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Resource allocation in open multi-agent systems:
an online optimization analysis

Renato Vizuete, Charles Monnoyer de Galland, Julien M. Hendrickx, Paolo Frasca and Elena Panteley

Abstract— The resource allocation problem consists of the
optimal distribution of a budget between agents in a group.
We consider such a problem in the context of open systems,
where agents can be replaced at some time instances. These
replacements lead to variations in both the budget and the total
cost function that hinder the overall network’s performance.
For a simple setting, we analyze the performance of the Random
Coordinate Descent algorithm (RCD) using tools similar to
those commonly used in online optimization. In particular, we
study the accumulated errors that compare solutions issued
from the RCD algorithm and the optimal solution or the non-
collaborating selfish strategy and we derive some bounds in
expectation for these accumulated errors.

I. INTRODUCTION

We consider the optimal resource allocation problem,
where a fixed amount of resource must be distributed among
n agents while minimizing some separable cost function f
[1]. Problems of this type can be found in many different
fields of research including distributed computer systems [2],
games [3], smart grids [4], etc. In some specific formulations
like actuator networks [5] or power systems [6], each agent
i holds a quantity di (which we call here the “demand” of
agent i), so that the total amount of resource to be distributed
is
∑n
i=1 di; the problem can then be written as

min
x∈Rnp

f(x) =

n∑
i=1

fi(xi) s.t.
n∑
i=1

xi =

n∑
i=1

di, (1)

where each function fi : Rp → R is α-strongly convex and
β-smooth, and represents the local cost held by agent i.

Problems of this type have received a lot of attention in the
last years and most of them are related to a possible change
in the budget due to a variation in the demand of some of
the agents [7, 8]. However, in these works, only quadratic
functions are considered which significantly restrict the set of
potential cost functions of the agents and do not correspond
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to the standard assumptions in the field of convex and smooth
optimization [9, 10].

In addition to the possible variations of the budget over
time in (1), the composition of the system may also change
during the whole process due to the arrival, departure or
replacement of agents at a time-scale comparable to that
of the process, giving rise to open multi-agent systems.
Those are motivated by the growing size of the systems
that tends to slow down the process as compared to the
time-scale of potential changes in the set of agents. More
generally, systems naturally allowing agents to join and leave
are becoming common, such as e.g. multi-vehicle systems or
with the Plug and Play implementation [11, 12]. In the case
of (1), it results in the system size nt, the local cost functions
f ti , and the local demands dti becoming time-varying. As a
consequence, the instantaneous optimum of (1), denoted x∗,t,
changes with the time as well, preventing usual convergence.

Due to these possible changes in the dimension of the
system, most of the related works in the field of open
multi-agent systems are focused on the analysis of scalar
performance indexes associated with the process, which
allow overcoming the problem of time-varying dimensions.
For instance, in [13, 14] the variance is proposed as a
metric for the analysis of a pairwise gossip algorithm, while
in [15] the mean squared error is the object of study in
randomized interactions. Regarding optimization, problems
such as (1) typically imply a minimization process on a
long period, and hence the cost is expected to be paid on a
regular basis. In such setting, a natural way of measuring the
performance of an algorithm is to compute its accumulated
error with respect to a given strategy over a finite number
of iterations. Similar metrics occur in the context of online
optimization [16], where the objective is to minimize the so-
called regret, commonly defined as the accumulated error of
the estimate xt with respect to x∗ := arg minx

∑T
t=1 f

t(x),
or sometimes with respect to the time-varying solution of (1)
x∗,t := arg minx f

t(x) such as e.g., in [17]. Other extensions
of the regret include the case of time-varying constraints,
where a similar metric is used to measure the violation [18].

In this work, we analyze the performance of the Random
Coordinate Descent algorithm (RCD) [19, 20] to solve (1) in
open systems. We study the loss accumulated by the RCD
algorithm with respect to the time-varying optimal solution
x∗,t over a finite number of iterations, and its gain with
respect to the selfish strategy xs,t, which consists in the
absence of collaboration between the agents (i.e., xs,ti = dti),
by obtaining upper bounds. Finally, we consider the case of
quadratic cost functions, for which tighter results are derived.
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II. PROBLEM FORMULATION

The set of real numbers is denoted by R and the set of
nonnegative integers by Z≥0. For two vectors x, y ∈ Rn,
〈x, y〉 = x>y =

∑n
i=1 xiyi denotes the usual Euclidean

inner product and ‖x‖ =
√
x>x the Euclidean norm. The set

of n-dimensional vectors with nonnegative entries is denoted
by Rn≥0. We denote the vector of size n constituted of only
zeros by 0n and of only ones by 1n.

