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Abstract—Neuromorphic circuits are known for their promis-
ing ultra-low power AI applications in IoT field. However, sub-
100 mV supply voltages hamper digital-enable devices due to
their non-discrete and highly non-linear response. In this paper,
a low-power Smith trigger comparator is proposed to interface
spiking analog eNeurons and digital circuits. To this end, a
subthreshold bias and BiCMOS 55 nm node technology are
chosen. The proposed comparator is post-layout validated, having
a maximum decision frequency of 400 kHz and an energy
efficiency of 747 aJ/spike. This performance is compatible with
existing artificial neurons.

Index Terms—Neuromorphic circuits, Schmitt trigger, spiking
neural networks, ultra-low power

I. INTRODUCTION

The hardware-based information processing, which is digital
for the vast majority, is implemented in an architecture that
has proven itself in terms of performance: computing power,
memory capacity, and accessibility. Current architectures (e.g.
Von Neumann, Harvard) were accompanied in their ascent by
a manufacturing improvement in integrated circuits based on
CMOS technology [1]. This technology has seen its perfor-
mance growth, particularly in terms of miniaturization and heat
dissipation, according to Moore’s law. However, Moore’s law
undivided domination has hindered the emergence of purely
neuromorphic solutions, whose first works started in the early
40’s, and began to study technological solutions inspired by
the brain’s functioning. The end of Moore’s Law observed
since 2005 [2] brought back the interest by the neuromorphic
approach, and open the way to the concept of bio-inspired
engineering. Such solutions consist of new electronic solutions
based on the observation of living things in order to analyze,
in a short time and with extremely low energy consumption,
complex situations.

Recently a mixed-signal approach in [3] combines the
advantages of analog and digital solutions, being relevant
for bio-inspired engineering. This scientific approach would
induce a new class of ultra-sober and interconnected sensors,
which is already finding concrete achievements in the field
of the design of silicon cochlea [4]. Recent publications on
artificial cochlea applications, as [5] [6], focus on intelligent
acoustic sensing that combines high energy efficiency and

signal processing capabilities such as spiked neural networks
(SNN).

The SNN has been considered as the third generation of
neural networks for its high biomimicry of the human brain
[7]. The main difference between conventional artificial neural
networks (ANN) and the SNN is that it processes spike trains
instead of digital signals. One advantage of the SNN, thanks
to its better mimicry of the biological behavior of the brain
cortex, is that the development of an artificial intelligence (AI)
system based on SNN has more potential to be inspired by the
brain behavior. As the research on brain science is advancing
rapidly, the process of inference and decision-making of the
human brain can bring more and more inspiration to AI.
Moreover, the SNN has lower energy consumption thanks
to its event-driven property [8]. Not like neurons in ANN
which are always kept active for data processing and memory
access, a neuron in SNN shall be active only when it fires a
spike. This event-driven property results in a giant reduction
on computational consumption. The SNN is believed to have
over 100 times higher efficiency on energy consumption than
the ANN when implemented on a field-programmable gate
array (FPGA) [9].

The SNN can be further energy-efficient on non-von-
Neumann computing hardware as shown in [10]. In [11],
the analog circuits of the two neuron cortex are designed
according to Izhikevich model [12]. Operating with a higher
spike frequency than that found in the literature [13], these
artificial neurons respond to the relevant requirements in
terms of silicon area (20×20 µm2) and energy efficiency
(<3 fJ/spike). In the following, a neuromorphic analog signal
processor using a spike modulator has been proposed in
[14]. From post-layout simulations, this device has proven
to be able to encode the amplitude of an audio signal into
a frequency of spikes and also to estimate its derivative for
a silicon area of 24.5×15.5 µm2 and energy efficiency of 8
fJ/sample. However, analog solutions have presented several
reliability challenges in terms of process, temperature, and
voltage variation, which are frequently overcome by digital
solutions. These silicon neurons exhibit the useful behavior
of converting analog information in their spiking frequency,



hence having useful signal processing properties for spike
frequency modulation (SFM). However, this information is
not directly useful for most applications, since the output
wave form is often a non-linear combination of exponential
functions. Thus, one needs to extract the information in the
spiking frequency and generate a signal that can be directly
used by the digital circuit. This paper proposes a spike
detector that generates a pulse as an output, which is suitable
to subsequent digital counter that estimates the number of
spikes over a time span. Thus, the analog input can be fully
converted in a frequency measurement without any analog-
to-digital converter, whose dynamic range and refresh rate
can be modified according to the designer’s needs. The spike
detector is a comparator based on a simplified non-inverting
Schmitt Trigger topology to detect the spikes of a Morris-Lecar
artificial neuron response.

