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Abstract

The dynamic regressor extension and mixing (DREM) method provides a fixed-

time converging parameter estimator for persistently excited regressor under

bounded measurement noises. This note aims to develop this approach for cases

with weaker excitation and regressor constraints. Several nonlinear estimation

schemes with fixed-time convergence rates and improved measurement noise

robustness properties are proposed here.

1. Introduction

Identifying parameters in linear regression is a crucial theoretical and applied

challenge in control engineering [1]. Many widely-known approaches [2], may be

used to tackle this problem, generally with the condition that the regressor is

suitably excited [3, 4]. Additional features are often demanded in real-world ap-5

plications, including minimization of the convergence time, monotonicity of such

a convergence, and robustness to uncertainties and noises. A solution recently

proposed by the dynamic regressor extension and mixing (DREM) method [5]

answered all these challenges and quickly became popular in the community

[6, 7, 8]. In addition, the excitation constraints have been slightly relaxed with10

this technique.
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The DREM method helps reduce the initial estimation problem for a vector

of unknown parameters to a series of interrelated scalar linear regression prob-

lems, with a posterior application of various iterative schemes for asymptotic

or finite/fixed-time evaluation of parameter values [6, 9, 7, 8, 10, 11]. Such a15

decomposition on individual scalar regressions for each parameter allows the

accelerated convergence and monotonicity to be ensured, and at the same time,

it also helps with a quantitative evaluation of robustness characteristics. For

example, in [12], a practical fixed-time DREM-based scheme was proposed for a

discrete-time setting, which used Kreisselmeier’s filters to extend the dynamics.20

In such a case, the persistently excited regressor of the original vector estima-

tion problem is transformed into a positive scalar one. This sign-definiteness

property simplifies the analysis and tuning, directly connecting with the noise

filtering framework.

The present work proposes the development of [12] considering the cases25

when the regressor may fail to be persistently excited or when Kreisselmeier’s

filters cannot be utilized, and the regressor after mixing, being certainly excited,

is not strictly separated from zero. In these scenarios, the additional iterative

linear or nonlinear estimation schemes have to be introduced after DREM, and

some of them are designed and analyzed in this paper.30

Notation

� The sets of real, nonnegative, and natural numbers are denoted by R, R+,

and N, respectively, N∗ := N \ {0}. The sets of real m × n-matrices and

real n-vectors are denoted by Rm×n and Rn, respectively. The identity

matrix in Rn×n is denoted by In.35

� The rounding function to the biggest integer lower than s ∈ R is denoted

by ⌊s⌋ = floor(s).

� e denotes the exponential function.

� Definitions of input-to-state stability (ISS) and integral ISS (iISS) for

discrete-time systems can be found in [13, 14] (it is worth highlighting40
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that in such a setting, iISS follows from global asymptotic stability).

2. Problem statement

Consider a vector linear regression in discrete-time:

yk = ϕ
⊤
k θ + vk, k ∈ N, (1)

where yk, vk ∈ R are the output and the measurement noise, ϕk ∈ Rn is the

regressor, and θ = (θ1 . . . θn)
⊤ ∈ Rn is the vector of unknown parameters.

The DREM procedure applied to (1) (see the Appendix) yields the element-

wise scalar linear regression

yk,i = ϕkθi + vk,i, k ∈ N, i ∈ {1, . . . , n},

where yk,i ∈ R and ϕk ∈ R are known signals, θi ∈ R is the unknown constant45

parameter to be estimated, and vk,i ∈ R is an unknown bounded measurement

distortion.

Since the estimation of each θi is now independent of other components of θ,

then in the sequel, the index i will be omitted, and the scalar linear regression

yk = ϕkθ + vk, k ∈ N (2)

with yk, ϕk, θ, vk ∈ R will be considered without losing generality.

Problem. Our goal is to estimate θ from the measurements of yk and ϕk in

the fastest way, taking into account the presence of the noise vk.50

For k ∈ N, let θ̂k denote an estimate of θ at the step k. Define ek :=

yk − ϕkθ̂k = ϕkθ̃k + vk as the measured regression error, where θ̃k := θ − θ̂k is

the parameter estimation error.

Remark 1. Note that in the noise-free setting, the stated problem has a trivial

solution

θ̂k =
yk
ϕk

that can be applied as soon as ϕk ̸= 0 for some k ∈ N. Hence, the noise

robustness analysis is crucial.55
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Remark 2. Moreover, we can always assume that ϕk ̸= 0 for all k ∈ N since

otherwise, yk = vk (since ϕk is also available for measurements, such an event

is detectable), and there is no sense in acting (such a situation with ϕk = 0 can

be interpreted as the absence of the measurements, and the next event k should

not be generated).60

According to the Excitation Preservation Lemma given in the Appendix, if

ϕk in (1) is (ℓ, µ)-persistently excited (in the sense of Definition 1 given in the

Appendix) for some ℓ ∈ N∗ and µ > 0, and Kreisselmeier’s filters (17) with the

parameter λ ∈ (0, 1) are used in DREM, then ϕk ≥ α =
(
µ (1− λ)λℓ−1

)n
for

all k ≥ ℓ and lim infk→∞ (ϕk) ≥ ϕ = α
(1−λℓ)n

> α. The solution to the stated65

problem for such a case was presented in [12]. In this work, we mainly focus

our attention on the scenario when ϕk is not strictly separated from zero, it can

change the sign, and it may present only interval excitation.

