
HAL Id: hal-03761237
https://centralesupelec.hal.science/hal-03761237

Submitted on 29 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mesoscopic Controller for String Stability of Platoons
With Disturbances

Marco Mirabilio, Alessio Iovine, Elena de Santis, Maria Domenica Di
Benedetto, Giordano Pola

To cite this version:
Marco Mirabilio, Alessio Iovine, Elena de Santis, Maria Domenica Di Benedetto, Giordano Pola.
Mesoscopic Controller for String Stability of Platoons With Disturbances. IEEE Transactions on
Control of Network Systems, 2022, �10.1109/TCNS.2022.3182038�. �hal-03761237�

https://centralesupelec.hal.science/hal-03761237
https://hal.archives-ouvertes.fr


1

Mesoscopic Controller for String Stability of
Platoons with Disturbances

Marco Mirabilio, Student Member, IEEE, Alessio Iovine, Member, IEEE, Elena De Santis, Senior Member, IEEE,
Maria Domenica Di Benedetto, Life Fellow, IEEE, Giordano Pola, Senior Member, IEEE

Abstract—This paper exploits macroscopic information for the
control of autonomous vehicles in platoon formation in case of
external disturbances. The use of such information leads to a
smoother platooning. A mesoscopic controller is proposed, and
Disturbance String Stability is proven through Input-to-State
Stability (ISS) concepts. Simulations prove the efficacy of the
proposed approach by showing its robustness with respect to the
presence of perturbations acting on the platoon vehicles.

Index Terms—Vehicle platoon, String Stability, mesoscopic
modeling, macroscopic information, Cooperative Adaptive Cruise
Control, Input-to-State Stability, cascaded systems, mixed traffic

I. INTRODUCTION

THE development of advanced traffic control technologies
that enable vehicles to adapt their behaviour on the

basis of real-time traffic conditions is a relevant subject in
the framework of Smart Cities. Indeed, increasing traffic
efficiency has a positive impact on our daily life, by reducing
dangerous emissions and travel times thanks to less frequent
and minor traffic congestion, car accidents and traffic jams
[1], [2]. Different approaches have been proposed in liter-
ature, as for example the use of intelligent infrastructures
and the displacement of autonomous vehicles, either in fully
autonomous platoon formations or with a certain level of
penetration rate among normal vehicles (see [3], [4], [5]).
Although autonomous vehicles are not a new idea, only recent
developments in the transportation industry and in communi-
cation technologies may allow their utilisation in real traffic
situations. Indeed, nowadays Vehicle-to-Infrastructure (V2I)
and Vehicle-to-Vehicle (V2V) communication technologies are
a reality in smart transportation [6], enhancing the employment
of the Adaptive Cruise Control (ACC). Then, it is important
to define control policies that correctly exploit the shared
data, enabling the autonomous vehicles to improve traffic
throughput as well as to reduce perturbations propagation. In
fact, interconnected autonomous vehicles can reduce stop-and-
go waves propagation and traffic oscillations via the concepts
of String Stability and Disturbance String Stability, based on
the idea that the perturbations coming from a vehicle should
not amplify backwards in the string [7], [8], [9].
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The present work is based on the framework developed in
[10] and [11], and extends it to the case where disturbances
act on each vehicle. A platoon of autonomous vehicles is
considered, and a controller implementing a variable spacing
policy exploiting macroscopic information is proposed. In the
case of vehicular platooning, disturbances may be due to
reference speed variation, external inputs, unmodeled dynam-
ics, and the sharing of corrupted or inexact information. For
example, the presence of communication delays not prop-
erly compensated can propagate through the string inexact
information that acts as a disturbance. Moreover, also the
presence of human driven vehicles in a mixed traffic scenario
can be a source of disturbances for the autonomous vehicles.
Then, we illustrate how the same proposed framework can be
exploited to describe the presence of human driven vehicles
as a Disturbance String Stability problem from an autonomous
vehicle point of view. The vehicles are assumed to be equipped
with a communication technology supporting either V2V or
V2I, or both, enabling them to exchange information. Each
vehicle is considered either to correctly measure distance,
speed and acceleration of its predecessor, using for example
radar and LIDAR, or to receive them via V2V or V2I. The
macroscopic information can be computed in a Smart City
framework either from the whole platoon via inter-vehicular
communication [12] or from the road infrastructure via the
use of technologies as inductive loop detectors, video detection
systems, infra-red tracking systems etc. [13]. In real scenarios,
the estimation of the needed global quantities (e.g. inter-
vehicular distance mean and variance) is not error-free, leading
to unknown disturbances acting on the vehicles exploiting
macroscopic information. Then, the Disturbance String Stabil-
ity analysis framework suggested in the present paper targets
to ensure platoon stability with respect to those disturbances.
A thorough analysis about the possible methodologies for
computing/estimating the global variables of interest is out
of the scope of this paper, as it depends on a number of
factors, including the communication technology adopted. Our
utilisation of macroscopic information that is embedded in
few variables, for example distance or speed difference mean
and variance, replaces the need for sharing some microscopic
variables among the whole platoon, e.g. the leading vehicle
acceleration or its desired speed (see [9], [14] and [15]). Con-
sequently, no direct communication between the first vehicle
and the others is required, except for its immediate follower. It
also results in a complexity reduction of both the considered
interconnected framework and the system modeling without
reducing the level of available information, as the whole set



2

of leader-follower situations are not described but the same
amount of information is utilised. Since the use of macroscopic
information avoids the necessity for each vehicle to know
who the leader of the platoon is as well as its own position
in the string, the proposed approach can be generalized to
the more realistic scenario in which the global quantities of
interest are estimated over the current traffic, and not only
the set of vehicles composing the platoon. The introduction
of macroscopic information in a microscopic framework leads
to a mesoscopic dynamical model based on a “bottom-up”
approach. Mesoscopic models are already known in literature,
but usually they are the result of incorporating microscopic
information in macroscopic models of the traffic flow in a
“top-down” approach. Indeed, this family of dynamical models
are mainly used for the analysis of the traffic flow, e.g. for de-
scribing the influence of microscopic controllers on the whole
traffic flow [16], [17]. On the contrary, here the macroscopic
information is actively used for the control of autonomous
vehicles, and a theoretical proof of a String Stable platoon is
provided. More precisely, the possibility to ensure Disturbance
String Stability, a concept introduced in [15] that extends the
classic definitions of String Stability and Asymptotic String
Stability to the case with disturbances, is investigated. Several
works focus on a mesoscopic modeling with a “bottom-up”
approach for traffic control purposes [18], [19], [20] and [21].
However, no formal String Stability analysis is performed (see
[20], [21]), or such analysis is based on a model linearisation
(see [18], [19]).

In the present paper, we propose a mesoscopic controller
that exploits macroscopic information to ensure Disturbance
String Stability. Although the focus is on vehicular platoons
stability, Disturbance String Stability is proven for a general
class of cascaded interconnected systems. As a consequence,
the proposed approach can be applied to any other system with
an interconnection structure that falls back in this class. A
variable time spacing policy based on the shared macroscopic
variables is defined, and stability of the platoon subject to
external disturbances is proven by exploiting Input-to-State
Stability (ISS) property in an inductive way. As in [10] and
[11], the ISS property is ensured with respect to all the ahead
leader-follower pairs of vehicles.

