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Abstract: Controlling large-scale systems sometimes requires decentralized computation.
Communication among agents is crucial to achieving consensus and optimal global behavior.
These negotiation mechanisms are sensitive to attacks on those exchanges. This paper proposes
an algorithm based on Expectation Maximization to mitigate the effects of attacks in a resource
allocation based distributed model predictive control. The performance is assessed through an
academic example of the temperature control of multiple rooms under input power constraints.
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1. INTRODUCTION

The information collected, processed, and transmitted
within cyber-physical systems (CPS) impacts physical sys-
tems whose proper functioning is essential for society, like
energy networks, industrial processes, water distribution,
and others. Attacks in those critical infrastructures, such
as Stuxnet, increased awareness for cyber-security of CPS.

Given these structures’ complexity, scale, and geographic
distribution, it is necessary to adopt decentralized control
structures rather than monolithic ones. For these systems,
a set of controllers are designed to collectively ensure the
safe and efficient operation of the facilities.

This operation is done cooperatively, where the con-
trollers exchange information. This approach can be used,
i.e., for the voltage regulation of electrical networks, the
production-consumption balance in these same networks,
water distribution, and many other applications. Multi-
agent systems (Kantamneni et al., 2015) and distributed
Model-based Predictive Control (dMPC) (Maestre et al.,
2014) are standard approaches to design these controllers.

A few articles have focused on safety in dMPC frameworks,
presenting vulnerabilities of different frameworks, such
as Lagrange-based decomposition (Velarde et al., 2017),
Jacobi-Gauss decomposition (Chanfreut et al., 2018), and
primal decomposition (Nogueira et al., 2021).

The authors in these works highlight the complexity of
the problems. A modification of a local goal, the hacking
of communication, or the failure of one of the agents are
events that disrupt global behavior. If one of these agents
is attacked, it can result in the violent destruction of the
corrupted element (perhaps the whole system), or more

subtly, it can lead to a deviant behavior that is more
difficult to detect.

Some strategies are presented to mitigate the effects of
such an event. For instance, dismissing extreme values as
in Velarde et al. (2017) or using secure scenarios based on
reliable historical data Maestre et al. (2021).

Nogueira et al. (2021) proposed a safe algorithm based
on data reconstruction to mitigate the effects of a false
data injection (FDI) in the communication between a
coordinator and local constraint-free agents, which were
bound by global equality constraints.

In this paper, we propose an extension of their approach
by including local constraints and changing the global
constraints. This extension profoundly changes the com-
plexity, as the exchanges between the agents and the coor-
dinator are no longer characterized by affine functions but
by Piecewise Affine (PWA) functions. This fact leads not
only to a combinatorial explosion but also to a parametric
identification challenge. To overcome this problem, we
propose using a learning method based on the Expectation
Maximization (EM) algorithm (Dempster et al., 1977),
which allows us to estimate the corruption mechanism and
correct it if necessary.

This paper is organized as follows. First, Section 2 in-
troduces the primal decomposition-based dMPC and its
vulnerabilities. Then in Section 3, we study the local
problems and propose a detection and mitigation mech-
anism based on the Expectation Maximization algorithm.
Moreover, in Section 4, we illustrate the algorithm with an
academic simulation and assess its performance. Finally, in
Section 5, we conclude with an outlook of future works.



Notation: In this paper, ∥·∥, ∥·∥F , and ∥v∥Y = ∥Y 1
2v∥

represent the ℓ2, Frobenius and weighted norms. ProjT (·)
is the Euclidean projection onto T . ⊗ (⊙) is the Kronecker
(Hadamard) product. vec(A) vectorizes matrix A. n : i : j
is a row vector builder with elements {n, n + i, . . . , n +

mi}, where m = truncate( j−n
i ), and n : j means i = 1.

0m = 0m×1 (1m = 1m×1), where 0m×n (1m×n) is a 0
(1) filled m-by-n matrix. 1{x} is the indicator function
returning 1 if x is true and 0 otherwise. Sn, and Sn

++ (Sn
+)

are symmetric and positive (semi-)definite matrices of size
n. A† = (ATA)

−1
AT . A vector vi, corresponds to the i-th

agent, and these vectors can be stacked in a vector v. E [x]
is the expected value of random variable x, and P(A | B)
is the conditional probability of A given condition B.
diag(A1, . . . , AN ) corresponds to a block diagonal matrix.