3. Linear time-varying estimator

For comparison purposes, let us recall the simplest and most popular solution

to the problem mentioned above, the least-squares or gradient estimator:

θ̂k+1 = θ̂k + γkϕk(yk − ϕkθ̂k), k ∈ N, (3)

where γk > 0 is a time-varying adaptation gain, whose choice impacts the70

convergence rate and the robustness properties greatly.

Remark 3. For example, for γk = γh and γ > 0, the discrete-time equation (3)

represents the explicit Euler discretization with step h > 0 of the continuous-

time gradient descent estimation algorithm:

˙̂
θ(t) = γϕ(t)(y(t)− ϕ(t)θ̂(t)), t ∈ R+

where all signals keep their meaning, as continuous-time functions. For γk =

γh
1+γhϕ2

k
, it corresponds to the implicit Euler discretization of the same continuous-

time estimator. In other words, different kinds of discretization can be reduced

to the choice of γk in the scalar case.75
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The parameter estimation error behavior is governed by

θ̃k+1 = (1− γkϕ
2
k)θ̃k − γkϕkvk, k ∈ N. (4)

Denote

σj = max
0≤i≤j−1

γi|ϕi| and σmax = max
j≥0

σj .

Also, in the sequel, we set:

v := max
j≥0

|vj |,

which we assume to be a finite constant.

The following results can be easily obtained (see also [15], whereas the

continuous-time counterparts can be found in [16, 5, 9]):

Theorem 1. For the estimation algorithm (3) with γk ∈ (0, ϕ−2
k ] for all k ∈ N:

a) if limi→+∞
∏i

j=0 1 − γjϕ
2
j = 0 and limi→+∞

∑i
j=0 |vj | < +∞, then the

dynamics of parameter estimation error (4) is iISS:

|θ̃k| ≤
k−1∏
j=0

(
1− γjϕ

2
j

)
|θ̃0|+ σk

k−1∑
j=0

|vj |, ∀k ∈ N∗;

b) if there exist ℓ ∈ N∗ and δ ∈ (0, 1) such that
∏i+ℓ

j=i+1 1 − γjϕ
2
j ≤ δ, for

any i ∈ N, then the dynamics of parameter estimation error (4) is ISS with

exponential convergence rate:

|θ̃k| ≤ δ⌊
k
ℓ ⌋|θ̃0|+ σkℓ

1− δ1+⌊
k−1
ℓ ⌋

1− δ
max

0≤i≤k−1
|vi|, ∀k ∈ N∗.

Proof. Note that 0 ≤ 1− γkϕ
2
k ≤ 1, for all k ∈ N, under the imposed restriction

on γk. Iteratively, using the error dynamics (4), we obtain for any k ∈ N∗:

θ̃k =

k−1∏
j=0

(
1− γjϕ

2
j

)
θ̃0 −

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
s

)
γjϕjvj ,

hence,

|θ̃k| ≤
k−1∏
j=0

(
1− γjϕ

2
j

)
|θ̃0|+

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
s

)
γj |ϕj ||vj |.
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Since
∏k−1

s=j+1 1 − γsϕ
2
s ≤ 1 for any 0 ≤ j ≤ k − 1, the property in the part a)

can be derived directly. For the part b), note that

k−1∏
j=0

1− γjϕ
2
j ≤ δ⌊

k
ℓ ⌋

by the imposed restrictions, and

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
s

)
γj |ϕj ||vj | ≤ σk max

0≤i≤k−1
|vi|

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
s

)

≤ σk max
0≤i≤k−1

|vi|
k−1∑
j=0

δmax{0,⌊ k−j−1
ℓ ⌋} ≤ σkℓ max

0≤i≤k−1
|vi|

⌊ k−1
ℓ ⌋∑

j=0

δj ,

which gives the desired estimate.80

Case a) is generic and it can be always ensured by the choice of γk provided

that ϕk ̸= 0 for a non-accumulating subset of indexes k ∈ N (recall Remark 2).

In case b), the asymptotic precision of estimation (asymptotic gain with respect

to the measurement noise) is

lim
k→+∞

|θ̃k| ≤
σmax ℓ

1− δ
v,

and this scenario follows the PE property.