Simulations that show the efficacy and the generality of our
approach are presented. We consider three different scenarios:
in the first one, a platoon of only autonomous vehicles is sim-
ulated, with perturbed initial conditions and several sinusoidal
disturbances acting on each vehicle. In the second case, a
mixed traffic scenario is taken into account, where the human
driven vehicles are considered to be the source of disturbances.
In the third scenario, a platoon of autonomous vehicles is de-
scribed in a traffic light situation. In all the described scenarios,
the first vehicle tracks a reference speed that is supposed to
be either set by the smart infrastructure (for example when
approaching signalized intersections) or communicated by the
other interconnected vehicles, thus adapting to the current
traffic situation (intersections, urban mobility, highways, etc.).
Moreover, the control action is supposed to be delayed, even
though this is not directly taken into account in the modeling.
This input delay corresponds to non-ideal actuators response,

Fig. 1: Reference framework. The dash-dot arrows represent
the information flow propagation.

and can be seen as an additional unknown disturbance. The
results show that the proposed controller is able to guarantee
Disturbance String Stability in all the considered situations.
Indeed, thanks to the macroscopic information, each vehicle
has a view on all its predecessors. Consequently, it is able to
identify if the platoon is in a transient or steady-state situation,
and to anticipate its reaction with respect to it. This results
in the filtering of the oscillations propagating from the head
vehicles.

The remaining of the paper is organized as follows. In
Section II, we introduce the considered framework and our
objectives. In Section III, the Disturbance String Stability
analysis is performed. In Section IV, a controller tracking the
desired distance and ensuring the platoon Disturbance String
Stability is presented. In Section V, simulation results are
presented. Finally, some concluding remarks are offered in
Section VI.

Notation - R+ is the set of non-negative real numbers. Given
x ∈ Rn, |x| =

√
xTx is its Euclidean norm (i.e. |x|2). The L∞

signal norm is defined as |x(·)|[t0,t]∞ = supt0≤τ≤t |x(τ)|. The
infinity norm of a vector is denoted by |x|∞ = maxi=1...n |xi|.
We refer to [22, Chapter 4] for the definition of Lyapunov
functions, and to [23] for the definition of class K, K∞ and
KL functions (respectively Definitions 1,2 and 4 in [23] ).

II. MODELING AND PROBLEM FORMULATION

A. Modeling

This paper extends the stability analysis of the mesoscopic
traffic systems proposed in [10] and [11] to the case of
disturbances di ∈ [dmin, dmax] acting on each vehicle; with
dmin < dmax, dmin, dmax ∈ R. The disturbance term repre-
sents model uncertainties, unmodeled powertrain dynamics as
the actuation delay, and external forces acting on the vehicle.
Also the presence of human driven vehicles can be represented
as a source of unknown disturbances for an autonomous
vehicle, as we show in Section IV-C. Then, we refer to the
concept of Disturbance String Stability that is defined in [15].
We consider the platoon to be composed by a leader vehicle,
denoted with i = 0, and a set of follower vehicles, denoted
with IN = {1, 2, ..., N}, N ∈ N, N > 1. The resulting
set of all the vehicles forming the platoon is defined as
I0
N = IN ∪ {0} (see Fig. 1). We assume the existence of

a communication network that allows the vehicles to share
information either through V2V technology or V2I one, or
both. The information is considered to flow in an unidirectional
way from the predecessor to the follower vehicle. Position,
speed and acceleration of each leading vehicle are supposed to
be perfectly known, either measured or communicated to the
following one. Each vehicle is described by its longitudinal
position, pi ∈ R+, and its longitudinal speed, 0 ≤ vi ≤
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vmax, vmax ∈ R+, ∀ i ∈ I0
N . Then, we define the state of

the i−th vehicle as

xi = [ pi vi ]T . (1)

The corresponding dynamical system is obtained by ignoring
both reaction time delays and communication time delays [9],
[24], [25], [3]:

ẋi =

[
ṗi
v̇i

]
=

[
vi

ui + di

]
, i ∈ I0

N , (2)

where |ui| ≤ umax, umax ∈ R+, is the control input of
the i−th vehicle, corresponding to the acceleration. Although
the double integrator model assumes instantaneous actuation,
that is never the case in practice, it is classically used to
analyse heterogeneous platoons [26], i.e. platoons composed
by non identical vehicles. In order to describe inter-vehicular
interactions, we adopt the leader-follower model (see [27]),
with respect to we derive a global description of the platoon.
For the derived model to include vehicle i = 0, we consider
the presence of a virtual leader, i = −1, that precedes the
entire platoon, with dynamical model

ẋ−1 =

[
ṗ−1

v̇−1

]
=

[
v−1

u−1 + d−1

]
(3)

where d−1(t) = 0∀t ≥ 0. Then, the state of each car-following
situation between vehicle i− 1 and i is defined as

χi = xi−xi−1 =

[
∆pi
∆vi

]
=

[
pi − pi−1

vi − vi−1

]
, i ∈ I0

N . (4)

The resulting microscopic dynamical model of the i−th car-
following pair is:

χ̇i =

[
∆ṗi
∆v̇i

]
=

[
∆vi

ui − ui−1 + di − di−1

]
, i ∈ I0

N . (5)

From (5), we observe that each car-following pair is affected
by the disturbances acting on both the vehicles of the pair. This
means that their contribution can either nullify or strengthen
each other action. In order to shrink the notation, we define
the constant vector cd = [1 −1] and the lumped disturbance
term d̄i = [di di−1]T .

Remark 1: The presence of smart infrastructure sending traf-
fic signals is not directly considered in the current modeling.
However, the virtual vehicle’s speed v−1 can be considered as
the reference speed of i = 0, which can be either set by the
smart infrastructure (e.g. smart intersections) or communicated
by other interconnected vehicles.

To define the equilibrium point of the platoon, we consider
the constant speed hypothesis for the virtual leader i = −1
(see [27] and [28]) and the nominal case with no disturbances.
If v̄ > 0 is a constant speed, then p−1(t) = v̄ · t, v−1(t) =
v̄, u−1(t) = 0, ∀ t ≥ 0. Assuming that ∆p̄ > 0 is the
desired inter-vehicular distance at steady-state condition, and
that ∆p0(t) = −∆p̄ ∀ t ≥ 0, then the equilibrium point
for the i−th system of dynamics (5) corresponds to the case
where all the vehicles have the same speed and are at the same
distance:

χe,i = χ̄ = [−∆p̄ 0]T , ∀ i ∈ I0
N . (6)

Since the state vector (4) is defined with respect to the
follower vehicle, then distance ∆pi and relative speed ∆vi
have opposite sign. For this reason, the equilibrium distance
in (6) is −∆p̄ < 0. From the platoon point of view, we
define the lumped state and the lumped equilibrium point
for u−1 = 0 respectively as χ = [χT0 χT1 ... χTN ]T and
χe = [χTe,0 χTe,1 ... χTe,N ]T = [χ̄T χ̄T ... χ̄T ]T .