2. PROBLEM STATEMENT

In this section, we present a dMPC algorithm based
on the primal decomposition (Boyd et al., 2015) and a
vulnerability of the decomposition, which can be exploited.

2.1 Model Predictive Control

Consider a system composed of discrete-time linear time-
invariant agents i ∈M = {1 :M}, modeled by

xi[k + 1] = Aixi[k] + Biui[k]
yi[k + 1] = Cixi[k]

, (1)

with xi[k] ∈ Rnx , ui[k] ∈ Rnu and yi[k] ∈ Rny .

Each agent’s input ui[k] is constrained by
0nu ⪯ ui[k] ⪯ umax, (2)

with umax ∈ Rnu . The agents are coupled by global input
constraints with weighting matrices Γi ∈ Snu

+ :
∑

i∈M
Γiui[k] ⪯ umax. (3)

The overall system is controlled by a Model-based Predic-
tive Control (MPC), which computes the optimal input
for a finite prediction horizon H = {1 :Np} by solving the
following problem:

minimize
u[k:k+Np−1|k]

J[k]︷ ︸︸ ︷

∑

i∈M

Ji[k]︷ ︸︸ ︷∑

j∈H
∥vi[k + j|k]∥2Qi

+ ∥ui[k + j − 1|k]∥2Ri

subject to (1), (2) and (3)
}
∀i ∈ M
∀j ∈ H ,

(4)

where Qi ∈ S+, Ri ∈ S++, and vi[k] is a control objective.
J⋆[k] denotes the optimal value of the objective function
for the optimal control sequences u⋆

i [k : k +Np − 1|k]. The
problem in (4) is solved at each time k, and the u⋆

i [k|k]
are applied in their respective subsystem i, following a
receding horizon strategy (RHS).

Since the prediction horizon and the number of agents
can be large, solving (4) at each time k can be rather
challenging due to computational costs. Another issue
that can arise is the fact that the complete information
Ii = {Ai, Bi, Ci, Qi, Ri,Γi,vi} from all the subsystems is
needed to solve the problem, which can be viewed nega-
tively from a confidentiality point of view.

So, we use the primal decomposition method, sometimes
called quantity decomposition or resource allocation, with
which we can profit from the parallelism, while avoiding
the use of the complete information Ii.

2.2 Primal Decomposition based dMPC

The technique decomposes the monolithic MPC in (4)
into M modified MPC problems (5a) (solvable in parallel
by each subsystem) called local problems, and a master
problem (5b), which is equivalent to the global problem
and is solved by a coordinator.

J⋆
i (θi[k]) =

minimize
ui[k:k+Np−1|k]

Ji[k]

subject to (1) & (2)
Γiui[k] ⪯ qi[k] : di[k]





∀i ∈ M
∀j ∈ H

(5a)

J⋆ =

minimize
qi[k:k+Np−1|k]

∑

i∈M

J⋆
i (qi[k])

subject to

∑

i∈M

qi[k] ⪯ umax

qi[k] ⪰ 0nu , ∀i ∈ M



∀j ∈ H

(5b)

The modified MPC problems (5a) are created by ex-
changing the umax in (3) by vectors qi[k], which corre-
spond to the quantity of the total resource umax allo-
cated to agent i in time k for each prediction j, thus
the names resource allocation and quantity decomposi-
tion. This new set of constraints have associated dual
variables di[k] ⪰ 0nu

. The sequences qi[k : k +Np − 1|k]
and di[k : k +Np − 1|k] can be aggregated in vectors
θi[k] = 1Np

⊗ qi[k], and λi[k] = 1Np
⊗ di[k].

The master problem finds the optimal allocation sequences
θ⋆
i by using a projected sub-gradient method:

θ[k](p+1) = ProjS(θ[k](p) − ρ(p)g[k](p)), (6)
where S = {θ | IMc θ ⪯ Umax & θ ⪰ 0}, being c = Npnu,
IMc = 1M ⊗ Ic, Umax = 1Np ⊗ umax, (p) is a given step in
the iterative process and g(p)[k] is a sub-gradient of the
objective function of problem in (5b) in step (p).

From Boyd et al. (2015), it is known that −λi[k] are sub-
gradients of objective J [k]. Plugging it in g[k](p) we have

θ[k](p+1) = ProjS(θ[k](p) + ρ(p)λ[k](p)), (7)
which henceforth is referred to as the negotiation.

Once the negotiation for a given time k converges, the
u⋆
i [k|k] found in the last step of the negotiation are applied

in their corresponding agent and then the RHS is followed.