Different topologies for Schmitt Trigger circuits have been
proposed for low-power applications [15]–[18]. Some of them
rely on positive feedback to generate better hysteresis loop
qualities [19]. One recent proposition was made with ad-
justable hysteresis loop threshold voltage based on body-bias
voltage controlling while offering a reduced number of six
transistors [20]. This reduction is aligned with the power
consumption and area constraints of neuromorphic circuitry,
being a good candidate for further applications. Furthermore,
the correct operation of a Schmitt-trigger topology in the weak
inversion domain has been shown [21], allowing for more
subthreshold applications.

In Section II, some propositions for neuron models as well
as the respective state-of-the-art artificial neuron characteristic
will be revised to appropriately define design specifications.
In Section III, simplified Schmitt Trigger topology schematics
and layout will be presented. In Section IV, the post-layout
simulation results for nominal operation will be detailed.
Finally, a conclusion is given in Section V.

II. NEURON MODELS

In the biological behavior of a neuron in brain cortex, the
passing of Sodium (Na+) and Potassium (K+) or Calcium
(Ca+) ions generate current and membrane voltage, which
fires spikes waveform of the membrane voltage. Different
models have been proposed to describe this procedure, such
as Moris and Lecar (ML) model [22], Izhikevich model [12],
etc. In [23] and [14], the circuits of both FS and LTS neurons
were designed based on ML and LIF models.

The various neurons mathematical models differ by their
modeling complexity and their respective proximity to the real
biological behavior of neurons. These models have different
state-of-the-art circuit implementations that exhibit a varying
electrical complexity. This change in electrical complexity
plays a fundamental role in the performance, surface area and
overall power consumption of the artificial neurons. As stated
above, the chosen mathematical model for this work is the one
proposed by Morris-Lecar, which is detailed below.
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Comparator
𝑉
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Fig. 1. A system scheme of a neuron with a comparator.

A. Mathematical Model

The Morris-Lecar model [22] is based on a system of three
non-linear differential equations as (1) that models the time
response of the membrane voltage of the neuron. The dynamic
description is based on an external excitation current injected
in the neuron and the opening of the Calcium and Sodium ion
pumps that regulate the response. The output is often modeled
by a voltage across the neuron’s membrane.
I = CV̇ + gL(VL) + gCaM(V − VCa) + gkN(V − Vk)

Ṁ = λM (V )[M∞(V −M)]

Ṅ = λN (V )[N∞(V −N)]
(1)

In these equations, I corresponds to the applied external cur-
rent, V to the membrane voltage and the others are modeling
parameters relating to the dynamics of the ion channels.

B. Neuron system with comparator

In (1), the differential equation of membrane voltage V
shows its gradient is negatively proportional to its own value,
which means V increases slowly when its value is large.
However, under the excitation by a current I which is large
enough, the gradient of V is kept positive. The membrane
voltage of a neuron keeps increasing till a threshold voltage
and then abruptly resets to the rest voltage. This procedure
generates a spike.With the existence of I , the neuron keeps
on generating spike train with a frequency related to the value
of I .

As illustrated in Fig 1, a comparator is connected behind the
neuron to acquire digital information of the spike frequency
fspike. The system of a neuron circuit can be schematically
illustrated as Fig 1. The output of the system in Fig 1, the
spike frequency fspike, increases non-linearly along with the
value of I .

C. State of the Art Artificial Neurons

Most recent work carried on the field of silicon neurons
have similar circuit topologies but with differences in the
integration technology and transistor dimensioning. The major
breakthrough for state-of-the-art performance is the use of
MOS transistors in the weak inversion domain, which naturally
reduces power consumption by limiting the supply voltage
and current. Moreover, it offers exponential drain to source
currents, which is convenient for the non-linear response of
neurons. This allows to achieve an extremely low power
consumption with only a few number of transistors and thus
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Fig. 2. Schematics of the full comparator.

with small area layouts, while still having an appropriate bio-
inspired response. In [14] [23], electronic neurons exhibit an
energy consumption in the order of few fJ/spike. It is thus de-
sirable that other neuromorphic circuit blocks are aligned with
this consumption, keeping the entire system in the ultra-low-
power range. Besides, the threshold voltage that characterizes
the event of a spike typically falls into the range 25mV-30mV,
while the rest potential after recovery is a negative value of
around -80mV. This is another important design constraint
which shall be respected.

III. SIMPLIFIED SCHMITT TRIGGER FOR NEUROMORPHIC
APPLICATIONS

A. Schematics

Fig. 2 illustrates the proposed spiking detector schematic. In
this paper, we propose a comparator circuit which simplifies
the previous non-inverting Schmitt Trigger topology of [14]
by removing the negative feedback transistor, reducing the
number of transistors to five. Moreover, the circuit was set
to operate with a supply voltage VDD of the order of 100
mV, moving the operation point to the weak inversion domain.
This is the physical reason why the body-bias technique was
not considered in this approach, as small variations could
jeopardize the circuit’s operation in this domain. Additionally,
a buffer composed of two minimal inverters was added to the
output of the Schmitt Trigger, allowing for output signals with
better waveform characteristics.