A. Open resource allocation problem

We consider the problem (1), where we restrict to non-
negative states xi ∈ Rp≥0 for the agents, and where the local
cost functions satisfy the following assumption.

Assumption 1 (Local cost function): The local cost func-
tion fi : Rp≥0 → R≥0 of any agent i is
• continuously differentiable;
• α-strongly convex: fi(x)− α

2 ‖x‖
2 is convex ∀x;

• β-smooth: ‖∇fi(x)−∇fi(y)‖ ≤ β‖x− y‖,∀x, y;
• satisfies arg minx∈Rp

≥0
fi(x) = 0p and fi(0p) = 0.

More generally, we use Fpα,β to denote the set of functions
f : Rp≥0 → R≥0 satisfying these conditions.

Assumption 1 means that the cost paid by an agent is
always nonnegative, and is zero only when the agent does
not contribute at all to any activity, i.e. xi = 0p, which is
the minimal value taken by xi. It follows from Assumption 1
that the global cost satisfies f(x) =

∑n
i=1 fi(xi) ∈ F

np
α,β .

To problem (1) we associate an undirected graph G =
(V, E), so that at random times a pair of agents (i, j) ∈
E is uniformly randomly chosen to interact and exchange
information. Moreover, we assume the system is subject to
random instantaneous arrivals and departures of agents in
the system, respectively resulting in a new agent joining
the system with its own local cost function and demand,
or in an agent leaving the system and never coming back,
with the possibility of sending a last message to their
neighbours. We also consider replacements, which consist
in the simultaneous occurrence of both an arrival and a
departure. Hence, the system size nt, the local cost functions
f ti and the demands dti evolve with time, and consequently
the instantaneous solution of (1) is time-varying as well, and
is denoted x∗,t.

B. Simplifying assumptions and reformulation

For this preliminary work, we restrict to the specific case
defined by the following assumptions.

Assumption 2 (1-D functions): The local cost function of
any agent at any time is one-dimensional: f ti : R≥0 → R≥0.

Assumption 3 (Homogeneous demand): The demand as-
sociated with any agent i at any time t is dti = 1.

Assumption 4: The graph G = (V, E) is complete.
Moreover, we restrict to the case where the openness of the

system is solely characterized by replacements of agents (i.e.,
the simultaneous occurrence of an arrival and a departure), so
that the system size is fixed, and nt = n for all time t. Hence,
the system only evolves at the instantaneous occurrences of
either pairwise interactions of agents, resulting in a possible
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Fig. 1. Evolution of the function value f t evaluated with the RCD
algorithm xt defined in (8), the optimal solution x∗,t, and the selfish strategy
xs,t, in a system subject to replacements of agents (i.e., simultaneous
departures and arrivals) on average once every 4 RCD steps.

update of their states (denoted U ) or replacements (denoted
R). We call these occurrences “events”, and we can define
the set of all the events that can possibly take place in the
system, which we call “event set”, as follows:

Ξ := R ∪ U =
(⋃

i∈V
Ri

)
∪
(⋃

(i,j)∈E
Uij

)
, (2)

where Ri denotes the replacement of agent i and Uij a
pairwise interaction between agents i and j. We assume that
two distinct events never occur simultaneously, so that the
system evolves in a discrete manner, where each time-step
k ∈ Z≥0 corresponds to the occurrence of an event ξk ∈ Ξ.

Assumption 5: An event ξk is independent of all other
events ξj , j 6= k and of the state of the system xt until
time k, so that at each time-step either an update (i.e., an
event U ) happens with fixed probability p or a replacement
(i.e., an event R) with fixed probability 1− p.