The algorithm to find the optimal θ⋆
i [k] can be summarized

in Algorithm 1, and the exchange between coordinator and
agents can be seen in Fig. 1.
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Fig. 1. Exchange between coordinator and agents.



Algorithm 1: Quantity decomposition negotiation.
p := 0

Coordinator initializes θ(p)

repeat
Subsystems solve (5a), and send λ⋆

i (θ
(p)
i )

Coordinator updates allocations (7)
p := p+ 1

until ∥θ(p) − θ(p−1)∥ ≤ ϵ

One can observe that each agent only sends λi[k] instead
of using Ii. An interpretation of λi[k] is the dissatisfaction
of agent i with the resource θi[k] allocated for it, where
λi[k] = 0c means total satisfaction. The coordinator trusts
in the authenticity of the λi[k] received to update the allo-
cations. However, if false data is injected, the negotiation
can be driven by a malicious agent, taking advantage of
this trust to favor itself, harm others or even destabilize
the negotiation, as shown in Nogueira et al. (2021).

Our main objective is to mitigate the effects of a given
configuration where agents send untrustworthy

λ̃i = γi(λi).

3. TOWARDS A SAFE DMPC

Here we focus on the local problems in (5a), and study how
their structure can contribute for a safe dMPC algorithm.

3.1 Local Problems — Formal Analysis

The local problems (5a) can be rewritten in a equivalent
(same solution) constrained quadratic program (QP) form:

minimize
Ui[k]

Ji(θi) =
1

2
U i[k]

THiU i[k] + f i[k]
T
U i[k] (8a)

subject to Γ̄iU i[k] ⪯ θi[k] : λi[k] (8b)
U i[k] ⪰ 0c, (8c)

where U i[k] stacks the input prediction sequences, and
Γ̄i = INp ⊗ Γi. The values for Hi and f i[k] vary depending
on the control objective vi[k]. The approach presented
in this paper works for linear control objectives such
as vi[k] = yi[k] and vi[k] = yi[k]−wi[k]. The approach
depends only on the fact that Hi ∈ S+ does not vary w.r.t.
k, while f i[k] does. Those facts are instrumental for the
results in the following sections.

We can get an explicit solution for the dual variables λi[k],
which are Piecewise Affine (PWA) functions w.r.t. θi[k]:
λi[k] = −Pn

i θi[k]− sni [k], if Gn[k]θi[k] ⪯ bn[k], (9)
with n ∈ {1 :N}.
The halfspaces defined by the pairs (Gn[k], bn[k]) represent
the combinations of active constraints (8b) for a given time
k, which vary w.r.t. vi[k].

The Pn
i are constructed using Hi and Γ̄i; and sni are con-

structed using Hi, f i[k] and Γ̄i. The specific construction
depends on the active constraints in (8b). For example,
if all constraints are active, we have P ac

i = (Γ̄iH
−1
i Γ̄T

i )
−1

and sac
i [k] = P ac

i Γ̄iH
−1
i f i[k]. Futhermore, if all constraints

are inactive, we have P in
i = 0c×c and sin

i = 0c.

Remark 1. The sni [k] depend on time k, while Pn
i do not.

Challenge 1. It is important to note that since vi[k] is
unknown by the coordinator, it cannot anticipate the
partition of the space for each agent.
Challenge 2. For the same reason, the values of si[k] are
also unknown.

As each constraint can be active or inactive, for a given
group of t constraints, we can have at most N = 2t

different combinations of active sets.
Assumption 1. We assume that none of the active/inactive
constraints combinations are redundant (no linear depen-
dency), nor make the optimization infeasible (no empty
intersection). Thus we always have N zones.

3.2 The Attack

We suppose the malicious agent chooses a function γi(·)
to use throughout a given time k.
Assumption 2. γi(·) does not change during the negotia-
tion phase for a given time k.
Assumption 3. The agent chooses a linear function

λ̃i = γi(λi) = Ti[k]λi, (10)
where T is invertible.

Such attack function results in a PWA solution for λ̃i[k]:

λ̃i[k] = −P̃n
i [k]θi[k]− s̃ni [k], if Gn[k]θi[k] ⪯ bn[k], (11)

with n ∈ {1 :N}, P̃n
i [k] = Ti[k]P

n
i and s̃ni [k] = Ti[k]s

n
i [k].

Observe that as the function is applied only in λi[k], it
does not affect the zones’ hyperplanes.

