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Uniform Global Asymptotic Stability
for Time-Invariant Delay Systems

Iasson Karafyllis, Pierdomenico Pepe, Antoine Chaillet, and Yuan Wang

Abstract— For time-invariant finite-dimensional systems, it is
known that global asymptotic stability (GAS) is equivalent to
uniform global asymptotic stability (UGAS), in which the decay
rate and transient overshoot of solutions are requested to be
uniform on bounded sets of initial states. This paper investigates
this relationship for time-invariant delay systems. We show that
UGAS and GAS are equivalent for this class of systems under
the assumption of robust forward completeness, i.e. under the
assumption that the reachable set from any bounded set of
initial states on any finite time horizon is bounded. We also
show that, if the state space is a space in a particular family
of Sobolev or Hölder spaces, then GAS is equivalent to UGAS
and that robust forward completeness holds. Based on these
equivalences, we provide a novel Lyapunov characterization of
GAS (and UGAS) in the aforementioned spaces.

I. INTRODUCTION

For time-invariant, finite-dimensional systems described
by ordinary differential equations, GAS is traditionally de-
fined as the combination of Lyapunov stability and global
convergence of solutions to the origin. An alternative way to
state it is through a KL bound on the solutions’ norm. This
alternative description is seemingly more demanding than
merely stability and global attractiveness as it additionally
imposes that the convergence rate and the transient overshoot
of solutions are uniform over bounded sets of initial states,
thus leading to the notion of Uniform Global Asymptotic
Stability (UGAS). This extra conservatism turns out to be
only apparent: it is well known that, for such systems, GAS
and UGAS are actually equivalent properties [24], [29].

The importance of this uniformity is twofold. First, from
a practical perspective, it rules out the possibility of having
an arbitrarily slow convergence of solutions to the origin
or an arbitrarily large transient overshoot when initial states
are confined to a bounded set. Second, it constitutes a
key requirement for the construction of Lyapunov functions
and is at the basis of important stability properties for
systems with inputs such as Input-to-State Stability [25] and
Input-to-Output Stability [27]. To that respect, it is worth
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mentioning that this uniformity no longer comes for free
when considering output stability properties [21], [10].

Another important feature of time-invariant finite-
dimensional systems is that the existence of their solutions
for all positive times (forward completeness) ensures a
bounded reachable set over any finite time horizon from
every bounded set of initial conditions [18], [26]. In other
words, starting from a bounded set of initial states, the so-
lutions of a time-invariant finite-dimensional system remain
bounded over a finite time horizon. In the literature, this
property is referred to as either Robust Forward Complete-
ness (RFC) [11] or bounded reachable sets property [19]
and plays a crucial role in the Lyapunov characterization of
forward completeness [1].

For general infinite-dimensional systems, the equivalence
between GAS and UGAS and between forward completeness
and RFC is far more delicate. In particular, an example
is given in [20] of an infinite-dimensional system which
is forward complete yet not RFC. Nevertheless, it is still
an open question whether such equivalences hold when
considering only time-delay systems.

Partial answers do exist though. For systems described
by neutral functional differential equations, the equivalence
between GAS and UGAS does not hold, even in the linear
time-invariant case: see Lemma 1.1 and Example 1.6 in [9].
For time-delay systems, the relationship between GAS and
UGAS was recently discussed in [23]. Interestingly, as far as
local properties are concerned, asymptotic stability is indeed
equivalent to uniform asymptotic stability for time-invariant
delay systems [8, Lemma 1.1, p. 131]. This local result was
actually proved five decades ago for globally Lipschitz time-
delay systems (see Condition 4 on page 128, Definition 28.1
on page 131, Definition 30.2 on page 146, and pages 150-151
in [17]). In [16, Theorem 6.3.1, p. 73], it is stated that GAS
is equivalent to UGAS for periodic delay systems provided
that the function describing the dynamics is Lipschitz on
bounded sets. The proof is not provided in [15] but [17] is
quoted for. However, as explained above, the results and the
proofs provided in [17] do not show the equivalence between
GAS and UGAS for the class of systems considered in [15].

Thus, it is not known whether GAS and UGAS are
equivalent for delay systems. Similarly, it is not known
whether forward completeness is equivalent to RFC for such
systems, the consequences of which are discussed in [19].



Although not fully solving them, the present note shows that
these two open questions are related. More specifically we
show that, under the assumption of RFC, GAS and UGAS are
indeed equivalent properties for time-invariant delay systems
(Theorem 1). Since RFC holds automatically for globally
Lipschitz delay systems and can often be established using
Lyapunov techniques, our result constitutes a significant
generalization of the result in [17]. The second contribution
of this note is to show that the answer to both open questions
depends crucially on the selection of the state space. More
precisely, we show that if the considered state space is
the Sobolev space W 1,p([−r, 0]) with p ∈ (1,+∞], then,
under a forward completeness assumption, GAS is indeed
equivalent to UGAS and RFC holds for time-invariant delay
systems, just like the finite-dimensional case (Theorems 2
and 3). Similarly, we show that if the considered state
space is the Hölder space C0,1−1/p with p ∈ (1,+∞],
then, under the usual forward completeness assumption, GAS
is also equivalent to UGAS and RFC holds (Theorems 2
and 3). Here, it should be emphasized that Sobolev spaces
have already been used as state spaces in the literature
for neutral delay systems [6], [16]. The third contribution
of the paper exploits this equivalence to propose a novel
Lyapunov characterization of GAS (hence, UGAS) for time-
invariant delay systems when treating the state space as one
of the aforementioned spaces (Theorem 5 for W 1,p([−r, 0])

or C0,1−1/p([−r, 0]) with p ∈ (1,+∞] and Theorem 6 for
W 1,p([−r, 0]) with p ∈ (1,+∞)).