Let Sn :=
{
x ∈ Rn≥0 : 1>x = n

}
be the feasible set, we

can now express (1) in our setting under the assumptions of
this section:

min
x∈Sn

f t(x) =

n∑
i=1

f ti (xi). (3)

C. Performance metrics

Natural indexes for measuring the performance of an
algorithm in our setting consist in evaluating its accumulated
error over a finite number of iterations with respect to a given
strategy. We define the two following strategies of interest
in the context of the resource allocation problem:
• Perfect collaboration: at each time instant t the agents

know the optimal solution of (3) denoted x∗,t;
• Selfish players: the agents do not collaborate to min-

imize f t, and they operate at their individual desired
point so that xs,t = 1n at all t.

Hence, for any T , the estimate xt obtained with a well-
designed algorithm is expected to satisfy

T∑
t=1

f t(x∗,t) ≤
T∑
t=1

f t(xt) ≤
T∑
t=1

f t(xs,t). (4)

The evolution of these strategies, compared with that of a
given algorithm, is illustrated in Fig. 1.

We define the following performance metrics to analyze
the value provided by the RCD algorithm xt with respect to
the strategies above:



Dynamical Regret: RegT :=

T∑
t=1

(
f t(xt)− f t(x∗,t)

)
; (5)

Benefit: BenT :=

T∑
t=1

(
f t(xs,t)− f t(xt)

)
; (6)

Potential Benefit: PotT :=

T∑
t=1

(
f t(xs,t)− f t(x∗,t)

)
. (7)

The “dynamical regret” and “benefit” respectively measure
the accumulated error from using a given algorithm with
respect to the optimal solution x∗,t and the accumulated gain
from using it instead of the selfish strategy xs,t. The “poten-
tial benefit” is independent of the algorithm; it represents the
accumulated advantage of the optimal strategy with respect
to the selfish one, and satisfies PotT = BenT + RegT .

Observe that the regret commonly used in online op-
timization typically compares xt with the overall opti-
mal solution taken over all the iterations, i.e., x∗ =
arg minx∈Sn

∑T
t=1 f

t(x). In that sense, it differs from
the dynamical regret in (5), which compares xt with
the time-varying instantaneous optimal solution x∗,t =
arg minx∈Sn

f t(x) at each iteration, such as e.g., in [17].

D. Random Coordinate Descent algorithm and objective

We consider the Random Coordinate Descent algorithm
(RCD) introduced in [19], such as whenever a pair of agents
(i, j) ∈ E interact, they update their respective estimates as

x+i = xi − 1
β (f ′i(xi)− f ′j(xj))

x+j = xj − 1
β (f ′j(xj)− f ′i(xi)). (8)

We moreover assume that whenever an agent in joins the
system, it initializes its estimate as

xin = din = 1, (9)

and whenever an agent out leaves the system, it sends a last
message to all its neighbours (i.e., all the other agents in our
setting) with its current estimate xout and its demand dout
so the agents i 6= out update their estimates as

x+i = xi +
xout − xi

n
=

(
1− 1

n

)
xi +

1

n
xout. (10)

We show in the following proposition that RCD iterations,
arrivals and departures as they are defined in (8) to (10)
guarantee that as long as the initial estimate x0 is feasible,
then all the estimates remain feasible.

Proposition 1 (Well-posedness): The event set (2) guaran-
tees that if x0 ∈ Sn, then xt ∈ Sn for all t.

Proof: We first consider arrivals: the nonnegativity of
xi and preservation of the constraint is a direct consequence
of (9). In the case of departures, the nonnegativity of xi is
a direct consequence of (10). Moreover, if the constraint is
satisfied at iteration k with nk = n, then under the departure
of the agent labelled out we have∑
i 6=out

xk+1
i = n− xout +

xout
n

(n− 1)− n− xout
n

= n− 1.

We finally consider iterations of the RCD algorithm. From
Assumptions 1 and 2, it follows that for any xi ≥ 0

xif
′
i(xi) ≥ α |xi|

2 ≥ 0,

so that f ′i(xi) ≥ 0. Moreover, since fi is β-smooth, one
has fi(xi) ≤ βxi, and therefore at each update of the RCD
algorithm between agents i and j there holds

x+i = xi −
1

2β

(
f ′i(xi)− f ′j(xj)

)
≥ xi −

1

2β
(βxi) =

xi
2
,

establishing the nonnegativity of xi. A similar analysis can
be used for xj . Due to the symmetry of the update rule, the
constraint is always preserved and we conclude the proof.