We fix the index for the zones where all constraints are
active to 1, now referenced to as zones 1 or the 1-zones.

3.3 Detection and mitigation

Supposing we have a sequence of θi[k] in a zone j, we can
estimate the parameters for this zone with

λ̃i[k] = γi(λi(θi[k])) = −̂̃
P j
i [k]θi[k]− ̂̃

sji [k]. (12)

Assumption 4. The nominal value of P j
i for this given

j-zone, denoted P̄ j
i , is available from reliable attack-free

historical data.

Since P j
i do not change w.r.t. time, we can detect a devia-

tion from nominal behavior using Ei[k] = ∥̂̃P j
i [k]− P̄ j

i ∥F .
Let Di be an indicator

Di = 1{Ei[k]≥ϵP }, (13)
which detects the attack in agent i if the disturbance Ei[k]
disrespects an arbitrary bound ϵP .

If an attack is detected, we can estimate the inverse of
Ti(k) with

T̂i(k)
−1

= P̄ j
i
̂̃
P j
i [k]

−1

, (14)

if ̂̃
P j
i [k] is invertible, and ̂̃

P j
i [k] is only invertible when all

constraints are active, that means, when j = 1.
Assumption 5. For each agent i, at every time k, there is
a corresponding 1-zone.



Moreover, from (9), we can reconstruct λi:

λirec = T̂i[k]
−1

λ̃i (15)

In order to estimate ̂̃P 1
i [k], we must have enough observed

points in the 1-zones, so we propose to generate points
surrounding arbitrary θ̄i in the 1-zones.
Assumption 6. Given the unconstrained solution of 8
Ů

⋆

i [k] = −H−1
i f i[k], we suppose Γ̄iŮ

⋆

i [k] ⪰ 0c for all k,
that means, the points θi = 0c are in the 1-zones.

Unfortunately, since we do not know the hyperplanes sep-
arating the different zones, we do not know how close of
θ̄i = 0c we need to generate our points. So we generate
points arbitrarily close to θ̄i and use the Expectation Max-
imization (EM) algorithm, which can potentially identify
the parameters of all N modes.

3.4 Expectation Maximization

As the method is the same for all agents and repeated each
time k, we drop the subscript i and the time dependency
[k] to simplify the notation.

Given a set of parameters P, a set of observable data B
and a set of non-observable data U , the main objective of
the EM algorithm is to find estimators of P that maximize
the log marginal likelihood of the observed data lnP(B;P),
for models with latent variables in U .

Since maximizing lnP(B;P) does not have an analytical
solution, the algorithm solves the optimization problem
iteratively. So, rather than finding the P that maximizes
lnP(B;P), we find the P that maximizes the expectation
of the complete data log-likelihood lnP(B,U ;P) w.r.t.
the posterior probabilities P(U|B;P) calculated using a
given set of parameter estimates Pcur. These steps provide
a convergence-guaranteed iterative algorithm ensuring a
monotonic increase of the log-marginal likelihood at each
iteration (Algorithm 2).

Algorithm 2: Expectation Maximization
Initialize parameters Pnew

repeat
Pcur ← Pnew

E step:
Evaluate P(U|B;Pcur)

M step:
Reestimate parameters using:
Pnew = argmax.

P
EP(U|B;Pcur) [lnP(B,U ;P)] (16)

until Pcur converges

For a group of O exchanges between an agent and the
coordinator, we observe the input and response variables,
identified as θo and λo, o ∈ O = {1 :O}, which can be
organized in Θ,Λ ∈ Rc×O. (Θ,Λ) is our set of observable
data B.

As (11) gives us a multidimensional PWA function, we
propose using a multidimensional expansion of the model
referred to as mixture of linear regressions in Faria and
Soromenho (2010) to map the relation between Θ and Λ.

We will call the model mixture of affine regressions, since
our regressors have linear and constant terms:

λo = −P̃ zθo − s̃z, if in zone z, (17)
with z ∈ Z = {1 : Z}.
Remark 2. Observe that the indices z, do not necessarily
correspond to the original indices n.

As (17) is a PWA function whose modes depend on the
unknown zone z ∈ Z, we associate to each couple (λo,θo)
a latent unobserved random variable zo that indicates in
which zone in Z the observable variables were obtained.
These variables are organized in Z ∈ R1×O which is our
set of latent variables U .

The latent variable zo follows a categorical prior distribu-
tion, with associated probabilities Π = {πz|z ∈ Z} such

P(zo = z) = πz ∈ [0, 1],
∑

z∈Z
πz = 1.