B. Problem formulation

As in the framework presented in [10] and [11], we consider
a variable spacing policy among the several ones presented
in the literature (see [14], [29]). The classical definition of
variable spacing policy is such that if a constant time headway
is maintained between two consecutive vehicles, then the inter-
vehicular distance increases proportionally with respect to it.
Differently, our objective is to vary the desired distance during
the transient of the platoon system, and to reach a predefined
constant distance when the vehicles are in a steady-state
condition. To this purpose, we define the following mesoscopic
spacing policy:

∆pri (t) = −∆p̄− ρMi (t), t ≥ 0, (7)

where ∆p̄ is a constant inter-vehicular distance, and ρMi is a
function describing the macroscopic information related to the
states of the platoon vehicles.

The objective of this paper is to develop dynamic controllers
in the form of{

ρ̇i = ωi(ρi, χi, χi−1, . . . , χ0, χe,i)

ui = hi(ρi, χi, χi−1, . . . , χ0, χe,i, ui−1)
(8)

for the asymptotic tracking of the desired distance (7). In
(8), ρi ∈ Rr, r > 0, is the state of the dynamic controller;
ωi : Rr × R2 × · · · × R2︸ ︷︷ ︸

i+1 times

×R2 → Rr is the vector field

describing the evolution of the dynamic system; hi : Rr ×
R2 × · · · × R2︸ ︷︷ ︸

i+1 times

×R2 × R→ Rr is the output function used to

compute the control input ui; χi, χi−1, . . . , χ0, χe,i, ui−1 are
the inputs of the system. In the sequel, we denote with Pcl
the resulting closed-loop system, and we define the extended
state vector χ̂i and the corresponding equilibrium point χ̂e,i
for the i-th vehicle of the platoon as

χ̂i = [ χTi ρTi ]T , χ̂e,i = [ χ̄T 0Tr ]T , ∀ i ∈ I0
N , (9)

where 0r ∈ Rr is a null column vector. We now recall the
definitions of String Stability, Asymptotic String Stability and
Disturbance String Stability from [7], [10] and [15].

Definition 1: (String Stability) The equilibrium χ̂e,i, i ∈ I0
N ,

of Pcl is said to be String Stable if, for any ε > 0, there exists
δ > 0 such that, for all N ∈ N, for all t ≥ 0,

max
i∈I0N

|χ̂i(0)− χ̂e,i| < δ ⇒ max
i∈I0N

|χ̂i(t)− χ̂e,i| < ε. (10)

Definition 2: (Asymptotic String Stability) The equilibrium
χ̂e,i, i ∈ I0

N , of Pcl is said to be Asymptotically String Stable
if it is String Stable and, for all N ∈ N,

lim
t→∞

|χ̂i(t)− χ̂e,i| = 0, ∀ i ∈ I0
N . (11)
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Definition 3: (Disturbance String Stability) The equilibrium
χ̂e,i, i ∈ I0

N , of Pcl is said to be Disturbance String Stable if
there exist functions βd of class KL and σd of class K∞ and
constants δ > 0, δd > 0, such that, for any initial condition
χ̂i(0) and disturbance d̄i satisfying

max
i∈I0N

|χ̂i(0)− χ̂e,i| < δ, max
i∈I0N

|d̄i(·)|[0,t]∞ < δd (12)

the solution χ̂i(t) exists for all t ≥ 0 and satisfies

max
i∈I0N

|χ̂i(t)− χ̂e,i| ≤ βd
(

max
i∈I0N

|χ̂i(0)− χ̂e,i|, t
)

+ σd

(
max
i∈I0N

|d̄i(·)|[0,t]∞

)
∀N ∈ N.

(13)

The aim of this paper is not only to ensure tracking of the
reference distance (7), but also to ensure Disturbance String
Stability of the closed-loop system Pcl as in the definition
above.

III. DISTURBANCE STRING STABILITY ANALYSIS

In this section, we investigate Disturbance String Stability
of a general class of cascaded interconnected systems. We
consider that each vehicle takes as input ui the output signal
of (8). Then, we consider the extended state χ̂i and the
corresponding equilibrium point χ̂e,i in (9) describing the i-
th car-following pair closed-loop system. Let χ̃i = χ̂i − χ̂e,i,
then the closed-loop dynamics of the platoon is described by
the following class of cascaded interconnected systems

˙̃χ0 = fcl(χ̃0, d̄0),
˙̃χi = fcl(χ̃i, d̄i) + gcl,i(χ̃i−1, . . . , χ̃0), ∀ i ∈ IN ,

(14)

where fcl : R2+r × R2 → R2+r is the vector field de-
scribing the dynamics of the i−th isolated subsystem, and
gcl,i : R2+r × · · · × R2+r︸ ︷︷ ︸

i times

→ R2+r is the interconnection

term. For the first vehicle, we assume that gcl,0(χ̃−1) = 0.
Moreover, fcl(0, 0) = 0 and gcl,i(0, 0, ..., 0) = 0.

Theorem 1: Consider the autonomous system in (14). If
there exist functions β of class KL and γ, σ of class K∞,
such that for each i ∈ I0

N

|χ̃i(t)| ≤ β(|χ̃i(0)|, t) + γ

(
max

j=0,...,i−1
|χ̃j(·)|[0,t]∞

)
+ σ(|d̄i(·)|[0,t]∞ ) (15)

∀ t ≥ 0 and γ(s) ≤ γ̃s, for s ≥ 0 and γ̃ ∈ (0, 1), then the
interconnected system is Disturbance String Stable.

Proof. See Appendix A. �
Remark 2: Note that the result above is quite general since

it only depends on the structure of the cascaded interconnected
system (14). Therefore, it can be applied not only to platoons
of vehicles, but to any interconnected system showing the same
form.

Remark 3: Differently from the results provided in [11], that
are based on the use of composite Lyapunov functions, here the
proof of Theorem 1 is based on exploiting the properties of KL
and K∞ functions. Moreover, the proof takes into account the

presence of disturbances acting on the system. In the special
case of no disturbances, Theorem 1 requires weaker conditions
than the ones in [11, Theorem 1] on the interconnection terms
gcl,i, where the bound |gcl,i(χ̃i−1, . . . , χ̃0)| ≤

∑i−1
j=0 kij |χ̃j |,

kij ∈ R+, ∀ i ∈ I0
N , is required for the Asymptotic String

Stability of the platoon.

IV. CONTROL DESIGN AND THE MIXED TRAFFIC CASE

In this section, we propose a macroscopic control law
for tracking the desired distance (7), and we prove that the
obtained closed-loop dynamics of the platoon can be described
by the class of cascaded interconnected systems (14). Then, we
prove that Disturbance String Stability is ensured by Theorem
1. Finally, we describe how the mixed traffic scenario can
be modeled as a Disturbance String Stability problem for the
autonomous vehicle.