Remark 4. Indeed, let us demonstrate the last claim. By imposed restrictions,

γkϕ
2
k ∈ (0, 1] for all k ∈ N. First, let the PE property be verified for

√
γkϕk

with ℓ ∈ N∗, then
i+ℓ∑

j=i+1

γjϕ
2
j ≥ µ > 0

for all i ∈ N. Direct computations show (note that ln(1−x) ≤ −x, for x ∈ [0, 1)):

0 <

i+ℓ∏
j=i+1

1− γjϕ
2
j = eln(

∏i+ℓ
j=i+1 1−γjϕ

2
j) = e

∑i+ℓ
j=i+1 ln(1−γjϕ

2
j)

≤ e−
∑i+ℓ

j=i+1 γjϕ
2
j ≤ e−µ < 1,

which implies the property stated in Theorem 1. Inversely, by the conditions

of the theorem, 1 > δ ≥
∏i+ℓ

j=i+1 1 − γjϕ
2
j ≥ 0 for all i ∈ N. There are two
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possibilities. Either there is ri ∈ {1, . . . , ℓ} such that γi+riϕ
2
i+ri

> 0.5, and

hence
∑i+ℓ

j=i+1 γjϕ
2
j > 0.5, or γjϕ

2
j ∈ [0, 0.5], for all j ∈ {i+ 1, . . . , i+ ℓ}, which

implies (note that ln(1− x) ≥ −2 ln(2)x for x ∈ [0, 0.5]):

0 > ln(δ) ≥ ln

 i+ℓ∏
j=i+1

1− γjϕ
2
j

 =

i+ℓ∑
j=i+1

ln
(
1− γjϕ

2
j

)
≥ −2 ln(2)

i+ℓ∑
j=i+1

γjϕ
2
j .

Therefore,
i+ℓ∑

j=i+1

γjϕ
2
j ≥ 1

2
min

{
1,

ln(δ−1)

ln(2)

}
,

and the claim is proven.

4. Fixed-time convergence

The conventional estimator given in the previous section demonstrates an

asymptotic convergence of the parameter estimation error in the noise-free case.

This implies a sensitive dependence of the estimation error transients on the

initial deviation |θ̃0| = |θ− θ̂0| (especially if |θ̃0| is significant). Due to the scalar

nature of (2), this dependence on the initialization of the estimation algorithm

(3) can be easily dropped. Indeed, if γk = ϕ−2
k in (3), then

θ̂k+1 =
yk
ϕk

provided that ϕk ̸= 0 for some k ∈ N∗, and obviously:

|θ̃k+1| ≤
|vk|
|ϕk|

≤ v

|ϕk|
,

which implies the parameter estimation error θ̃k+1 is independent of the initial

deviation θ̃0 at the price of a rather large noise gain if ϕk is small. This algo-

rithm immediately solves the estimation problem without noise if the system is

minimally excited (Remark 1). However, in the noisy scenario, applying such an

estimate on each k ∈ N∗ is not desirable, and it can be used only to cancel the

influence of the initial guess θ̂0 or when the regressor ϕk takes maximal values.

Consider bk the worst-case upper bound at each step, and recall that v is an
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upper bound on the noise amplitude. Thus, the following combination with (3)

is proposed:

bk = δ

⌊
k−nk

ℓ

⌋
θ̃max
k + max

nk≤j≤k
γj |ϕj | ℓ

1− δ

⌊
k−nk−1

ℓ

⌋
1− δ

v (5)

and

(
θ̂k+1, nk+1, θ̃

max
k+1

)
=


(
(1− γkϕ

2
k)θ̂k + γkϕkyk, nk, θ̃

max
k

)
, if bk ≤ β v

|ϕk| ,(
yk

ϕk
, k, v

|ϕk|

)
otherwise,

n0 = 0, θ̃max
0 ≥ θ̃0, β > 0.

(6)

Here θ̃max
0 is the upper bound on initial estimation error, which can be computed

if the set of admissible values for θ is known, in other cases, θ̃max
0 = +∞. The85

states nk and θ̃max
k represent the number of the last step when a jump occurred

and the corresponding jump-induced worst-case upper bound, respectively.

The idea of the estimation algorithm (6) is that, at each step, we compute bk

while the estimator (3) is applied on (6) (see Theorem 1) and compare it with

the worst-case upper bound if a jump is performed; the comparison threshold90

is tuned by the sensitivity coefficient β. Then, the next-step estimate θ̂k+1 is

updated accordingly.

Theorem 2. For the estimation algorithm (5), (6) with γk ∈ (0, ϕ−2
k ], for all

k ∈ N and θ̃max
0 ≥ |θ − θ̂0|, assume there exist ℓ ∈ N∗ and δ ∈ (0, 1) such that

i+ℓ∏
j=i+1

1− γjϕ
2
j ≤ δ, ∀i ∈ N,

and k∗ ∈ N such that

|ϕk∗ | > δ−⌊
k∗
ℓ ⌋ v

θ̃max
k∗

.

Then the dynamics of parameter estimation error is ISS with a fixed-time con-

vergence rate.