As parameters to estimate, we have P = {Pz | z ∈ Z},
with Pz = (P̃ z, s̃z, πz).

Since θ is our input, we consider a non-informative im-
proper probability density function (Christensen et al.,
2010)

P(θo) ∝ 1.

Given the input and latent variables, the response variable
λo is modeled as a multivariate normal random variable
with probability density function

P(λo|θo, zo = z;Pz) = N (λo; f(θo;Pz),Σz), (18)
where, following (17), the mean vector is defined by
f(θo; (P, s, π)) = −Pθo − s, and the covariance matrix Σz

tends to 0.

We can calculate the posterior probabilities ζzo(P) =
P(zo = z|λo,θo;P), also called responsibilities:

ζzo(P) =
πzN (λo; f(θo;Pz),Σz)
Z∑

j=1

πjN (λo; f(θo;Pj),Σj)

, (19)

and then calculate the expectation of lnP(Θ,Λ, Z;P) with
respect to ζzo(Pcur) (Bishop, 2006, Chapter 9)

Eζzo(Pcur) [lnP(Θ,Λ, Z;P)] =
∑

o∈O

∑

z∈Z
ζzo(Pcur)αzo, (20)

where αzo = lnπz + lnN (λo; f(θo;Pz),Σz).
Remark 3. The Σz used in (19) are updated using a
technique called Simulated annealing (Ozerov and Fevotte,
2010), where they are initialized with arbitrarily significant
values indicating the uncertainty of the parameters and it
is reduced as the estimations converge.

Here we introduce a variable ϕz = [vec(P̃ z)T (s̃z)
T
]
T
. We

can find an optimal ϕz for the problem in (16), by taking
the gradients of (20) with respect to vectors ϕz and
making them vanish. Because of the multidimensional
nature of the problem, some matrix operations are needed
to synthesize the results. After those operations, we have a
matricial solution that yields the optimal estimates ϕz

new:
ϕz

new = (ΞzΩ)
†
Ξzvec(Λ), (21)

where Ω = [(ΥΘ∆)⊙ Y ;G], with matrices Υ = 1T
c ⊗ Ic,

∆ = IO ⊗ 1T
c , Y = G⊗ 1c, G = 1T

O ⊗ Ic, and
Ξz = diag(

√
ζ(zz1;Pcur)Ic, · · · ,

√
ζ(zzO;Pcur)Ic).



Doing the same for πz we get
πz =

∑

o∈O

ζzo(Pcur)
O .

As we can see, (21) is the solution of a weighted Least-
Squares, with responsibilities as weights, which adjust the
contribution of all observations to the regression models.
We can see some similarities to the K-planes algorithm
(see Bradley and Mangasarian (2000)), but EM is more
compromising. Instead of affecting the observed data to a
zone with 100% of certainty (hard assignment), EM uses
each zone’s responsibilities (soft assignment).

Once the estimates ϕnew
z converge, we can reconstruct the

estimates P̃ z and s̃z, and use them in our mitigation
scheme proposed in §3.3. Since the z indices do not
necessarily correspond to the indices n in (9) (due to
initialization of P), to find the z that corresponds to n = 1,
we take the observation o for θ̄ = 0c, which we know
belongs to the 1-zone, and we find the most probable z
with

argmax.
z

ζzo(P).
Remark 4. A discussion about the initialization and up-
date of other parameters is beyond the scope of this article,
so we refer the reader to Bishop (2006).

3.5 Safe dMPC Algorithm

Integrating the EM to our detection and mitigation mech-
anism we can propose in Algorithm 3 a secure dMPC,
divided into two phases: detection and negotiation. The
new algorithm corresponds to adding a supervision layer
for each agent as in Fig. 2

Algorithm 3: Secure DMPC.
Detection Phase:

Coordinator sends sequence of θo
i , o ∈ O

Subsystems solve (5a), and send λ̃
o

i , o ∈ O
Coordinator estimates ̂̃P 1

i [k] and ̂̃s1i [k] with EM
Coordinator computes Di using (13)

Negotiation Phase:
Apply Algorithm 1 with adequate versions of λ(p)

i :

λ̃
(p)

i , if Di = 0 and λirec, if Di = 1 (15)

4. EXAMPLE: TEMPERATURE CONTROL

The system consists of 4 distinct rooms (I to IV), which
we want to control the air temperatures inside each one
of them. The systems are modeled as continuous-time
linear time-invariant systems using the 3R-2C model, with
parameters in Tables 1 and 2, and dynamics

ẋi(t) = Acixi(t) + Bciui(t)
yi(t) = Ccixi(t)

, (22)

with

Aci =
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Fig. 2. Exchange between agents in secure dMPC.

where xi = [xA
T
i xW

T
i ]

T. xAi and xW i are the mean
temperatures of the air and walls inside room i. ui is the
input (the heating power) for the corresponding room. The
inputs are constrained by

∑4
i=1 ui(t) ⪯ 4kW.