One can see that the transistors MP1, MN1, MP2, and
MN2 form two pairs of inverters, while the MP3 transistor
remains as the positive feedback of the Schmitt trigger. The
designer may then change the transition levels of the output
by varying the W/L ratio between the transistors with different
effects on each pair. In general, the first pair (MP1, MN1)
changes the lower threshold of the comparator, while the
second (MP2, MN2) changes the upper threshold. For each
pair, increasing the ration in aspect of PMOS tends to augment
the inverter threshold, while an increase in this parameter
for the NMOS has the opposite effect. Due to the difference
between the mobility of electrons and holes, the effect for n-
channel transistors is usually heavier. The positive feedback

TABLE I
TRANSISTOR DIMENSIONS OF THE FULL COMPARATOR

Circuit part Transistor Name Width (µm) Length (µm)
Schmitt-trigger MN1 1.3 0.06
Schmitt-trigger MN2 0.135 0.06
Schmitt-trigger MP1 0.135 0.06
Schmitt-trigger MP2 0.135 0.06
Schmitt-trigger MP3 0.6 0.06

Buffer MN3 0.135 0.06
Buffer MN4 0.135 0.06
Buffer MP4 0.135 0.06
Buffer MP5 0.135 0.06

Fig. 3. Layout of the full comparator.

transistor MP3 plays a major role in the circuit. Firstly, it
provides the hysteresis cycle itself, which allows for a lower
and an upper threshold. Secondly, it enables very fast changes
in the output with respect to the input, which is a Schmitt-
trigger fundamental characteristic. It is important to point out
that all the relationships are non-linear and sensibly differ from
layout results due to the exponential characteristic of the weak
inversion operation. The final transistor dimensions are given
in Table I.

The lower threshold is obtained by sensibly increasing the
aspect ratio of the NMOS of the first inverter (MN1). The
global behavior of the circuit is adapted by varying the positive
feedback transistor dimensions (MP3).

B. Layout

The layout of the proposed circuit is depicted below in
Fig. 3 sizing 3.68 x 2.35 µm2. The details can be seen in [24].
One important point to remark is the division of the largest
transistor in several fingers to reduce overall area consumption.
Moreover, an additional varicap connected PMOS transistor in
the top left is included in the remaining area for direct current
(DC) decoupling, which improves the general performance.

IV. POST-LAYOUT SIMULATION RESULTS

A. Hysteresis Cycle

One of the main features of the comparator is the hysteresis
cycle. Having an appropriate value for turning on and off the
output allows to correctly detect the event of a spike of the
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Fig. 4. Post-layout simulation VIN vs VOUT hysteresis cycle.

neuron. To verify the behavior of this cycle, a post-layout
simulation was conducted using a DC analysis with an input
sweep from -100mV to 100 mV with a 0.1 mV step and
a grounded reference. For simplification purpose, no load is
considered at this point. Fig. 4 illustrates the PLS result of the
hysteresis cycle, where VIN vs VOUT represent the input and
output voltage respectively.

As it can be seen in Fig. 4, the transition occurs with a
very small variation of the input, with that being of the order
of the sweep step (0.1 mV). The input for the high transition
(Von) was 24 mV and for the low transition (Voff) was -51 mV,
both obtained for the midpoint between high and low output
levels. Meanwhile, the output high (Vhigh) was 97.3 mV and the
output low (Vlow) was -100 mV, which is close to the 100 mV
symmetrical supply voltages. While the positive threshold is
very close to the typical range, the negative does not differ
significantly, especially when considering that the voltage falls
after a spike in a very sudden way. These values are thus
coherent with the activation and rest potential of the Morris-
Lecar neuron model as in (1). Though the output value is
close to the supply voltages, a small drop still makes them
discernible. Therefore, the hysteresis cycle allows the correct
detection of spikes in terms of DC transition.

B. Propagation Delays and Output Settling Times

The DC analysis helps to establish the correct output/input
behavior of the comparator in terms of threshold for spike
detection. However, any insight into the time behavior of
the circuit block is not accessible. In this case, the transient
simulation is proven useful to extract most of the time domain
characteristics, such as delays and dynamic power consump-
tion. For this, the input was considered as a square wave with
a high and low level of 25 mV and -81 mV respectively. This
can be seen as a simplified model of the neuronal exponential
response, which allowed more efficient simulations.