A. Macroscopic information

The macroscopic information is supposed to be shared either
by the vehicles via V2V, or by the infrastructure via V2I.
The goal is to define proper functions that allow to reduce
the amount of the shared data, without reducing the level of
available information. To this purpose, we consider mean and
variance of the inter-vehicular distance and speed difference
as the macroscopic variables shared to the platoon. Given
the generic vehicle i ∈ I0

N , µl,i and σ2
l,i denote the inter-

vehicular distance (l = ∆p) and speed error (l = ∆v) mean
and variance, respectively, computed from vehicle 0 to vehicle
i, and are defined as

µl,i =
1

i+ 1

i∑
j=0

lj , σ
2
l,i =

1

i+ 1

i∑
j=0

(lj − µl,i)2, (16)

where l ∈ {∆p,∆v}. With the scope to provide the i-th
vehicle with the macroscopic information embedded in µl,i
and σ2

l,i, i ∈ I0
N , we define the distance macroscopic function

ψi∆p : R×R+ → R, and the speed tracking error macroscopic
function ψi∆v : R×R+ → R. Being computed over the mean
and the variance (16), functions ψil represent the state of the
vehicles ahead. In particular, ψi∆p = ψi∆v = 0 means that the
vehicles up to the i-th one have no oscillations. As in [11],
we consider the macroscopic functions given in the following:

ψil = γlsign(µl,i − χ̄l)
√
σ2
l,i, l ∈ {∆p,∆v}, (17)

where χ̄∆p = −∆p̄, χ̄∆v = 0 and γ∆p, γ∆v > 0 are constant
parameters. The direct outcome of embedding macroscopic
information in (16) in (17) is that we avoid to consider the
whole set of leader-follower states, i.e. χ, without reducing the
level of available information. Functions ψil are later exploited
to let the controller state ρi with dynamics (8) evolve with
respect to the macroscopic information of the platoon (see
Section IV-B).

Remark 4: We remark that mean and variance of the micro-
scopic quantities are related to traffic macroscopic variables
such as traffic density that is the inverse of inter-vehicular
mean distance [30, ch. 2, p. 26]. Moreover, there exist several
diagrams describing the interconnection between local and
global quantities, as the speed-density diagram [16, ch. 4].
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B. Mesoscopic Control Law

In order to achieve Disturbance String Stability of the pla-
toon, we propose the following dynamical system describing
the interconnection of the controller state with the macroscopic
information: {

ρ̇i = Λρi +Gψρψ
i−1 +Geρei

ρi(0) = 0
(18)

where ρi = [ρ1,i ρ2,i]
T , ψi = [ψi∆p ψi∆v]

T , ei = χi − χe,i,
and

Λ =

[
−λ1 1

0 −λ2

]
, Gψρ =

[
0 0
a b

]
, Geρ =

[
w 0
0 0

]
.

The diagonal entries of matrix Λ are λ1, λ2 > 0, so that ρi →
0 as ψi∆p → 0, ψi∆v → 0, ∆pi → −∆p̄ and ∆vi → 0; Gψρ
is the input matrix associated to the macroscopic functions,
with parameters a, b ≥ 0; Geρ ∈ Rr×2 is the input matrix
associated to the local leader-follower state, with w ∈ R. As
a consequence, it is possible to vary the controller response
with respect to variations of the macroscopic variables and the
microscopic ones through an appropriate choice of Λ as well as
of the elements of matrices Gψρ and Geρ. Differently from [10]
and [11], the presence of Geρ in (18) allows to weight the local
information over the macroscopic one. The superscript i − 1
denotes that for the i-th system the macroscopic information
from vehicle 0 to the preceding one i − 1 is exploited. For
vehicle i = 0, ψ−1

∆p = ψ−1
∆v = 0 is set. Since ρ1,i contains both

microscopic and macroscopic information, we set ρMi = ρ1,i.
The control law ui is derived with respect to the open-loop
dynamics describing the evolution of the extended state χ̂i
defined in (9). The resulting dynamical system is obtained by
coupling the dynamics of the i-th car-following pair (5) and
the controller dynamics (18). Then, the following control law
letting the vehicle track the desired reference distance (7) is
derived via backstepping method:

ui = ui−1 − (1 + λ1K∆p)(∆pi + ∆p̄+ ρ1,i)

+ λ1(−λ1ρ1,i + ρ2,i) + λ2ρ2,i − ψi−1
a,b

−K∆v(∆vi − λ1ρ1,i + ρ2,i), (19)

where w = −K∆p, K∆p,K∆v > 0 are control gains equal
for each i ∈ I0

N , and ψia,b = aψi∆p + bψi∆v . The resulting
closed-loop dynamical system is

˙̂χi =


∆vi

(∗) + cdd̄i
−λ1ρ1,i + ρ2,i −K∆p(∆pi + ∆p̄+ ρ1,i)

−λ2ρ2,i + ψi−1
a,b

 (20)

with

(∗) = −(1 + λ1K∆p)(∆pi + ∆p̄+ ρ1,i) + λ2ρ2,i − ψi−1
a,b

+ λ1(−λ1ρ1,i + ρ2,i)−K∆v(∆vi − λ1ρ1,i + ρ2,i).

Clearly, system (20) is in the form (14), and the following
result can be proved:

Theorem 2: If K∆p,K∆v, λ1, λ2 > 0, then there exist
functions β of class KL and γ, σ of class K∞ such that system
(20) verifies inequality (15), with γ(s) = γ̃s. Moreover, there

exist a and b in (18) such that γ̃ ∈ (0, 1), thus ensuring the
Disturbance String Stability of the platoon.

Proof. See Appendix B. �

The use of macroscopic information, embedded in the
macroscopic function ρMi , allows establishing an interconnec-
tion between vehicle i and the vehicles ahead, here represented
by γ̃. Then, to correctly size the contribution of the global
information to stabilize the platoon, an appropriate choice of
the controller parameters a and b is needed. We remark that
this choice is very important to bound the interconnection
intensity, as γ̃ ∈ (0, 1) must be guaranteed.

C. Mixed Traffic as Disturbance String Stability problem

In this section, we describe how the mixed traffic scenario
can be modeled as a Disturbance String Stability problem for
the autonomous vehicle. To this purpose, let us define the
set of human-driven vehicles as IHD ⊂ I0

N , and the set of
autonomous vehicles as IAV = I0

N\IHD. We assume the
non-autonomous vehicles j ∈ IHD to not send and receive
any information to and from the platoon. We suppose that each
vehicle i ∈ IAV applies a disturbance string stable control law
given by the dynamic controller in (8), where the control input
is computed through the output function hi(ρi, χ, χe, ui−1).
Since the leader-follower model in (5) can also represent the
interaction between the two typologies of vehicles as well
as the interactions between two consecutive human driven
vehicles, we consider a control input uHDj = hHD(χj) for
each j ∈ IHD that is characterised in a general form according
to the ad hoc considered model (Intelligent Driver Model,
Optimal Velocity Model, etc) [31]. Then, uHDj is the human
driver control policy based only on local information. As in
[32], we assume that the human-driven vehicles try to maintain
their equilibrium point. Although in a mixed platoon there may
be a number of permutations, we focus on the case where the
human driven vehicle j precedes the autonomous one j + 1:

χ̇j+1 =

[
∆vj+1

uj+1 − uHDj + dj+1 − dextj

]
, (21)

where dextj is a possible external disturbance acting on the
non autonomous vehicle. Since human driven vehicles do not
send any information, then the control input uHDj cannot be
appropriately compensated by the follower j + 1, resulting in
an additional disturbance acting on the j+1-th leader-follower
state. Defining dj = dextj + uHDj , we get

χ̇j+1 =

[
∆vj+1

uj+1 + dj+1 − dj

]
. (22)

