Lemma 3.1(ii) for α = 1
and again Fubini’s Lemma, we obtain that∣∣∣Es̃ ∫ t̃

u

Eu[f(Br + ψs̃)− f(Br + ψu)] dr
∣∣∣ ≤ Es̃

∫ t̃

u

‖f(·+ ψs̃)− f(·+ ψu)‖Bγ−1
p

(r − u)H(γ−1− dp ) dr

≤ C‖f‖Bγp
∫ t̃

u

Es̃[|ψu − ψs̃|](r − u)H(γ−1− dp ) dr.

Hence we get

‖Es̃δAs̃,u,t̃‖Lm≤ C ‖f‖Bγp
∫ t̃

u

‖Es̃|ψu − ψs̃|‖Lm(r − u)H(γ−1− dp )dr. (A.6)

By the conditional Jensen’s inequality, we have

‖Es̃|ψu − ψs̃|‖Lm≤ [ψ]Cτ
[s,t]

Lm(u− s̃)τ .

Hence combining the previous inequality with equation (A.6), we get

‖Es̃δAs̃,u,t̃‖Lm≤ C ‖f‖Bγp [ψ]Cτ
[s,t]

Lm(t̃− s̃)1+H(γ−1− dp )+τ .

Proof of (ii): This is a direct consequence of Lemma 3.4. Indeed, we write

‖δAs̃,u,t̃‖Lm≤ ‖As̃,t̃‖Lm+‖As̃,u‖Lm+‖Au,t̃‖Lm

and we will apply Lemma 3.4 for each term in the right-hand side of the previous inequality,
respectively for Ξ = ψs̃, ψs̃ again and ψu. We only detail the first one. As f is smooth and
bounded, the first assumption of Lemma 3.4 is verified. By Lemma 3.1(i), ‖f(· + Ξ)‖Bγp≤ ‖f‖Bγp ,
hence the second assumption of Lemma 3.4 is verified. It follows that

‖As̃,t̃‖Lm ≤ C ‖‖f(·,Ξ)‖Bγp ‖Lm (t̃− s̃)1+H(γ− dp )

≤ C ‖f‖Bγp (t̃− s̃)1+H(γ− dp ). (A.7)
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Hence combining similar inequalities on As̃,u and Au,t̃ with (A.7), we get

‖δAs̃,u,t̃‖Lm≤ C ‖f‖Bγp (t̃− s̃)1+H(γ− dp ).

Proof of (iii): For a sequence (Πk)k∈N of partitions of [s, t̃] with Πk = {tki }
Nk
i=1 and mesh size

converging to zero, we have∥∥∥At̃ −∑
i

Atki ,tki+1

∥∥∥
Lm
≤
∑
i

∫ tki+1

tki

‖f(Br + ψr)− f(Br + ψtki )‖Lm dr

≤
∑
i

∫ tki+1

tki

‖f‖C1‖ψr − ψtki ‖Lm dr

≤ C ‖f‖C1t |Πk|τ [ψ]Cτ
[s,t]

Lm −→
k→∞

0.

A.3 Proof of Proposition 3.9

This proof is very close to the proof of [1, Proposition 7.7], but we adapt it to dimension d ≥ 1 for
the reader’s convenience.

Assume w.l.o.g. that X0 = 0 and let K̃ := X̃ − B̃, so that (2.4) is automatically verified. Let
(bn)n∈N be any sequence of smooth bounded functions converging to b in Bγ−p . To verify that K̃

and X̃ satisfy (2.5), we have to show that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃r) dr − K̃t

∣∣∣∣ = 0 in probability. (A.8)

By the triangle inequality we have that for k, n ∈ N and t ∈ [0, T ],∣∣∣∣∫ t

0

bn(X̃r) dr − K̃t

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

bn(X̃r) dr −
∫ t

0

bn(X̃k
r ) dr

∣∣∣∣+

∣∣∣∣∫ t

0

bn(X̃k
r ) dr −

∫ t

0

b̃k(X̃k
r ) dr

∣∣∣∣
+

∣∣∣∣∫ t

0

b̃k(X̃k
r ) dr − K̃t

∣∣∣∣ =: A1 +A2 +A3. (A.9)

Now we will show that all summands on the right hand side of (A.9) converge to 0 uniformly on
[0, T ] in probability as n→∞, choosing k = k(n) accordingly.