Proof. Since all conditions of part b) of Theorem 1 are satisfied, and the al-

gorithm (3) is replaced in (6) by θ̂k+1 = yk

ϕk
only if the direct estimate yk

ϕk

8



outperforms (3) (it also corresponds to the substitution γk = ϕ−2
k in (3)), the

ISS property follows. The convergence time-dependence on the initial conditions

is canceled once there exists k ∈ N such that (initially n0 = 0)

δ⌊
k
ℓ ⌋θ̃max

k + max
0≤j≤k

γj |ϕj |ℓ
1− δ1+⌊

k−1
ℓ ⌋

1− δ
v >

v

|ϕk|
,

i.e., once the value θ̂k+1 = yk

ϕk
is assigned. Assume that for all k ∈ N the latter

inequality is wrong:

δ⌊
k
ℓ ⌋θ̃max

k ≤ δ⌊
k
ℓ ⌋θ̃max

k + max
0≤j≤k

γj |ϕj |ℓ
1− δ1+⌊

k−1
ℓ ⌋

1− δ
v ≤ v

|ϕk|
,

which implies that

|ϕk| ≤ δ−⌊
k
ℓ ⌋ v

θ̃max
k

for all k ∈ N. The latter property cannot be true for all k ∈ N due to the95

conditions of the theorem, so we have a contradiction.

If θ ∈ R without any additional precision (i.e., θ̃max
0 = +∞), then definitely

applying (6) at the first instant k ∈ N such that ϕk ̸= 0 significantly improves

the estimation performance in the case of a lousy initialization.

A similar extension can be formulated for part a) of the theorem establishing100

fixed-time iISS:

Theorem 3. Assume θ̃max
0 ≥ |θ − θ̂0|, limi→+∞

∏i
j=0 1 − γjϕ

2
j = 0 and

limi→+∞
∑i

j=0 |vj | < +∞. Apply the estimation algorithm (6) with the worst-

case upper bound bk computed as

bk =

k∏
j=nk

(
1− γjϕ

2
j

)
θ̃max
k + v

k∑
j=nk

k∏
s=j+1

(
1− γsϕ

2
s

)
γj |ϕj |.

Then for γk ∈ (0, ϕ−2
k ], the dynamics of parameter estimation error is iISS

with a fixed-time convergence rate provided that there exists k∗ ∈ N such that

|ϕk∗ | > v

θ̃max
k∗

(∏k∗

j=0 1− γjϕ
2
j

)−1

.

Proof. The proof follows the same lines as before by observing that we can

assume without losing generality that
∏k

j=0 1 − γjϕ
2
j > 0 for any k ∈ N if the

9



condition

k∏
j=0

(
1− γjϕ

2
j

)
θ̃max
k + v

k∑
j=0

k∏
s=j+1

(
1− γsϕ

2
s

)
γj |ϕj | >

v

|ϕk|

is never satisfied. Indeed, γkϕ
2
k = 1 implies that θ̂k+1 = yk

ϕk
, i.e., the fixed-time105

jump is performed.

Note that if excitation conditions are satisfied on a finite interval of time

only, the the same (qualitatively) stability performance is kept for (5) and (6)

once a jump is performed.

5. Nonlinear estimators110

As it has been demonstrated in the previous section, a mild modification of

any conventional estimation algorithm brings to it the fixed-time convergence

rate (as (5) and (6) for (3)), making the error dynamics decay independent of

the initial guess, and relaxing the excitation constraints. This shifts further the

focus to the problem of noise attenuation and improvement of the respective115

gains for (3) or (5), (6). This section demonstrates how this can be achieved by

introducing the nonlinearities in (3).

To this end, let ρ : R → [0, 1] be a continuous function such that ρ(x) = 0

implies that x = 0.

Example 1. For κ ∈ (0, 1), define

ρ(x) = min
{
|x|κ|x|, |x|−

κ
|x|

}
, (7)

then the function ρ has the following properties:120

� ρ(x) < 1 for x ̸= 0 and |x| ≠ 1;

� ρ(x) ≥ ρκ = e−κe−1

for all x ∈ R, and limκ→0 ρκ = 1;

� limx→0 ρ(x) = lim|x|→∞ ρ(x) = 1.

10



Example 2. For a > 0 and κ > 0, define

ρ(x) =
|x|κ

a+ |x|κ
, (8)

then the function ρ has the following properties:

� ρ(x) < 1 for x ∈ R;125

� lim|x|→∞ ρ(x) = 1 and ρ(0) = 0.

Extending (3) consider:

θ̂k+1 = θ̂k + γkϕkekρ(ek), k ∈ N, (9)

for some γk > 0, where a nonlinear multiplicative gain ρ(ek) = ρ(ϕkθ̃k + vk) =

ρ(yk −ϕkθ̂k) is introduced. Clearly, this algorithm possesses performance prop-

erties similar to (3):

Theorem 4. For the estimation algorithm (9) with γk ∈ (0, ϕ−2
k

1
ρ(ek)

], for all130

k ∈ N:

a) if limi→+∞
∏i

j=0 1 − γjϕ
2
jρ(ej) = 0 and limi→+∞

∑i
j=0 |vj | < +∞, then

the dynamics of parameter estimation error is iISS:

|θ̃k| ≤
k−1∏
j=0

(
1− γjϕ

2
jρ(ej)

)
|θ̃0|+ σk

k−1∑
j=0

|vj |, ∀k ∈ N∗;

b) if there exist ℓ ∈ N∗ and δ ∈ (0, 1) such that
∏i+ℓ

j=i 1 − γjϕ
2
jρ(ej) ≤ δ

for any i ∈ N, then the dynamics of parameter estimation error is ISS with an

exponential convergence rate:

|θ̃k| ≤ δ⌊
k−1
ℓ ⌋|θ̃0|+ σkℓ

1− δ1+⌊
k−1
ℓ ⌋

1− δ
max

0≤i≤k−1
|vi|, ∀k ∈ N∗.