As long as the bounds of disturbance term d̄j+1 = [dj+1 dj ]
T

respects the bounds in Definition 3, the system (22) de-
scribes the interaction among a non autonomous leader and
an autonomous follower. Without loss of generality, we can
consider uj = 0 ∀ t ≥ 0. As it is shown by the on-field
experiments results reported in [33], [34] and [35], the human
behaviour can cause the triggering of stop-and-go waves.
Then, in the mixed traffic scenario a boundedness problem of
the control input uHDj can arise in case of several consecutive
non autonomous vehicles. Consequently, it is not possible to
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ensure conditions (10) and (11) in Definitions 1 and 2, or
(13) in Definition 3 if disturbances act on the platoon, for
each N ∈ N. In order to deal with the mixed traffic scenario,
we need to relax the classical notion of String Stability and
refer to a weaker definition that allows for the presence of
String Instable vehicles in the platoon, at the cost of loosing
the uniformity with respect to the platoon length (see [36]).
On this basis, let us consider M consecutive human driven
vehicles preceding the autonomous one, that for simplicity we
assume to be indexed by IHD = {0, ...,M − 1}. We define
χHD,e as the equilibrium point of the vehicles applying the
control law hHD(χj), and χ̃HD,j = χe,j − χHD,e. When
considering the human driver model, we remark that the
equilibrium χHD,e varies with respect to the current speed.
The closed-loop dynamics is represented by:

˙̃χHD,j = fHDcl (χ̃HD,j , χ̃HD,j−1, d̄j), ∀ j ∈ IHD. (23)

Although we consider system (23) to be String Instable, it is
possible to prove its local stability (see [32]). Therefore, there
exist functions βHD ∈ KL and σHD ∈ K∞ such that, ∀t ≥ 0,

|χ̃HD,j(t)| ≤ βHD (|χ̃HD,j(0)|, t) + γ̃HD|χ̃HD,j(·)|[0,t]∞

+ σHD

(
|d̄j(·)|[0,t]∞

)
, ∀ j ∈ IHD, (24)

with γ̃HD > 1. In accordance with the forward recursive
procedure adopted in the proof of Theorem 1, by setting
t = 0 we compute the following maximal bound for the human
driven vehicles trajectories ∀ j ∈ IHD:

|χ̃HD,j(t)| ≤
1− γ̃jHD
1− γ̃HD

βHD

(
max
l∈IHD

|χ̃HD,l(0)|, 0
)

+
1− γ̃jHD
1− γ̃HD

σHD

(
max
l∈IHD

|d̄l(·)|[0,t]∞

)
, (25)

where the multiplicative factor 1−γ̃j
HD

1−γ̃HD
is the result of the cor-

responding finite geometric series. From (25), we observe that
the trajectory error norm bound increase while moving toward
the tail of the string of human driven vehicles. This means that
an oscillation originated from the head vehicles can cause the
trajectory of the tail ones to move in a greater neighborhood
of the equilibrium point, causing, in turn, the perturbation
amplification. Since we are able to define trajectory bounds
for each leader-follower state, either when considering the case
of autonomous or non autonomous follower vehicle, we can
compute the related bound for the applied control input. It
is clear that for the disturbance string stable policy in (19)
this bound does not depend on the platoon length. On the
contrary, for the human driven vehicles the control input bound
increases with respect to the platoon length. As a consequence,
Disturbance String Stability of (22) can not be ensured for
arbitrary M . We can conclude that there exists a M̄ such that,
for M > M̄ , the autonomous vehicle is not able to handle the
perturbations due to the string of human driven vehicles.

V. SIMULATIONS

In this section, we describe simulation results to validate
the proposed control strategy. In order to test the robustness
of the controller, we performed simulations in three different

scenarios. The first scenario refers to a full autonomous
platoon of N + 1 vehicles tracking a variable reference speed
supposed to be either set by the smart infrastructure (e.g.
smart intersections) or communicated by other interconnected
vehicles (Figures 2a, 2b and 2c). The second scenario refers
to the mixed traffic case, in which the N+1 vehicles are both
autonomous and human driven (Figures 3a, 3b, 3c and 3d).
In the third scenario, we consider the departure and stop at
the traffic light of a platoon of autonomous vehicle (Figures
4a, 4b and 4c). The color legend adopted is the same for
each figure. Each line represents the trajectory of the leader-
follower variable to which the figure refers. Then, the color
scale from the blue tint to the light green one represents
the vehicles of the platoon, from the head vehicles to the
tail ones, respectively. In the simulations, we consider the
autonomous vehicles having non-ideal actuator dynamics with
delay τ = 0.2 s; such unmodeled dynamics results to be a
perturbation on the commanded acceleration or brake action.
Moreover, since each autonomous vehicle communicates its
control input ui to the following autonomous vehicle, if it
is present, the before mentioned unmodeled actuator delay
has the effect to corrupt the shared data, resulting in a
perturbation for the i+1-th vehicle. Then, it allows to test the
robustness of the proposed controller with respect to realistic
unmodeled dynamics. We consider the vehicle speed such that
0 < vi ≤ 40 m/s and the acceleration such that |ui| ≤ 4 m/s2.

TABLE I: The control parameters: full autonomous platoon.
Parameter Value Parameter Value Parameter Value
K∆p 3 K∆v 4 Υ 0.99
λ1 2 λ2 1.5 a 0.6
b 0.6 γ∆p, γ∆v 0.5 γ̃ 0.49

TABLE II: The control parameters: mixed traffic.
Parameter Value Parameter Value Parameter Value
K∆p 3 K∆v 4 Υ 0.99
λ1 2 λ2 1.5 a 1.2
b 0 γ∆p, γ∆v 0.5 γ̃ 0.49

TABLE III: The control parameters: traffic light scenario.
Parameter Value Parameter Value Parameter Value
K∆p 1.4 K∆v 1.4 Υ 0.99
λ1 1.1 λ2 1.2 a 0.4
b 0.4 γ∆p, γ∆v 0.5 γ̃ 0.51

A. Full autonomous platoon scenario

We consider a platoon of N+1 = 31 autonomous vehicles,
with desired inter-vehicular distance of ∆p̄ = 20 m. The
controller parameters are described in Table I, and are chosen
such that γ̃ ≈ 0.5. Figures 2a, 2b and 2c show, respectively, the
inter-vehicular distance (−∆pi), speed tracking error (−∆vi)
and the macroscopic variable (ρMi ). The red line in Figure 2b
represents the speed difference of vehicle i = 0 with respect
to the reference value. The simulation time is 60 seconds and
is split into three main phases:

1) t ∈ [0, 15] s: the vehicles start with perturbed initial
conditions, randomly generated in a neighbourhood of
the equilibrium point. This means that µ∆p,i 6= −∆p̄,
µ∆v,i 6= 0 and σ2

∆p,i, σ
2
∆v,i 6= 0. In this phase the

desired speed of vehicle i = 0 is v̄1 = 20 m/s.
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Fig. 2: Full autonomous platoon scenario. See Section V for
the description and the color legend.

2) t ∈ [15, 30] s: vehicle i = 0 tracks a variable reference
speed. At 15 s, it accelerates from v̄1 = 20 m/s to v̄2 =
30 m/s; then, at 25 s it decelerates to v̄3 = 15 m/s.