First we bound A1. Notice that∣∣∣∣∫ t

0

bn(X̃r) dr −
∫ t

0

bn(X̃k
r ) dr

∣∣∣∣ ≤ ‖bn‖C1∫ t

0

|X̃r − X̃k
r | dr

≤ ‖bn‖C1 T sup
t∈[0,T ]

|X̃t − X̃k
t |.

For any ε > 0, choose an increasing sequence (k(n))n∈N such that

P
(
‖bn‖C1 T sup

t∈[0,T ]

|X̃t − X̃k(n)
t |> ε

)
<

1

n
, ∀n ∈ N.

Hence, we get that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃r) dr −
∫ t

0

bn(X̃k(n)
r ) dr

∣∣∣∣ = 0 in probability.

Now, we bound A2. Let γ′ < γ with γ′ − d/p > 1/2 − 1/(2H). By Lemma 3.7 applied to X̃k,
h = bn − b̃k and γ′ instead of γ, there exists a random variable Zn,k such that

E[Zn,k] ≤ C ‖bn − b̃k‖Bγ′p (1 + ‖b̃k‖2
Bγ
′
p

)

≤ C (‖bn − b‖Bγ′p +‖b̃k − b‖Bγ′p ) (1 + sup
m∈N
‖b̃m‖2

Bγ
′
p

), (A.10)
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for C independent of k, n and such that there is

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k
r ) dr −

∫ t

0

b̃k(X̃k
r ) dr

∣∣∣∣ ≤ Zn,k(1 + T ).

Using Markov’s inequality and (A.10) we obtain that

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k
r ) dr −

∫ t

0

b̃k(X̃k
r ) dr

∣∣∣∣ > ε

)
≤ ε−1 E[Zn,k] (1 + T )

≤ C ε−1 (1 + T ) (‖bn − b‖Bγ′p +‖b̃k − b‖Bγ′p ) (1 + sup
m∈N
‖b̃m‖2

Bγ
′
p

).

Choosing k = k(n) as before, we get

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k(n)
r ) dr −

∫ t

0

b̃k(n)(X̃k(n)
r ) dr

∣∣∣∣ = 0 in probability.

To bound the last summand A3, recall that X̃k
t =

∫ t
0
b̃k(X̃k

r ) dr + B̃kt . We get that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

b̃k(X̃k
r ) dr − K̃t

∣∣∣∣ ≤ sup
t∈[0,T ]

(|X̃k
t − X̃t|+|B̃kt − B̃t|).

Since by assumption (X̃k, B̃k)k∈N converges to (X̃, B̃) on (C[0,T ])
2 in probability, we get that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

b̃k(n)(X̃k(n)
r ) dr − K̃t

∣∣∣∣ = 0 in probability,

and therefore (A.8) holds true.
It remains to show that (3.6) holds true. By Lemma 3.6, there exists C > 0 such that for any

(s, t) ∈ ∆0,T ,

‖(X̃k
t − B̃kt )− (X̃k

s − B̃ks )‖Lm≤ C (1 + sup
m∈N
‖b̃m‖2Bγp ) (t− s)1+H(γ− dp ). (A.11)

Using that
∫ t

0
b̃k(X̃k

r ) dr converges toKt on C[0,T ] in probability (by assumption) and that supm∈N‖b̃m‖Bγp
is finite, we get (3.6) by applying Fatou’s Lemma to (A.11).
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[1] L. Anzeletti, A. Richard, and E. Tanré. Regularisation by fractional noise for one-dimensional
differential equations with nonnegative distributional drift. Preprint arXiv:2112.05685, 2021.

[2] S. Asmussen and M. Taksar. Controlled diffusion models for optimal dividend pay-out. In-
surance Math. Econom., 20(1):1–15, 1997.
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