Proof. Note that 0 ≤ 1 − γkϕ
2
kρ(ek) ≤ 1, for all k ∈ N, under the imposed

restriction on γk and the properties of ρ. For the parameter estimation error

the following equation can be obtained:

θ̃k+1 = (1− γkϕ
2
kρ(ek))θ̃k − γkϕkρ(ek)vk, k ∈ N,

11



whose iterative application gives for any k ∈ N∗:

θ̃k =

k−1∏
j=0

(
1− γjϕ

2
jρ(ej)

)
θ̃0 −

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
sρ(es)

)
γjϕjρ(ej)vj ,

and

|θ̃k| ≤
k−1∏
j=0

(
1− γjϕ

2
jρ(ej)

)
|θ̃0|+

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
sρ(es)

)
γjρ(ej)|ϕj ||vj |. (10)

Since
∏k−1

s=j+1 1−γsϕ2sρ(es) ≤ 1 and ρ(ej) ≤ 1 for any j ∈ [0, k−1], the estimates

in parts a) and b) can be derived directly as in Theorem 1.

The obtained upper bounds on |θ̃k| are the same as in Theorem 1, then two

questions arise:135

1. Why do we need to introduce additional nonlinearities?

2. The imposed requirements on excitation in Theorem 4 seem to be more

restrictive since everything is multiplied by the function ρ, which is smaller

or equal to one?

The answers to the first question will be given below by considering particular140

expressions for ρ, while the last question has a negative answer and it can be

reduced to a selection of the adaptation gain γk:

Proposition 1. Let all conditions of Theorem 1 be satisfied, then there exist

γk > 0 for k ∈ N such that the conditions of Theorem 4 are also verified.

Proof. Let γ̃k ∈ (0, ϕ−2
k ] be the adaptation gain for (3) making true the con-145

ditions of Theorem 1. Note that if ek = 0, then in both algorithms, in (3) or

(9), θ̂k+1 = θ̂k, and these instants of time k ∈ N do not influence the transients.

Hence, let ek ̸= 0, then taking γk = γ̃k

ρ(ek)
in (9) is admissible and implies that

the conditions of Theorem 4 are true.

Obviously, the algorithm (9) can substitute (3) in (6) replacing the update

12



equation for θ̂:

θ̂k+1 =



(
1− γkϕ

2
kρ(yk − ϕkθ̂k)

)
θ̂k

+ γkϕkρ(yk − ϕkθ̂k)yk

if bk ≤ β v
|ϕk| ,

yk

ϕk
otherwise,

(11)

where all other variables and update equations are as in (5), (6). The estima-150

tor (11) allows us to profit the fixed-time convergence rate together with the

nonlinear noise attenuation as we discuss in the next subsections.

Remark 5. Note that once bk > β v
|ϕk| , the estimate θ̂k+1 is immediately settled

in a vicinity of the true value θ whose radius is v
|ϕk| , and the further regres-

sor excitation improves the estimation precision via the iterative filtering (9).155

Therefore, recall again that for this task, the PE property of ϕk is not needed,

and even IE of the regressor could be enough for short-time filtering.

5.1. The case of Example 1

To formulate the result for this scenario, recall the Excitation Preservation

Lemma given in the Appendix and Remark 2:160

Corollary 1. Let ρ be chosen as in (7) for (9), ϕk ̸= 0, supk≥0 |ϕk| < +∞ and

γk = ϕ−2
k for all k ∈ N, then

a) in the case vk = 0 for all k ∈ N, the parameter estimation error admits

a hyperexponential convergence rate at the origin, i.e., for any α ∈ (0, 1), there

exist rα ≤ 1 such that

|θ̃k| ≤ αk|θ̃0|

for all k ≥ 0 provided that |θ̃0| ≤ rα;

b) if |ϕk| ≥ ϕ > 0 for all k ∈ N, then the parameter estimation error is ISS

with a hyperexponential convergence rate, i.e., in the case vk = 0 for all k ∈ N,

for any α ∈ (0, 1), there exist rα ≤ 1 and Rα ≥ 1 such that

|θ̃k| ≤ αk|θ̃0|
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provided that |θ̃0| < rα and k ≥ 0, or |θ̃0| > Rα and k ∈

[
0,

ln
(

Rα
|θ̃0|

)
ln(α)

)
, respec-

tively. In addition, the asymptotic noise gain admits an estimate:

lim
k→+∞

|θ̃k| ≤
1

ϕρκ
max
i≥0

ρ(ei)|vi|.