3) t ∈ [30, 60] s: the reference speed is 15 m/s. In this
phase a sinusoidal disturbance di = ri sin(t) acts on
each vehicle of the platoon, where ri is a random number
in the interval [−3, 3].

In the first phase, the vehicles are able to converge to the
desired speed and inter-vehicular distance. Both inter-vehicular
distance and speed error trajectories result bounded during the
transient interval that at about 5 s is already ended (see Figures
2a and 2b). In Figure 2c, we observe that the high perturbation
due to the initial conditions is captured by the macroscopic
function, showing marked overshoots. This causes the vehicles
to track a variable reference distance, leading to the harmo-

nization of the transient phase. We observe that the disturbance
due to the input delay does not affect the stability of the string.
In the second phase, the leader vehicle is able to perfectly track
the reference speed variation (see the red line in Figure 2b).
The rest of the platoon is able to track vehicle i = 0 without
showing any propagating oscillations, specially at 15 s and
25 s where high amplitude peaks are generated by the step
variation of the reference speed. Also, the vehicles successfully
track the desired distance of ∆p̄ = 20 m (see Figure 2a). As
in the first phase, no external disturbances in addition to the
unmodeled input lag act on the platoon; then the data shared
by each vehicle is correct and string stability is maintained.
This high degree of reliability is caught by the macroscopic
function, as it does not show high variations. Then, the desired
distance for each vehicle remains close to the value of 20 m.
In the third phase, a sinusoidal disturbance of amplitude ri,
with ri taking random value in the interval [−3, 3], corrupts
the acceleration of each vehicle. Consequently, the control
input does not match the real acceleration, meaning that the
vehicles are sharing a corrupted information, and without a
proper action the oscillations could amplify through the string.
Despite the disturbances acting on the platoon, the sharing of
the macroscopic information allow the system to have bounded
trajectories. This means that the effects of the disturbances
acting on the head of the platoon have a minor influence on the
tail vehicles (see Figures 2a and 2b). In this phase, we observe
that the macroscopic function shows sinusoidal trajectories,
meaning that is catching the information about the existence
of the acting disturbances. Then, each leader-follower pair can
anticipate its action by properly varying the inter-vehicular
distance. A filtering behavior of the perturbation arriving
from ahead is observed, avoiding the amplification of the
disturbances along the platoon, and then the disruption of the
platoon itself.

B. Mixed traffic scenario

We consider a string of N + 1 = 31 both autonomous and
human-driven vehicles, representing a mixed traffic scenario.
The desired distance for the autonomous vehicles is ∆p̄ = 20
m and the controller parameters are reported in Table II. As
before, the interconnection term is γ̃ ≈ 0.5. Differently from
the first case, we set the weight corresponding to the speed
difference macroscopic function ψi∆v to zero (b = 0), that
resembles the more real situation in which the macroscopic
information is shared by the infrastructure, that directly mea-
sures the traffic density here represented by the inter-vehicular
distance mean µ∆p,i and variance σ2

∆p,i. This means that
the autonomous vehicles have information also of the non-
autonomous ones. To the authors point of view, the proposed
approach is consistent with the state-of-the-art technology. The
dynamics of the human driven vehicles are modeled according
to the Optimal Velocity model and the parameters in [31].
Each human driver follows a variable spacing policy with
respect to the current speed, such that below a minimum safety
distance, set to 5 m, the vehicle stops and above a maximum
distance, set to 35 m, the vehicle maintains the maximum
speed. We denote with IHD = {4, 5, 13, 14, 15, 16} the
set of non autonomous vehicles. The inter-vehicular distance
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(−∆pi), speed tracking error (−∆vi) and the macroscopic
variable (ρMi ) are shown, respectively, in Figures 3a, 3b and
3d. The red line in Figure 3b represents the speed difference
of vehicle i = 0 with respect to the reference value. The
ρMi trajectories in Figure 3d refer only to the autonomous
vehicles. Furthermore, to better appreciate the behavior of the
mixed platoon, we report the vehicles speed in Figure 3c. In
order to distinguish the human driven vehicles, trajectories
j = 4, 5 are represented by the purple scale and trajectories
j = 13, 14, 15, 16 are represented by the gray scale, as before
from the light tint to the darker one. The simulation time is
80 seconds and is split into three phases:

1) t ∈ [0, 20] s: all the vehicles start in a normal traffic
situation, with distance of 20 m and with speed corre-
sponding to the desired value v̄1 = 19.4 m/s.

2) t ∈ [20, 40] s: the platoon is forced to slow down to
a speed of v̄2 = 11.1 m/s, due to the presence of a
bottleneck.

3) t ∈ [40, 80] s: after having surpassed the bottleneck, the
platoon accelerates to v̄3 = 30.5 m/s.

In the first phase, the autonomous vehicles are at the desired
distance and speed. On the contrary, according with their
variable spacing policy, the human driven vehicles are subject
to a transient phase in which they reach the equilibrium
distance of about 19.7 m (Figure 3a, gray trajectories). Since
the human driven vehicles do not communicate any data,
their adjustments are an unexpected behavior giving rise to
perturbations in the string. In this phase, the autonomous
vehicles are able to dissipate the perturbations deriving from
the vehicles ahead, without showing any marked variations
(see Figure 3b). In Figure 3d, we observe that the macroscopic
function ρMi with respect to the vehicles following the human
driven ones is not zero, meaning that it successfully captures
the information about the current state of the platoon. In the
second and third phases, the leader vehicle firstly deceler-
ates to 11.1 m/s and then it accelerates to 30.5 m/s. As a
consequence, the non autonomous vehicles vary their inter-
vehicular distances according to their spacing policy: in the
decreasing speed phase they reduce their distance to 15.6 m, in
the increasing speed phase they enlarge their distance to 25.3
m (Figure 3a). In order to counteract this behavior, that gives
birth to disturbances inside the string, in the second phase
(t ∈ [20, 40] s) the follower autonomous vehicles increase their
distances. The macroscopic function ρMi (Figure 3d) extracts
the information embedded in the inter-vehicular distance mean
µ∆p,i and variance σ2

∆p,i, and let the autonomous vehicles
to notice that the platoon state is away from the desired
equilibrium point. Then, in order to be able to absorb possible
perturbations arriving from ahead, they increase the distance.
On the contrary, in the third phase, when the higher speed
leads the non autonomous vehicles to increase their distances,
the autonomous ones come closer in order to increase the
traffic throughput. In Figure 3b it is shown the speed difference
trajectories of the platoon. We observe that at 20 s and 30 s,
the beginning of the second and third phases, the perturbation
due to the step variation of the speed reference is correctly
attenuated by the platoon. Moreover, also the oscillations

corresponding to the human driven vehicles (grey lines) do
not amplify through the string, confirming the system to be
disturbance string stable. In Figure 3c, we observe the same
filtering action, where the speed of the autonomous vehicles
following the non autonomous ones show a dampening of the
oscillations.
C. Traffic lights scenario

In this section, the simulations about a urban road scenario
are reported. We consider a platoon of N+1 = 11 autonomous
vehicles moving in an urban area. More precisely, we analyze
the case in which the vehicles are waiting at a traffic light.
In Table III are reported the controller parameters, that are
chosen such that γ̃ ≈ 0.5 as in the other cases. Since in a
urban area the velocities are lower, in this case we modified the
control parameters in order to take into account the particular
situation. Moreover, it is possible to exploit both V2V and V2I
technologies. Then, the infrastructure, here represented by the
traffic light, can communicate with the platoon and send traffic
data in real-time, for example the light phases and the desired,
or optimal, speed to cross the city road segments. Also in this
case, we split the simulation into three main phases:

1) t ∈ [0, 10] s: the vehicles are waiting at the traffic light.
2) t ∈ [10, 45] s: the green light turn on and the first vehicle

reach the speed of 8.3 m/s tracking a ramp reference
signal.