The consequences of the obtained results to control theory
are important. The equivalence of GAS and UGAS allows
the control designer to use tools for feedback design that can
prove global attractivity but not global uniform attractivity
and still argue that UGAS holds. Such tools include the ex-
tension of LaSalle’s theorem to delay systems and Barbălat’s
lemma (see for instance [7], [10]). Another important issue
for control theory is robustness to various external inputs
(disturbances). It has been shown that robustness to persistent
external inputs is a consequence of uniform stability notions
(see the discussion on page 162 in [17] for the case of
delay systems as well as the discussion in [28] for the finite-
dimensional case). The results of the present work allow the
control designer to be sure that a feedback law which induces
GAS for the closed-loop system will also present robustness
properties with respect to various persistent external inputs.

The structure of the paper is as follows. In Section II we
present all notions used in the paper and formally introduce
the problem, whereas Section III contains our main results.
Due to space limitations, all proofs are omitted and can be
found in [12].

II. BACKGROUND AND DEFINITIONS

A. Notation

Throughout this paper, we adopt the following notation.

• R+ := [0,∞). Given x ∈ Rn, we denote by |x| its
usual Euclidean norm.

• By K we denote the set of increasing and continuous
functions ρ : R+ → R+ with ρ(0) = 0. A function
ρ ∈ K is of class K∞ if lims→∞ ρ(s) =∞. By KL we
denote the set of functions σ : R+ × R+ → R+ such
that, for each t ≥ 0, σ(·, t) ∈ K and, for each s ≥ 0,
σ(s, ·) is non-increasing with limt→∞ σ(s, t) = 0.

• Let I ⊆ R be a non-empty interval and Ω ⊂ Rn be
a non-empty set. By C0(I; Ω), we denote the class
of continuous functions on I , which take values in Ω.
When the interval I is compact, C0(I; Ω) is a normed
linear space with the norm

‖x‖∞ := sup
t∈I

(|x(t)|) = max
t∈I

(|x(t)|) , ∀x ∈ C0(I; Ω).

When I = [−r, 0] with r > 0 and a ∈ (0, 1] is a
constant, we define the Hölder space C0,a([−r, 0]) :={
x ∈ C0([−r, 0];Rn) : Px < +∞

}
, where

Px := sup
t,s∈[−r,0],t6=s

(
|x(t)− x(s)|
|t− s|a

)
, (1)

i.e., the space of Hölder continuous function of expo-
nent a ∈ (0, 1]. The Hölder space X = C0,a([−r, 0])

with a ∈ (0, 1] is a normed linear space with the norm

‖x‖X := max {‖x‖∞ , Px} , ∀x ∈ C0,a([−r, 0]).

By virtue of the Arzela-Ascoli theorem, for every R >

0, the set B =
{
x ∈ C0,a([−r, 0]) : ‖x‖X ≤ R

}
is

compact in the topology of C0 ([−r, 0];Rn).
• Let I = (a, b) be a non-empty open interval. By
Lp(I;Rn) with p ∈ [1,+∞), we denote the normed
linear space of equivalence classes of Lebesgue measur-

able functions x : I → Rn with
∫ b

a

|x(s)|p ds < +∞
and, with the norm given by

‖x‖p :=

(∫ b

a

|x(s)|p ds

)1/p

, ∀x ∈ Lp (I;Rn) .

By L∞(I;Rn) we denote the normed linear space of
equivalence classes of Lebesgue measurable functions
x : I → Rn with sup

t∈(a,b)
|x(t)| <∞ (where sup

t∈(a,b)
|x(t)|

denotes the essential supremum), with the norm

‖x‖∞ := sup
t∈(a,b)

|x(t)| , ∀x ∈ L∞ (I;Rn) .

• Given r > 0, the Sobolev space W 1,p([−r, 0]) for p ∈
[1,+∞] denotes the normed linear space of absolutely
continuous functions x : [−r, 0] → Rn with derivative



ẋ in Lp ((−r, 0);Rn). For the Sobolev space X =

W 1,p([−r, 0]), we use the norm

‖x‖X := ‖x‖∞ + ‖ẋ‖p , ∀x ∈W 1,p([−r, 0]),

which (by virtue of Theorem 8.8 on pages 212-213 in
[2]) is an equivalent norm to the norm ‖x‖p + ‖ẋ‖p.
Notice that W 1,∞([−r, 0]) = C0,1([−r, 0]). By virtue
of Hölder’s inequality, it follows that W 1,p([−r, 0]) ⊆
C0,1−1/p([−r, 0]) for all p ∈ (1,+∞]. Moreover, by
Arzela-Ascoli’s theorem and [2, Theorem 8.8, p. 212-
213], it follows that, for every R > 0, the bounded set

B :=
{
x ∈W 1,p([−r, 0]) : ‖x‖∞ + ‖ẋ‖p ≤ R

}
with p ∈ (1,+∞] has a closure B in C0 ([−r, 0];Rn)

which is compact in the topology of C0 ([−r, 0];Rn)

and satisfies

B ⊆
{
x ∈ C0,1− 1

p ([−r, 0] : max{‖x‖∞ , Px} ≤ R
}
,

where Px is defined in (1).