Proof. In this case

|θ̃k+1| ≤ (1− ρ(ek))|θ̃k|+ |ϕk|−1ρ(ek)|vk|

for all k ∈ N. Since ρ(ek) ≥ ρκ ∈ (0, 1] for all ek ∈ R by construction,

|θ̃k+1| ≤ (1− ρκ)|θ̃k|+ |ϕk|−1ρ(ek)|vk|

and the error θ̃k has an exponential convergence rate ρκ in the noise-free case

(the same for the regression error ek since ϕk has a bounded amplitude). More-

over, ρ(ek) tends to 1 as ek tends to zero, and for any α ∈ (0, 1), there exists T1

such that 1− ρ(ek) ≤ α
2 for all k ≥ T1. Then for k ≥ T1 it holds

|θ̃k| ≤
(α
2

)k−T1

(1− ρκ)
T1 |θ̃0|.

Choose T such that

2T−T1 >

(
1− ρκ
α

)T1

,

then for all k ≥ T

|θ̃k| ≤
(α
2

)k−T1

(1− ρκ)
T1 |θ̃0| ≤ αk−T1αT1 |θ̃0| = αk|θ̃0|.

So, part a) is substantiated.

For part b), if the signal |ϕk| is lower bounded, then

|θ̃k+1| ≤ (1− ρκ)|θ̃k|+ ϕ−1ρ(ek)|vk|,

for all k ∈ N, and ISS follows since ρ(ek) ≤ 1. The hyperexponential convergence165

rate close to the origin can be substantiated as for part a), and it is required

to show hyperexponential convergence in the noise-free case for big enough de-

viations of |θ̃k|. Note that for any α ∈ (0, 1), there exists eα > 0 such that

1 − ρ(ek) ≤ α, for all |ek| ≥ eα, hence, |θ̃k| ≤ αk|θ̃0| while |θ̃k| ≥ ϕ−1eα = Rα,

14



i.e., for k ∈

[
0,

ln
(

Rα
|θ̃0|

)
ln(α)

)
. The estimate of the asymptotic gain with respect to170

the noise vk can be derived directly.

It is worth highlighting that for part a) there is no condition imposed on the

level of excitation of ϕ, and PE is imposed for case b) only. Nevertheless, for

part b), the noise amplitude is filtered by ρ:

ρ(ek)|vk| ≤ |vk|

for all k ∈ N, and this inequality becomes non-strict for |ek| ∈ {0, 1} only.

Remark 6. Due to the division by ϕk in γk, for ek = 1, we have the algebraic

one-shot estimation θ̂k+1 = θ̂k − θ̃k = θ in the noise-free case, similarly to (5),

(6) or (11).175

5.2. The case of Example 2

In this case, we can use the fact that the function ρ is monotonously growing

in |ek| (in other words, ρ(ek) weights the adaptation gain γk proportionally to

the regression error ek).

Corollary 2. Let ρ be chosen as in (8) for (9) and the conditions of Theorem 4

be valid, then the parameter estimation error admits the asymptotic gain upper

bounds:

lim
k→+∞

|θ̃k| ≤ σmax ρ

[σmax max
i≥0

|ϕi|+ 1]

+∞∑
j=0

|vj |

+∞∑
j=0

|vj |

or

lim
k→+∞

|θ̃k| ≤
σmaxℓ

1− δ
ρ

((
σmaxℓ

1− δ
max
i≥0

|ϕi|+ 1

)
max
i≥0

|vi|
)
max
i≥0

|vi|

for parts a) or b), respectively.180

Proof. For part a), note that the estimate obtained in the proof of Theorem 4

implies that

lim
k→+∞

|θ̃k| ≤ σmax

+∞∑
j=0

|vj |,

15



and

ρ(ek) = ρ
(
ϕkθ̃k + vk

)
≤ ρ

(
|ϕk||θ̃k|+ |vk|

)
due to the shape of ρ, then from (10) we obtain:

lim
k→+∞

|θ̃k| ≤ σmax

+∞∑
j=0

ρ (ej) |vj | ≤ σmaxρ

(
σmax max

i≥0
|ϕi|+ 1

)+∞∑
j=0

|vj |

+∞∑
j=0

|vj |.

For part b), note that

lim
k→+∞

|θ̃k| ≤
σmaxℓ

1− δ
max
i≥0

|vi|

by the imposed restrictions, and

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
sρ(es)

)
γjρ(ej)|ϕj ||vj | ≤ σk max

0≤i≤k−1
ρ(ei)|vi|

k−1∑
j=0

k−1∏
s=j+1

(
1− γsϕ

2
sρ(es)

)

≤ σk max
0≤i≤k−1

ρ(ei)|vi|
k−1∑
j=0

δmax{0,⌊ k−j−1
ℓ ⌋} ≤ σkℓ max

0≤i≤k−1
ρ(ei)|vi|

⌊ k−1
ℓ ⌋∑

j=0

δj ,

which gives the desired estimate.

The appearance of ρ in the worst-case asymptotic gain estimates implies

that these gains for (9) are smaller than for (3).