3) t ∈ [45, 60] s: the platoon meets a red light, then it stops
following a ramp reference signal.

We suppose that during the waiting phase the vehicles in
the platoon have a small desired distance of ∆p̄1 = 1 m,
while when moving they reach a larger reference distance of
∆p̄2 = 2 m in order to guarantee greater safety. Then, in order
to avoid discontinuities, in the transition phases the vehicles
are commanded to track a ramp desired distance with limited
derivative, that connects the two desired values. Figures 4a,
4b and 4c refer to the distance (−∆pi), speed difference
(−∆vi) and the macroscopic function (ρMi ) with respect to
the autonomous vehicles, respectively. The red line in Figure
4b represents the speed difference of the first vehicle with
respect to the reference value.

In Figure 4a, we observe that the platoon correctly track
the variable desired distance between [10, 15] s and [40, 45]
s. More precisely, thanks to the accumulated macroscopic
information the tail vehicles intensify their acceleration and
anticipate their actions. This behavior allows the platoon
to stay compact despite of the actuation delay. Indeed, we
observe the green trajectory (the last vehicle) to converge faster
to 2 m with respect to the other vehicles, except for the first
one (blue line). In Figure 4b, we notice that the tracking of
the variable speed reference does not generate perturbations in
the string, letting the platoon be stable. The simulation results
show that the proposed approach can be employed also in an
urban scenario, allowing the control of platoons that have to
meet tighter requirements dictated by the particular scenario.

VI. CONCLUSIONS

In this paper, the possibility to exploit macroscopic informa-
tion for ensuring vehicular platoon Disturbance String Stability
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Fig. 3: Mixed traffic scenario. See Section V for the description and the color legend.

is investigated, and a rigorous stability analysis is provided.
Disturbance String Stability is first proved for general systems
having a cascaded interconnected structure, by using ISS con-
cepts. Then, the result is applied to a platoon of autonomous
vehicles subject to external disturbances. We show how the
propagation of few variables embedding global information
about the platoon ensures a proper response of the vehicles.
Moreover, we illustrate how the same framework can be
exploited to ensure the stability in the mixed traffic scenario,
where non autonomous vehicles are present. A mesoscopic
control law has been proposed, and the improvements due
to the utilisation of macroscopic information are shown by
means of simulations. To test the robustness of the proposed
approach, three different scenarios have been tested in simula-
tion: the first scenario refers to the case of a full autonomous
platoon tracking a variable speed reference and subject to
external disturbances, in the second scenario, the platoon is
considered composed by both autonomous and human-driven
vehicles, while the third scenario refers to the platoon starting
from a traffic light and stopping to the next one. Therefore, the
suggested approach is shown to be of interest for both urban
and extra urban scenarios. The proposed results show that
sharing macroscopic variables allows each vehicle to anticipate
the needed control action and filter the perturbations acting on
the ahead vehicles, thereby avoiding a disruptive amplification,
and matching string stability requirements. Future work will
focus on extending the proposed framework to more complex
cases, by explicitly including the presence of communication
delays. Also, different methods for the estimation of the

macroscopic variables will be investigated, and more realistic
scenarios will be tested with the use of dedicated traffic
simulators.
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APPENDIX

A. Proof of Theorem 1
The proof of the Asymptotic String Stability for the nominal

case with d̄i = 0, ∀i ∈ I0
N , has already been provided in [10]

for a specific case and generalized in [11]. These results are
extended in the sequel to the case with disturbances. The first
step is to obtain a common bound for all trajectories χ̃i(t)
valid for all t ≥ t0, then an estimation of (13) is proven to
exist. Since the assumption γ(s) ≤ γ̃s holds, and σ ∈ K∞
implies σ(|d̄i(·)|[0,t]∞ ) ≤ σ

(
maxi∈I0N |d̄i(·)|

[0,t]
∞

)
, inequality

max
i∈I0N

|χ̃i(t)| ≤
1

1− γ̃
β

(
max
i∈I0N

|χ̃i(0)|, 0
)

+
1

1− γ̃
σ

(
max
i∈I0N

|d̄i(·)|[0,t]∞

)
, ∀ t ≥ 0. (26)

can be proven by applying the same forward recursive method
shown in [11, Theorem 1]. By definition of class K∞ and KL
functions, β and σ are invertible; then, for γ̃ ∈ (0, 1) and for
any ε > 0, there exist at least a pair δ, δd such that

β(δ, 0) + σ(δd) = (1− γ̃)ε < ε. (27)

If |χ̃(0)|∞ ≤ δ and maxi∈I0N |d̄i(·)|
[0,t]
∞ ≤ δd, then

maxi∈I0N |χ̃i(·)|
[0,t]
∞ < ε. Now we can proceed by proving that

an estimation of (13) exists. Let us introduce β̂0 = 1
1−γ̃β(r, 0),

σ̂(s) = 1
1−γ̃σ(s), r, s ≥ 0, d̄[t1,t2]

∞ = maxi∈I0N |d̄i(·)|
[t1,t2]
∞ ,

and µ = β̂0(|χ̃(0)|∞) + σ̂(d̄
[0,t]
∞ ). We recall that the ISS

inequality (15) can be computed with respect to a general
initial time instant τ ∈ [0, t]. Then, we get:

|χ̃i(t)| ≤β (|χ̃i(τ)|, t− τ) + γ̃ max
j=0,...,i−1

|χ̃j(·)|[τ,t]∞

+ σ
(
d̄[τ,t]
∞

)
. (28)

We recall that σ ∈ K∞ implies σ
(
d̄

[τ,t]
∞

)
≤ σ

(
d̄

[0,t]
∞

)
. By

exploiting (26) and choosing τ = t/2 in (28), for i = 0 we
get:

|χ̃0(t)| ≤ β(|χ̃0(t/2)|, t/2) + σ
(
d̄[0,t]
∞

)
≤ β (µ, t/2) + σ

(
d̄[0,t]
∞

)
. (29)

For i = 1, we get:

|χ̃1(t)| ≤ β(|χ̃1(t/2)|, t/2) + γ̃|χ̃0(·)|[t/2,t]∞ + σ
(
d̄[0,t]
∞

)
. (30)

Since gcl(χ̃−1) = 0, by definition of µ, and using inequality
(28), for i = 0

|χ̃0(·)|[t/2,t]∞ ≤ β (µ, t/4) + σ
(
d̄[0,t]
∞

)
(31)

holds. Recurring again to the definition of µ, using (31) in
(30) we get:

|χ̃1(t)| ≤ β (µ, t/2) + γ̃β (µ, t/4) + (1 + γ̃)σ
(
d̄[0,t]
∞

)
. (32)

By following the same procedure, for i = 2 we obtain:

|χ̃2(t)| ≤ β(|χ̃2(t/2)|, t/2) + σ
(
d̄[0,t]
∞

)
+ γ̃ max

j=0,1
|χ̃j(·)|[t/2,t]∞ . (33)

From (32), we get

|χ̃1(t)|[t/2,t]∞ ≤ β (µ, t/4) + γ̃β (µ, t/8) + (1 + γ̃)σ
(
d̄[0,t]
∞

)
.