Our goal is to analyze the performance of the RCD
algorithm (8) with the arrival and departure rules (9) and
(10) in the setting described in Sections II-A and II-B using
the metrics defined in Section II-C in expectation.

III. UPPER BOUNDS ON THE PERFORMANCE METRICS

We now derive upper bounds on the evolution of the
Potential Benefit and the Dynamical Regret respectively
defined in (7) and (5) in expectation. Whereas the former is
only related to the problem itself, the latter actually depends
on the algorithm we consider.

We first provide the following lemmas, where Lemma 1
directly follows from the equivalence of the norms.

Lemma 1: Let x ∈ Sn, then n ≤ ‖x‖2 ≤ n2.
Lemma 2: Let f(x) =

∑n
i=1 fi(xi), where all fi satisfy

Assumptions 1 and 2, then for any x ∈ Sn there holds

α

2
n ≤ f(x) ≤ β

2
n2. (11)

Proof: From Assumptions 1 and 2, f(0) = f ′(0) = 0.
Hence, since f is β-smooth and using Lemma 1, there
holds f(x) ≤ β

2 ‖x‖
2 ≤ β

2n
2 which establishes the upper

bound. Similarly, since f is α-strongly convex and by using
Lemma 1, it follows that f(x) ≥ α

2 ‖x‖
2 ≥ α

2 n, which
establishes the lower bound, and concludes the proof.
Lemma 2 provides a global upper bound on the difference
between any two solutions x, y ∈ Sn:∣∣f t(x)− f t(y)

∣∣ ≤ n

2
(nβ − α). (12)

This can be used to derive upper bounds on any of the metrics
defined in Section II-C, e.g., BenT ≤ n

2 (nβ − α)T .

A. Potential Benefit

We first obtain in the following theorem an upper bound on
the expected value of the potential benefit, which we remind
quantifies the accumulated advantage of using the optimal
strategy rather than not collaborating at all.

Theorem 1: In the setting of Section II, there holds

PotT ≤
n

2
α (κ− 1)T, (13)

and in particular

lim
T→∞

PotT
T
≤ n

2
α(κ− 1). (14)



Proof: Remember that xs,t = 1n by definition, and
that f t(0n) = 0 and ∇f t(0n) = 0n from Assumption 1.
Hence, there holds from the β-smoothness of f t

f t(xs,t) ≤ ∇f t(0n)>(xs,t) +
β

2
‖xs,t‖2 =

β

2
‖1n‖2 =

β

2
n.

Similarly, since f t is α-strongly convex, we get

f t(x∗,t)≥∇f t(0n)>(x∗,t) +
α

2
‖x∗,t‖2 =

α

2
‖x∗,t‖2≥ α

2
n,

where the last inequality follows from Lemma 1. Hence

f t(xs,t)− f t(x∗,t) ≤ β

2
n− α

2
n =

n

2
(β − α)

holds, and injecting it into (7) yields (13). The last result
then follows from dividing (13) by T .

Notice that since the dynamical regret is nonnegative by
definition, the bounds (13) and (14) also hold for the benefit
since BenT = PotT − RegT ≤ PotT .

B. Dynamical Regret

We now obtain an upper bound on the expected dynamical
regret defined in (5), where we remind xt is obtained with
the RCD algorithm defined in Section II-D. For that purpose,
we first introduce the following intermediate quantities:

Ct := f t(xt)− f t(x∗,t); (15)

∆ft := f t+1(xt+1)− f t(xt); (16)

∆f∗t := f t+1(x∗,t+1)− f t(x∗,t). (17)

Thus, Ct corresponds to the instantaneous loss of the RCD
algorithm with respect to the optimal solution at iteration t,
and ∆ft and ∆f∗t respectively stand for the instantaneous
variation at one iteration of the total estimated cost and
optimal cost, such that Ct+1 = Ct + ∆ft −∆f∗t .

In the following proposition, we study the effect or
replacements on ∆ft in order to later characterize Ct in
expectation, and consequently the expected dynamical regret.

Proposition 2: In the setting of Section II the replacement
of an agent, denoted R, results in

E
[
∆ft | R

]
≤ 5

2
β − 3

2
α. (18)

Proof: We analyze the effects of arrivals and departures
separately. Let g denote the local cost function of the joining
agent at an arrival, then f t+1(xt+1) = f t(xt) + g(1) and

∆ft = f t(xt) + g(1)− f t(xt) = g(1) ≤ β

2
, (19)

where the last inequality follows from Assumption 1, and in
particular the β-smoothness of g.