5.3. Choice of adaptation gain

Since for the stability of (9), the condition γkϕ
2
kρ(ek) ≤ 1 has to be satisfied

for any k ∈ N (γkϕ
2
k ≤ 1 for (3)), a popular and logical selection is

γk =
|ϕk|η−2

b+max0≤i≤k |ϕi|η
(12)

for some b ≥ 0 and η ≥ 2. For η > 2, the adaptation gain becomes proportional185

to the amplitude of ϕk and ρ(ek), i.e., it becomes small if the regressor ϕk or

the regression error ek are small (in such a case, it makes no sense to make

an estimation step due to a high noise sensitivity or established convergence,

respectively).
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6. Simulations190

To illustrate the proposed algorithms, we consider the offset estimation prob-

lem for the measured signal

yk = A+B sin(ω1k + ψ) cos(ω2k) + v̄k, (13)

where A, B, and ψ are unknown constant parameters, the frequencies ω1 = 2π
14

and ω2 = π
21 are known, and v̄k is the bounded measurement noise, |v̄k| ≤ 1 for

all k ∈ N. The goal is to estimate the offset A. Equation (13) can be written in

the form (1) choosing

ϕk =
[
1 sin(ω1k) cos(ω2k) cos(ω1k) cos(ω2k)

]⊤
,

θ =
[
A B cos(ψ) B sin(ψ)

]⊤
.

(14)

Applying the DREM procedure with Kreisselmeier’s regressor extension (16),

(17) with λ = 0.966, which corresponds to λ20 ≈ 1
2 , we get the scalar linear

regression in the form (2), where yk is the first element of the extended vector

Yk defined in (17), ϕk is defined in (16), and θ is the first element of θ. Note

that the DREM procedures yield a single scalar equation for the parameter of195

interest, namely θ = A, and does not require estimating other elements of the

vector θ.

It is straightforward to verify that ϕ defined in (14) is (ℓ, µ)-PE in the sense

of Definition 1 (given in Appendix) for ℓ = 42 and µ = 10, i.e., for all k ∈ N

41∑
i=0

ϕk+iϕ
⊤
k+i ≥ 10I3.

Applying the Excitation Preservation Lemma (see Appendix), we conclude that

the new scalar regressor ϕ is also PE, and it is positive for all k ≥ ℓ. Thus

for γk ∈ (0, ϕ−2
k ], it holds

∏ℓ−1
i=0

(
1− γk+iϕ

2
k+i

)
≤ ν for some ν ∈ (0, 1). The200

resulting signal ϕk is depicted in Fig. 1.

As a baseline for the following estimators’ comparison, we consider the stan-

dard gradient estimator (3), where the gain γk is computed as in (12), with

17
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Figure 1: The new regressor ϕk computed as (16), (17) for the example (13), (14).

b = 0.1 and η = 5
2 . For all estimators, the initial value is chosen as θ̂0 = 0. The

true values of the parameters are A = 5, B = 7, and ψ = π
3 .205

First, we compare the baseline estimator with the fixed-time estimator (5),

(6) satisfying the conditions of Theorem 2. As for the baseline estimator, the

gain γk is computed as (12). We also assume that |θ| < 15 yields for θ̂0 =

0 the initial value θ̃max
0 = 15. Finally, for the considered example, we have

ν = 0.88. The baseline estimator and the fixed-time estimator are compared210

in Fig. 2 and Fig. 3 for β = 1 and β = 2, respectively. The figures illustrate

the superior performance of the fixed-time estimator. As soon as the signal ϕ

becomes separated from zero, see Fig. 1, the estimator performs several jumps

bringing the estimation error θ̃ to a neighborhood of zero. Then, the value of

β is used to compare two worst-case error bounds as defined in (6). If not, a215

further jump can improve the worst-case bound, as in Fig. 3. Then the fixed-

time estimator behaves as the baseline gradient estimator.

However, the fixed-time estimator requires the a priori information about

the regressor ϕ, namely the excitation characteristics ν and ℓ. In the context of

the DREM procedure, it is guaranteed that the regressor ϕ is strictly separated220

from zero after the first ℓ samples, and thus this drawback can be overcome by

the nonlinear hyperexponential estimator (7), (9), where the gain γk is chosen

following Corollary 1. For simulations, we set κ = 1
2 in (7), and the comparison

18
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Figure 2: The estimation error θ̃BL for the baseline estimator (3) and the estimation error

θ̃FTC for the fixed-time estimator (5), (6) with β = 1.
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Figure 3: The estimation error θ̃BL for the baseline estimator (3) and the estimation error

θ̃FTC for the fixed-time estimator (5), (6) with β = 2.
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Figure 4: The estimation error θ̃BL for the baseline estimator (3) and the estimation error

θ̃HE for the hyperexponential estimator (7), (9).

Estimator BL (3) FTC (5), (6) FTC (5), (6) HE (7), (9) NL (8), (9)

with β = 2 with β = 1

MAE·102 2.8 2.8 5.9 5.9 1.6

Table 1: The steady-state MAE values for the considered estimators.

with the baseline estimator is given in Fig. 4. The hyperexponential estimator

establishes fast convergence without requiring any information about the exci-225

tation characteristics of the regressor ϕ. However, the drawback is the slightly

increased noise sensitivity observed in the steady-state oscillations.