Firstly, the limit operation condition of the comparator
regarding the duty cycle is verified for metastability issues.
This is done by varying progressively the input duty cycle
and checking the minimum values allowing to reach 90%

TABLE II
DELAY AND SETTLING TIME CHARACTERISTICS

Type Condition Value
Propagation Delay Low-High Transition 545 ns
Propagation Delay High-Low Transition 939 ns

Output Settling Time Rise 365 ns
Output Settling Time Fall 830 ns

of the stable output level. Two main classes of time-domain
characteristics are analyzed: input/output propagation delays
(LH and HL transitions) and output settling time (rise and
fall). The results are summarized in Table II. Regarding the
propagation delays, one can see that LH transitions present a
lower delay than that of HL transitions. This is also the case
for the output settling time, where the time for the output
rise is much lower than the output fall. To completely avoid
metastability issues, one can fix the circuit limit operation as
the sum of the propagation delays and the output settling time.
This yields a maximum operating frequency of the comparator
in order of 400 kHz, which usually provides enough dynamic
range for the representation of artificial neuron inputs in the
spiking frequency [14].

C. Eye Diagram

Considering this maximum frequency of operation of the
comparator, the next transient simulations are carried on by
fixing the period to 1.2 µs. Additionally, a noise analysis is
introduced. The band for noise integration is established at
least from the 5th harmonic, allowing a good trade-off between
precision and simulation cost. Having an input frequency of
about 5 MHz, this band is defined to have cutoffs at 5 MHz.

The main feature analyzed with the transient noise simula-
tion is the eye diagram. Having the limit operating condition
of the comparator in terms of frequency, this diagram provides
a graphic representation of the output discernible levels and
their transition. Therefore, it allows a fast verification of the
circuit’s operation. The result can be seen in Fig. 5. The
analysis of Fig. 5 yields an eye width of 0.4 µs and an eye
height of 200 mV. Despite operating in a fixed limit condition,
the output remains stable for a reasonable amount of time. The
eye height is close to the supply voltage, which indicates that
the output levels are very discernible. This result is useful for
the circuit designer to establish the design constraints for the
digital circuit block at the output.

D. Power and Energy Consumption

Power consumption is one of the most important factors in
the design of neuromorphic systems. The power consumption
of the entire comparator (Schmitt trigger and buffer) is eval-
uated using the DC and the noise transient simulation. These
simulations can emulate the power consumption of the circuit
block in condition of high-spiking frequency. These results are
presented in the Table III, both for static and dynamic root
mean square (RMS) power. The static and dynamic powers
are in order of pico-Watts, which renders the circuit operating
in the ultra-low-power region. The static power consumption
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TABLE III
DYNAMIC AND STATIC POWER CONSUMPTION OF THE COMPARATOR

Type of Power Condition Value
Static Low Output 58 pW
Static High Output 31 pW

Dynamic Low-High Transition 492 pW
Dynamic High-Low Transition 199 pW
Dynamic Complete Cycle 400 pW

is much lower than the dynamic consumption, as it is expected
for CMOS inverters, thanks to the bigger amount of current
that flows in the switching between the states. Moreover, the
power consumption of the proposed comparator is smaller than
that of most existing artificial neurons in the literature, which
validates its performance in aspect of the circuit complexity
and confirms its role as an intermediary circuit block.

Given the neuromorphic application of the circuit, one
important and frequently used figure of merit (FoM) is the
energy efficiency. This FoM is usually measured in fJ/spike,
giving an insight about the energy per unit of information.
Since one spike in the input should correspond to one low to
high and high to low cycle, this FoM is also appropriate for
this application. According to Table IV, the comparator has an
aggregate energy efficiency of 0.7 fJ/spike. This well qualifies

TABLE IV
ENERGY CONSUMPTION OF THE COMPARATOR

Condition Value
Low-High Transition 0.47 fJ/spike
High-Low Transition 0.28 fJ/spike

Complete Cycle 0.75 fJ/spike

it for ultra-low-power consumption, one of the requisites for
this kind of neuromorphic system. Moreover, most of the arti-
ficial neurons in the literature have an energy efficiency around
several fJ/spike, as previously presented. The comparator has
a consumption that is of the same order of magnitude, hence
being adequate to its role as a terminal block of the circuit.
For an application of electronic neuron such as in [25] where a
non-linear neuron is used for mathematical modeling of power
amplifiers behavior, the output information of a neuron can be
represented by hundreds of spikes, which consumes lower than
1 nJ per decision.

V. CONCLUSION

Neuromorphic circuits are gradually sparking more interest
due to their potential of powerful information processing while
having ultra-low power consumption and small surface area.
Their effective use and direct application rely, however, on
a circuit block that can be the interface between analog
waveform of neuronal response and the discrete nature of
digital signal processing circuits. With a BiCMOS 55 nm
technology and subthreshold operation, this paper presented an
energy efficient comparator that is suitable for Morris-Lecar
based artificial neurons, having an energy efficiency of about
747 aJ/spike and a limiting frequency in the order of hundreds
of kHz. The consumption of the proposed comparator during
the information processing of a neuron is less than 1 nJ per
decision.
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