Consider now a departure, and let ` denote the label of
the leaving agent, such that f t+1(xt+1) =

∑
i 6=` f

t
i (x

t+1
i ),

with xt+1
i = xti +

xt
i+x

t
`

n from (10). From the definition of
departures, ` is uniformly selected among the n agents in
the system and by taking the expected value ∆ft over the

leaving agent, one gets the following, where we omit the
reference to time to lighten the notation:

E [∆ft] =

n∑
`=1

1

n

∑
i6=`

fi

(
xi +

x` − xi
n

)
− f(x)


=

1

n

n∑
`=1

(
f

(
n− 1

n
x+

x`
n
1n

)
− f`(x`)

)
− f(x)

=
1

n

n∑
`=1

f

(
n− 1

n
x+

x`
n
1n

)
− n+ 1

n
f(x).

Since f is β-smooth from Assumption 1, one has

f

(
n− 1

n
x+

x`
n
1n

)
≤

f(x) +
1

n
〈∇f(x), x`1n − x〉+

β

2n2
‖x`1n − x‖2,

and it follows that

E [∆ft] ≤
1

n2

n∑
`=1

〈∇f(x), x`1n − x〉

+
β

2n3

n∑
`=1

‖x`1n − x‖2 −
1

n
f(x). (20)

From Assumption 1, in particular since f is β-smooth and α-
strongly convex, it satisfies α‖x‖2 ≤ 〈∇f(x), x〉 ≤ β‖x‖2
for any x. Hence, reminding that

∑n
`=1 x` = n, the first sum

of (20) can be upper bounded by
n∑
`=1

〈∇f(x), x`1n − x〉 = n〈∇f(x),1n − x〉

≤ n(βn− α‖x‖2).

The second sum of (20) can be expressed as:
n∑
`=1

‖x`1n − x‖2 =

n∑
`=1

n∑
i=1

(
x2` − 2x`xi + x2i

)
=

n∑
`=1

(
nx2` − 2nx` + ‖x‖2

)
= 2n

(
‖x‖2 − n

)
.

Then (20) is upper bounded by

E [∆ft] ≤
1

n

(
βn− α‖x‖2

)
+

β

n2
(
‖x‖2 − n

)
− 1

n
f(x).

Lemmas 1 and 2 yield ‖x‖2 ≤ n2 and f(x) ≥ α
2 n, so that

E
[
∆ft

]
≤ 2β − 3

2
α. (21)

The conclusion follows from adding (19) and (21).
We can now use Proposition 2 to study the evolution of

the expected dynamical regret in the following theorem.
Theorem 2: In the setting of Section II, there holds

ERegT ≤ C0

T∑
t=1

ηt+(1−p)
T−1∑
t=0

ηt (Mf + (T − t)θ) , (22)



where η = 1 − p
κ(n−1) (with p the probability that a given

event is an update from Assumption 5), Mf = n
2 (βn − α)

and θ = 5
2β −

3
2α.

Proof: Let γ = 1− 1
κ(n−1) denote the contraction rate

of the RCD algorithm as defined in (8) [19]. Remember that
there holds Ct+1 = Ct + ∆ft + ∆f∗t for all times t. Hence,
at any time-step t one has

E
[
Ct+1

]
= E

[
Ct + ∆ft −∆f∗t

]
. (23)

From Assumption 5 the event at iteration t is an update,
denoted Ut, with probability p, or a replacement, denoted
Rt, with probability 1− p.
In the case of an update, we have x∗,t+1 = x∗,t, so that
∆f∗t = 0. Hence, we have ∆ft = Ct+1 − Ct, and since
E
[
Ct+1|Ct, Ut

]
≤ γCt with the RCD algorithm from [19]:

E
[
∆ft|, Ut

]
= E

[
Ct+1 − Ct|Ut

]
≤ (γ − 1)E

[
Ct
]
. (24)

