Detection of archaeological sites hidden by a forest canopy using Sentinel-1 time-series
Florent Michenot, Régis Guinvarc’H, Laetitia Thirion-Lefevre

To cite this version:
Florent Michenot, Régis Guinvarc’H, Laetitia Thirion-Lefevre. Detection of archaeological sites hidden by a forest canopy using Sentinel-1 time-series. Living Planet Symposium, May 2022, Bonn, Germany. 10.13140/RG.2.2.22288.48642 . hal-03771833

HAL Id: hal-03771833
https://centralesupelec.hal.science/hal-03771833
Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction

- Airborne Laser Scanning (ALS) effective at discovering new structures on known sites covered in vegetation.
- Costly, use for detecting fully unknown sites discouraged.
- Requires an additional way to find probable sites location.
- Objective: detection of archaeological sites hidden by a forest canopy, through:
 - Temporal speckle filtering
 - Diversity of points of view provided by Sentinel-1

Conclusion

- Green is both
- Blue is East
- Red is West
- Arbitrary colormap

Application: archaeological site of Lamanai, Belize

- Mayan archaeological site, northern Belize
- Map found in an archaeological article [4]
 - Projected over optical (fig. 8 top) and SAR ratio (fig. 8 bottom)

Figure 9: a) Optical image [1] of the High Temple (structure N10-43), with archaeological map overlaid in red. b) Output of the technique over the same area, with the map in white.

Figure 10: a) Optical image [1] of the two hidden structures (P9-25 and P8-1), with archaeological map overlaid in red. b) Output of the technique over the same area, with the map in white.

Method

1. Temporal Speckle Filtering

- Spatial speckle filtering degrades spatial resolution [2]
- Impacts detection of small targets
- Temporal speckle filtering degrades temporal resolution [3]

2. Ascending / Descending Ratio

- Sentinel-1 satellite: heliosynchronous orbit (fig. 5)
- Two points of view: Ascending and Descending
- Projection of the images to a common geographical grid
- Ratio of Ascending images over Descending images

- Highlights East-West dissymmetries
- Q° = σ°_{dub}/σ°_{des} (or in dB: Δσ°_{dub} = σ°_{dub} - σ°_{des,dub})
- Arbitrary colormap

- Here, red is West, blue is East, green is both.
- Process presented in fig. 6 and 7, and applied to an archaeological site surrounded by jungle in the next part.

References