The subsystems are discretized using zero-order hold dis-
cretization method with sampling time Ts = 0.25h and
the quantity decomposition-based dMPC is implemented
using prediction horizon Np = 4.

Three scenarios are simulated for a period of 12.5h:

(1) Nominal behavior.
(2) Agent I presents non-cooperative behavior for k ≥ 25.
(3) Agent I presents non-cooperative behavior for k ≥ 25,

with correction.

For scenarios (2) and (3), Agent I uses

TI =

[
14.43288267 0. 0. 0.

0. 13.4590903 0. 0.
0. 0. 6.93065061 0.
0. 0. 0. 3.4447393

]
.

In Fig. 3, first, we compare the air temperature in room I
with its reference (wI = 25.5◦C), and then the decision
variable EI(k) with the threshold ϵP . Observe that the
reference wI is not reached in the nominal behavior (in
magenta), due to power constraints by which the sys-
tems are influenced. As expected, the decision variable
lies under the threshold ϵP = 10−4 with values of order
EN

I (k) ≈ 10−10.

When the agent presents a selfish behavior (in orange),
the tracking error wI − yI is reduced, almost attaining the
reference. In this case, the detection variable surpasses ϵP ,
ES

I ≈ 200, indicating the change of behavior.

Table 1. Model Parameters

Symbol Meaning

Cair
i Heat Capacity of Inside Air

Cwalls
i Heat Capacity of External Walls

R
iw/ia
i Resist. Between Inside Air and Inside Walls

R
ow/oa
i Resist. Between Outside Air and Outside Walls

R
oa/ia
i Resist. Between Inside and Out. Air (from windows)

Table 2. Parameters for each agent

Symbol I II III IV Unit

Cwalls 5.4 4.9 4.7 4.7 104J/K
Cair 7.5 8.4 8.2 7.7 104J/K

Roa/ia 5.2 4.6 4.9 5.4 10−3K/W

Riw/ia 2.3 2.4 2.3 2.9 10−4K/W

Row/oa 1.5 0.6 0.7 0.7 10−4K/W
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Fig. 3. Air temperature in room I and the decision variable
EI [k] for three scenarios: nominal (N), selfish behavior
(S), and selfish behavior with correction (C).

When the correction is activated in the system, the tem-
peratures approach their nominal value yNI . We can also
illustrate the good performances of our proposition by
comparing the inputs in Fig. 4. When room I is selfish,
its control increases while other rooms’ decrease. When
the correction is activated, it approaches the nominal.

We can also evaluate the performance of the proposed
mechanism by comparing the objective functions calcu-
lated using the period of simulation N = 50 for the three
scenarios (Table 3). When agent I is selfish, we see the de-
crease in its objective (≈−40%), degrading the overall per-
formance (≈+10%). When the correction mechanism is ac-
tivated, the absolute percentual error is |JC−JN

JN | ≤ 10−8.

Table 3. Objective functions Ji (% error)

Agent Nominal Selfish + Correction

I 35008.7 (0.0) 21969.6 (−40.0) 35008.7 (−0.0)
II 29495.3 (0.0) 38867.4 (30.0) 29495.4 (0.0)
III 24808.7 (0.0) 33266.4 (30.0) 24808.7 (0.0)
IV 23457.8 (0.0) 31511.0 (30.0) 23457.8 (0.0)

Global 112770.6 (0.0) 125614.4 (10.0) 112770.6 (−0.0)

5. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an algorithm for monitoring
and correcting exchanges between agents in a resource-
sharing framework. The first phase of the algorithm iden-
tifies the attacker by exploiting the exchange structure.
After this identification, if necessary, it is possible to
reconstruct the original mechanism and recover nominal
optimality by inverting the attack. This principle should
be generalized to cases when the attack is not entirely
invertible, reconstructing by parts the original mechanism.
Also, other decomposition structures and attack models
need to be explored, which we plan to do shortly.
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