In the replacement case, there holds

E
[
∆ft|Rt

]
≤ θ =

5

2
β − 3

2
α, (25)

where θ comes from Proposition 2. Injecting (24) and (25)
into (23) then yields

E
[
Ct+1

]
≤E
[
Ct
]
+p(γ − 1)E

[
Ct
]
+(1− p)

(
θ − E

[
∆f∗t

])
= ηE

[
Ct
]

+ (1− p)
(
θ − E

[
∆f∗t

])
, (26)

where η = 1 + p(γ − 1). Expression (26) actually describes
the evolution of a discrete-time dynamical system of the type
v[k+1] ≤ Av[k]+Bu[k]. Standard results on that framework
yield v[k] ≤ Akv[0] +

∑k−1
j=0 A

k−j−1Bu[j], and we obtain

E
[
Ct
]
≤ ηtC0 + (1− p)

t−1∑
j=0

ηt−j−1
(
θ − E

[
∆f∗t

])
. (27)

Injecting this last result into (5) then yields

ERegT =

T∑
t=1

E
[
Ct
]

≤C0

T∑
t=1

ηt+(1− p)
T∑
t=1

t−1∑
j=0

ηt−j−1
(
θ − E

[
∆f∗t

]) .

After some term re-organization, it becomes

ERegT ≤ C0

T∑
t=1

ηt + (1− p)
T−1∑
t=0

(T − t)ηtθ

− (1− p)
T−1∑
t=0

ηt

T−t∑
j=0

E
[
∆f∗j

] .

Finally, using Lemma 2, one concludes that

−
T−t∑
j=0

E
[
∆f∗j

]
= −E

[ T−t∑
j=0

∆f∗j
]

= −E
[
fT−t+1(x∗,T−t+1)− f1(x∗,1)

]
≤ n

2
(βn− α),

and Mf = n
2 (βn− α) yields the conclusion.

We now analyze the asymptotic behavior of the averaged
regret in the following corollary.

Corollary 1: Let ρR := 1−p
p . In the same setting as that

of Theorem 2, there holds

lim
T→∞

ERegT
T

≤ ρR(n− 1)β

(
5κ− 3

2

)
. (28)

Proof: Starting from (22), we have

ERegT
T

≤ C0

T∑
t=1

ηt

T + (1− p)
T−1∑
t=0

(
Mf

ηt

T +
(
1− t

T

)
ηtθ
)
.

Remember that η = 1− p
κ(n−1) ≤ 1, so that

∑T
t=1 η

t < T ,

and limT→∞
∑T
t=1

ηt

T = 0. Hence

lim
T→∞

ERegT
T

≤ lim
T→∞

(1− p)
T−1∑
t=0

(
1− t

T

)
ηtθ.

Moreover, for η < 1, one shows
∑∞
j=0 η

j = 1
1−η

and
∑∞
j=0 jη

j = η
(1−η)2 . The latter implies that

limT→∞
1
T

∑T−1
t=0 tηt = 0, and therefore there holds

lim
T→∞

ERegT
T

≤ (1− p) 1

1− η
θ =

1− p
p

κ(n− 1)θ,

and the conclusion follows from the definitions of θ in
Theorem 2, and from ρR := 1−p

p .
The upper bounds for the potential benefit (13) and the

dynamical regret (22) linearly scale with T . This behavior is
rather natural for the former, which does not depend on the
algorithm. For the latter, it is most likely unavoidable due to
the introduction at each replacement of perturbations of non-
decaying magnitude which no algorithm can instantaneously
compensate. Interestingly, this behavior contrasts with stan-
dard results in online optimization, where a sublinear growth
in T is desired to cancel the asymptotic averaged regret [16,
Ch. 1.1]. However, these results usually apply on another
definition of the regret, where xt is compared with an overall
time-independent strategy x∗ computed over all T iterations,
in opposition with x∗,t which is optimal for each iteration.

Moreover, the corresponding asymptotic upper bounds
linearly grow with n and α for (14), and with n−1 and β for
(28), consistently with their expected behavior. In particular,
the scaling of (28) with n− 1 follows from the convergence
rate of the RCD algorithm γ = 1− 1

κ(n−1) . Interestingly, (28)
is proportional to ρR(n − 1) = (1 − p)n−1p , and the bound
can thus be seen as the ratio between the probability for a
given agent to be involved in a RCD update p

n−1 (involved in
γ), and the impact of replacements at the system level 1−p,
independently of n. This is consistent with the bound on the
impact of replacements in (18) which is independent of n (by
contrast, alternative situations such as e.g., if all agents were
to be reset at each replacement are expected to generate an
impact growing with n). Hence, for small values of ρR (i.e.,
rare replacements), the bound guarantees that the asymptotic
dynamical regret remains reasonably bounded, and decays to
zero when ρR → 0, i.e., for closed systems.