Finally, we compare the baseline estimator with the nonlinear estimator (8),

(9), where we set κ = 3
4 and a = 0.1, and the gain γk is chosen for the base-

line estimator following (12). The comparison is given in Fig. 5 and illustrates

improved noise sensitivity in the steady-state, where the trade-off is the in-

creased transient time. To illustrate the noise sensitivity, Table 1 summarizes

the truncated mean absolute error (MAE) values computed in the steady-state

over 30000 samples,

MAE(θ̃) =
1

30000

31000∑
i=1001

|θ̃i|.
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Figure 5: The estimation error θ̃BL for the baseline estimator (3) and the estimation error

θ̃NL for the nonlinear estimator (8), (9).

7. Conclusion

For linear regression, this study developed numerous DREM-based parame-

ter estimators of the form (11). are proposed for linear regression. These algo-230

rithms exhibited a fixed-time rate of convergence (uniform in the initial data)

with enhanced noise gains (when compared to the linear estimator (3)). Parts

a) of theorems 1, 4, corollaries 1, 2, and Theorem 3 assume a relaxed excitation

of the regressor. Other parts of these results formulate additional constructive

outcomes for the PE case. Since fixed-time convergence is ensured, the con-235

dition of PE of the regressor can be relaxed to IE. Furthermore, the iterative

application of the estimation algorithms resulted in further noise filtering.
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Appendix. DREM with Kreisselmeier’s regressor extension

For the linear regression (1), the first extension step of the DREM procedure

[5] consists in finding n stable causal filters Hi(z), where i ∈ {1, . . . , n}, and z

is the time shift operator (i.e., zhyk = yk−h for any k, h ∈ N, k ≥ h), whose

auxiliary role is also to filter the noise. Denote

Y i
k = Hi(z)yk, Φ

i
k = Hi(z)ϕk, V

i
k = Hi(z)vk, i ∈ {1, . . . , n}, (15)

Yk = (Y 1
k . . . Y

n
k )⊤, Vk = (V 1

k . . . V
n
k )⊤ ∈ Rn, Φk = (Φ1

k . . .Φ
n
k )

⊤ ∈ Rn×n,
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which leads to a new extended regression

Yk = Φkθ + V k, V k = Vk + ϵk, k ∈ N,

where ϵk ∈ Rn is an exponentially decaying term coming from the initialization

of the filters (the filters can be applied directly to (1), or to the auxiliary re-

gression problem ϕkyk = ϕkϕ
⊤
k θ + ϕkvk). Finally, realizing the second mixing

step, for

ϕk := det(Φk) , yk := adj(Φk)Yk, vk = adj(Φk)V k (16)

the method leads to the element-wise scalar linear regression:

yk,i = ϕkθi + vk,i, k ∈ N, i ∈ {1, . . . , n},

where yk,i ∈ R and ϕk ∈ R are known signals, θi ∈ R is the unknown constant

parameter to be estimated, and vk,i ∈ R is an unknown bounded measurement

distortion. Note that the estimation of each θi is now explicitly independent of

other components of θ, and the interconnection is hidden in ϕk ∈ R.295

One of the main issues of the DREM methodology is the excitation of the

common regressor ϕk, and its relation with the excitation of ϕk in the original

problem statement, which is obviously predefined by choice of the filters Hi in

(15). Let us recall a solution to this problem. To this end, let us characterize

the admissible excitation levels [17]:300

Definition 1. [PE] A bounded signal ϕ : N → Rn is called (ℓ, µ)-persistently

excited (PE) if there exit ℓ ∈ N∗ and µ > 0 such that

ℓ−1∑
i=0

ϕk+iϕ
⊤
k+i ≥ µIn, ∀k ∈ N.

It is interval excited (IE) if the above inequality is satisfied for k = 0 only.

Within the context of the DREM procedure, Kreisselmeier’s dynamic regressor

extension for (15) applied to the auxiliary regression problem is given by

Φk+1 = λΦk + (1− λ)ϕkϕ
⊤
k , (17)

Yk+1 = λYk + (1− λ)ϕkyk,
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where λ ∈ (0, 1) is the low-pass filter tuning parameter, Y0 ∈ Rn and Φ0 ∈ Rn×n,

Φ0 = Φ⊤
0 ≥ 0, and the choice Φ0 = 0, Y0 = 0 yields ϵk ≡ 0 for all k ∈ N. The

following result explains the advantages of the filter (17):

Lemma (Excitation Preservation). [12] Consider a (ℓ, µ)-PE signal ϕk in (1)

and the Kreisselmeier’s dynamics extension (17), then the signal ϕk defined in

(16) is (ℓ, α)-PE, where

α :=
(
µ (1− λ)λℓ−1

)n
.

Moreover,

ϕk ≥ α, ∀k ≥ ℓ; lim inf
k→∞

ϕk ≥ α

(
1

1− λℓ

)n

.
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