(34)

Since the assumption γ̃ ∈ (0, 1) and the definition of class
KL function, then (34) holds also for i = 0. Then, for i = 2
we get:

|χ̃2(t)| ≤
2∑
k=0

γ̃k
(
β

(
µ,

t

2k+1

)
+ σ

(
d̄[0,t]
∞

))
. (35)

By repeating the same procedure for each i ∈ I0
N we get:

|χ̃i(t)| ≤
i∑

k=0

γ̃k
(
β

(
µ,

t

2k+1

)
+ σ

(
d̄[0,t]
∞

))
. (36)

As in [15], we define the KL function φ(r, s) =
supω∈(0,1] ω

qβ(r, ωs), for some q > 0. By multiplying and
dividing β in (36) for (1/2k+1)q , we get:

|χ̃i(t)| ≤
i∑

k=0

(
2q(2qγ̃)kφ (µ, t) + γ̃kσ

(
d̄[0,t]
∞

))
. (37)

If parameter q is chosen such that γ̃ < 2−q < 1, then

|χ̃i(t)| ≤
1

2−q − γ̃
φ (µ, t) + σ̂

(
d̄[0,t]
∞

)
. (38)

Let us define β̄(r, s) = φ (r, s) /(2−q − γ̃). Since µ =

β̂0(|χ̃(0)|∞) + σ̂(d̄
[0,t]
∞ ), in order to address the appearance of

σ̂(d̄
[0,t]
∞ ) in the first argument of β̄ we introduce the following

bound:

k(r, σ̂(s), t) = min
{
β̄(β̂0(r) + σ̂(s), t), β̂0(r)

}
. (39)

As shown in [37], for any α ∈ K∞

k(r, σ̂(s), t− t0) ≤ β̄(β̂0(r) +α−1(r), t− t0) + β̂0 ◦α(σ̂(s)),

that leads to

|χ̃| ≤ βd (|χ̃(0)|∞, t) + σd

(
d̄[0,t]
∞

)
, ∀ i ∈ I0

N , (40)

where βd(r, s) = β̄(β̂0(r) + α−1(r), s) ∈ KL and σd(r) =
σ̄(r)+ β̂0 ◦α(σ̄(r)) ∈ K∞. Then, Disturbance String Stability
of the cascaded interconnected system with dynamics (14) is
proven.

B. Proof of Theorem 2

By exploiting Lyapunov stability theory (see [22]), we prove
that the system state trajectory evolution χ̃i for each i ∈ I0

N

is bounded by (15). Let us consider the candidate Lyapunov
function W (χ̃i) for the i−th dynamical system (20):

W (χ̃i) =
1

2
χ̃Ti PW χ̃i, (41)

with

PW =


1 0 2 0
0 1 −2λ1 2
0 0 2 + λ2

1 2λ1

0 0 0 2

 .
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In the sequel, we denote Wi = W (χ̃i). Since PW is an upper
triangular square matrix, it is straightforward to compute the
lower and the upper bound of Wi as two quadratic functions
that depend, respectively, on the minimum and maximum
eigenvalues of P :

α|χ̃i|2 ≤Wi ≤ ᾱ|χ̃i|2, (42)

where α = 1/2 and ᾱ = (2 +λ2
1)/2. We start the analysis for

the nominal system, with no disturbances. The time derivative
of Wi is:

Ẇi = −χ̃Ti QW χ̃i + ρ2,iψ
i−1
a,b (43)

with QW being an upper triangular square matrix:

QW =
K∆p ∗ ∗ ∗

0 K∆v ∗ ∗
0 0 2K∆p +K∆vλ

2
1 + λ1 ∗

0 0 0 K∆v + λ2

 ,
where we omit the terms out of the main diagonal since
they are of no use in the calculation of the eigenvalues of
QW . Since the assumption K∆p,K∆v, λ1, λ2 > 0 holds, the
minimum eigenvalue of QW is α = min{K∆p,K∆v}. Then,

Ẇi ≤ −α|χ̃i|2 + |χ̃i||ψi−1
a,b |. (44)

By exploiting mean and variance properties, the following
inequality holds for ψia,b (see [10]):

|ψia,b| = a|ψi∆p|+b|ψi∆v| ≤ (aγ∆p+bγ∆v) max
j=0,...,i

|χ̃j |. (45)

Define Υ ∈ (0, 1) and cψ = aγ∆p + bγ∆v; then

Ẇi ≤ −α(1−Υ)|χ̃i|2 + |χ̃i|
(
cψ max

j=0,...,i−1
|χ̃j | − αΥ|χ̃i|

)
≤ −α(1−Υ)|χ̃i|2, ∀ |χ̃i| ≥

cψ
αΥ

max
j=0,...,i−1

|χ̃j |. (46)

Since α > 0, the inequality (46) satisfies the Input-to-State
Stability (ISS) condition [22]. Therefore, for each i ∈ I0

N ,

|χ̃i| ≤ β (|χ̃i(0)|, t) + γ

(
max

j=0,...,i−1
|χ̃j |[0,t]∞

)
, ∀ t ≥ 0,

with

γ(s) = γ̃s ∀ s ≥ 0, γ̃ =

√
ᾱ

α

cψ
αΥ

> 0. (47)

Since the parameters a, b ≥ 0 in (18) can be arbitrarily
selected, the constant cψ can be chosen such that γ̃ ∈ (0, 1).

We now prove that the i−th system also verifies the ISS
condition with respect to the disturbance d̄i. We define αss =
α(1−Υ). If the inequality on χ̃i in (46) is verified, then the
following holds:

Ẇi ≤ −αss|χ̃i|2 + |cd|(∆vi − λ1ρ1,i−1 + ρ2,i−1)d̄i

≤ −αss|χ̃i|2 +
√

2|cd|max{1, λ1}︸ ︷︷ ︸
c′d

|χ̃i||d̄i|

≤ −αss|χ̃i|2 +
1

2c
|χ̃i|2 +

c

2
c′2d |d̄i|2, (48)

where we exploited the inequality |xy| ≤ 1
2cx

2 + c
2y

2, c > 0.
By choosing c = 1/αss, we get

Ẇi ≤ −
αss
2
|χ̃i|2 +

c′2d
2αss

|d̄i|2.

Then, the inequality in (15) is verified with σ(s) = α−1 ◦ ᾱ ◦
α−1
ss ◦ 2ϑ(s), where

ϑ(s) =
c′2d

2αss
s2, (49)

and

σ(s) = σ̃s ∀ s ≥ 0, σ̃ =

√
2ᾱ

α

c′d
αss

> 0. (50)

On the basis of Theorem 1, Disturbance String Stability of
the platoon can be obtained by an appropriate tuning of the
controller parameters.
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