Finally, observe that (28) is proportional to 5κ−3
2 , consis-

tently with the fact that a larger interval for the possible



curvature of the cost functions should generate a larger
potential error at replacements. This factor is a potential
source of conservatism, e.g., with respect to (14) where the
scaling is in 1

2 (κ − 1). More generally, it is not clear yet
whether other algorithms than the RCD might provide tighter
bounds.

Remark 1: The proofs of Theorem 2 and Corollary 1 can
directly be adapted to any contraction rate γ < 1, and are
thus easily generalized to any other algorithm that guarantees
linear convergence; in particular limT→∞

ERegT
T ≤ ρR θ

1−γ .

C. The case of quadratic functions

The bound on the expected dynamical regret can be refined
for the particular case where all local functions are quadratic,
i.e. satisfy the following additional assumption.

Assumption 6 (Quadratic functions): The local cost func-
tion of any agent i at time t is of the form

fi(xi) = φix
2
i , φi ∈

[
α
2 ,

β
2

]
. (29)

The parameter φi is randomly chosen according to a distribu-
tion with a finite support determined by the interval

[
α
2 ,

β
2

]
.

Observe that functions satisfying Assumption 6 necessarily
satisfy Assumption 1 as well.

Under Assumption 6, we can obtain a tighter bound than
that of Proposition 2, presented in the following proposition.

Proposition 3: In the setting of Section II, and under
Assumption 6, the replacement of an agent R results in

E [∆ft | R] ≤ 3n2 − 3n+ 1

2n2
(β − α) . (30)

Proof: The arrival case is treated the same was as in the
proof of Proposition 2, resulting in ∆ft ≤ β

2 . The departure
case follows the same first steps with fi(x) = φix

2, and

E [∆ft] =

n∑
`=1

1

n

∑
i6=`

φi
(
xi + x`−xi

n

)2 − f(x)


=

1

n

n∑
`=1

∑
i 6=`

φi

((
xi + x`−xi

n

)2 − x2i)− φ`x2`


=
1

n2

n∑
`=1

∑
i6=l

φi

(
1−2n
n x2i + 2xix`

n−1
n +

x2
`

n

)
− f(x)

n
.

Using the fact that
∑n
`=1

∑
i 6=` φix

2
i = (n−1)f(x) and that

φi ≤ β
2 for all i, we obtain

E
[
∆ft

]
≤
(

1

n2
1− 2n

n
(n− 1)− 1

n

)
f(x)

+
β

2n2

n∑
`=1

∑
i 6=`

(
2xix`

n− 1

n
+
x2`
n

)
.

Observe that
∑n
`=1

∑
i 6=l xix` = n2 − ‖x‖2 and∑n

`=1

∑
i 6=` x

2
` = (n − 1)‖x‖2, so that a few algebraic

manipulations yield

E
[
∆ft

]
≤ −3n2 − 3n+ 1

n3
f(x) + β

n− 1

2n3
(
2n2 − ‖x‖2

)
.

Using ‖x‖2 ≥ n (from Lemma 1) and f(x) ≥ α
2 n (from

Lemma 2) then yields

E
[
∆ft

]
≤ −3n2 − 3n+ 1

2n3
α+ β

2n2 − 3n+ 1

2n3
,

and combining with the arrival case concludes the proof.
The result above allows us stating the following theorem,

which improves Theorem 2 and Corollary 1 respectively for
the case of quadratic functions.

Theorem 3: In the setting of Section II, and under As-
sumption 6, there holds

ERegT ≤ C0

T∑
t=1

ηt+(1−p)
T−1∑
t=0

ηt (Mf + (T − t)θ) , (31)

where η = 1 − p
κ(n−1) (with p the probability that a given

event is an update from Assumption 5), Mf = n
2 (βn − α)

and θ = (β − α) 3n2−3n+1
2n2 . In particular,

lim
T→∞

ERegT
T

≤ ρR(n− 1) 3n2−3n+1
2n2 β (κ− 1) . (32)

Proof: The proof follows the exact same steps as those
of Theorem 2 and Corollary 1 where Proposition 3 is used
instead of Proposition 2.

The upper bound for the quadratic case is qualitatively
better than that of the general case; it was derived based on
an additional information of the cost function, thus resulting
in tighter bounds. In this case, the dependence of (32) is
in 3

2 (κ − 1), which is consistent with the result derived
for the potential benefit (14). In particular, for n becoming
large, (32) and (28) become equivalent up to a constant β.
Moreover, (32) becomes 0 when κ = 1, consistently with
the expected behavior of the RCD algorithm for quadratic
functions since all the cost functions would then be the same.

D. Numerical Results

To illustrate the results of Theorems 1 to 2, we consider a
system of 5 agents with κ = 10 and ρR = 0.0125, the latter
implies that on average there is one replacement every 80
events. We consider two possibilities: random replacements
(RR) where the local function is randomly uniformly chosen
among the set of piecewise quadratic functions satisfying
Assumption 1, and adversarial replacements (AR), where
these functions are quadratic functions φix

2, with φi ∈{
α
2 ,

β
2

}
. The AR setting is expected to be less favorable

than the RR setting, since replacements might result in the
largest change of local functions. Notice that the bounds (13)
and (22) are independent of the distribution from which the
local cost function are assigned to the agents when they join
the system, so that they hold for any such assignment rule.

Fig. 2 compares the results of Theorem 1 and Corol-
lary 1 with simulations for both random and adversarial
replacements in the setting described above. Even though
the theoretical bounds are conservative, they capture well
the qualitative behavior of these metrics. In particular, con-
sistently with PotT and ERegT that grow linearly with T , the
bounds in the figure do not converge to zero, and a remaining
asymptotic error is observed. Our bounds are tighter for the
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Fig. 2. Evolution of the averaged asymptotic expected Potential Benefit
(on the left) and dynamical regret (on the right) in a system of 5 agents
with ρR = 0.0125 and κ = 10. Each plot compares the upper bounds,
respectively from (14) and (28), with simulated results, either with random
replacements (RR) or adversarial replacements (AR).
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Fig. 3. Evolution of the expected averaged regret for a system of 5 agents
holding quadratic functions with ρR = 0.0125 and κ = 10. The plain blue
line and the dash-dotted red line respectively correspond to the upper bounds
of Theorems 2 and 3 respectively. The dotted yellow line corresponds to
simulation where we consider random replacements (RR).

adversarial replacement case than the random replacement
case, this suggests that our bounds might be tight for some
particular choice of the joining functions at replacements,
especially that on the potential benefit.

Fig. 3 compares the results of Theorems 2 and 3 with
simulations in the same setting as described previously, with
random replacements (RR). The figure shows that bound
(32) is tighter for quadratic functions, following the fact
that we have access to more information regarding the local
cost functions, thus improving the estimation of the effect of
replacements on the expected regret.

IV. CONCLUSION

We analyzed the performance and behavior of the Random
Coordinate Descent algorithm (RCD) for solving the optimal
resource allocation problem in an open system subject to
replacements of agents, resulting in variations of the total
cost function and of the total amount of resource to be
allocated. We considered a simple preliminary setting where
the budget is homogeneous and the graph is complete, and
used tools inspired from online optimization to show that it
is not possible to achieve convergence to the optimal solution
with the RCD algorithm in expectation in open system, but
that the error is expected to remain reasonable.

We have derived upper bounds on the evolution of the
regret and the potential benefit in expectation and showed
that due to the random choice of the new local cost function
during replacements, an error is expected to be accumulated
with time and cannot be compensated. A natural continuation

of this work is thus the derivation of the corresponding upper
bound for the benefit, and of lower bounds for this quantities
in order to validate the observed behavior. More generally,
our bounds could be extended to more general settings, and
their tightness can be improved to match more accurately the
actual performance of the algorithm. Moreover, since our
approach is based on the analysis of the effect of arrivals
and departures of agents combined into replacements, the
next step of this study is to generalize it to the case where
the system size changes with the time, i.e., where arrivals
and departures are decoupled.
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