B. Time-delay systems and stability notions

In this work we focus on time-invariant delay systems of
the form

ẋ(t) = f(xt), (2)

where x(t) ∈ Rn, xt ∈ C0([−r, 0];Rn) with r > 0 being a
constant and

xt(s) := x(t+ s), ∀s ∈ [−r, 0].

The map f : C0([−r, 0];Rn) → Rn with f(0) = 0 is
assumed to be Lipschitz on bounded sets of C0([−r, 0];Rn),
i.e., there exists a non-decreasing function L : R+ → R+

such that for every R ≥ 0, the following inequality holds

|f(x)− f(y)| ≤ L(R) ‖x− y‖∞ , (3)

for all x, y ∈ C0([−r, 0];Rn) with ‖x‖∞ ≤ R, ‖y‖∞ ≤ R.

Given any initial condition x0 ∈ C0([−r, 0];Rn) and any
t ≥ 0, φ(t, x0) ∈ C0([−r, 0];Rn) denotes xt, where x(t) ∈
Rn is the solution of (2) at time t generated from x0.

The following properties have been used extensively in the
literature of stability for delay systems. In what follows we
use the notation C for C0([−r, 0];Rn).

(LS) Lyapunov Stability: For every ε > 0 there exists
δ > 0 such that

sup {‖φ(t, x0)‖∞ : t ≥ 0, x ∈ C, ‖x0‖∞ ≤ δ} ≤ ε.

(GA) Global Attractivity: For every x0 ∈ C,

lim
t→∞

‖φ(t, x0)‖∞ = 0.

(UGA) Uniform Global Attractivity: For every ε, ρ > 0,

there exists T > 0 such that

sup {‖φ(t, x0)‖∞ : t ≥ T, x0 ∈ C, ‖x0‖∞ ≤ ρ} ≤ ε.

(LagS) Lagrange Stability: For every ρ > 0,

sup {‖φ(t, x0)‖∞ : t ≥ 0, x0 ∈ C, ‖x0‖ ≤ ρ} < +∞.

(RFC) Robust Forward Completeness: For all ρ, T > 0,

sup
{
‖φ(t, x0)‖∞ : t ∈ [0, T ],

x0 ∈ C, ‖x0‖ ≤ ρ
}
< +∞.

(GAS) Global Asymptotic Stability: Both properties LS
and GA hold.
(UGAS) Uniform Global Asymptotic Stability: There
exists σ ∈ KL such that, for all x0 ∈ C0([−r, 0];Rn),

‖φ(t, x0)‖∞ ≤ σ (‖x0‖∞ , t) , ∀t ≥ 0.

LS is purely a local property and imposes that solutions
remain arbitrarily close to the origin provided that the norm
of the initial segment is sufficiently small. GA requires
that all solutions converge to the origin. UGA additionally
requires that the rate at which solutions converge is uniform
on bounded sets of initial states. LagS can be interpreted
as solutions’ boundedness. RFC requires not only existence
of solutions for all forward times, but also that they are
bounded over any compact time interval and for initial states
in any bounded set. Finally, UGAS employs the classical KL
formalism and readily implies both LS and UGA.

Some of the above properties are related. For example, it
is well-known (see Theorem 2.2 on page 62 in [11]) that

LS ∧ UGA ∧ LagS ⇔ UGAS.

Moreover, Lemma 2.1 on page 58 in [11] shows that

UGA ∧ RFC ⇔ UGAS.

Some of the above properties are stronger than others; for
example, the implications UGA ⇒ GA and LagS ⇒ RFC
hold trivially.

To the best of our knowledge, it is not known whether the
implication GAS ⇒ UGAS is true or not for delay systems.
This implication is true for delay-free (finite-dimensional)
systems [24], [29]. Another important property that is valid
for delay-free systems is that simple forward completeness
(i.e., global existence of solutions for arbitrary initial condi-
tion) implies RFC [18], [26]. Whether or not this equivalence
holds for time-delay systems is also an open question. This
two questions are the main subject of this paper.



III. MAIN RESULTS

A. Uniformity under RFC

The first contribution of this paper is to show that, pro-
vided that RFC holds, GAS is equivalent to UGAS.

Theorem 1: For system (2), it holds that

GAS ∧ RFC ⇔ UGAS.

In other words, provided that RFC holds, the combination
of Lyapunov stability and global attractivity does ensure
uniform global asymptotic stability, just like in the finite-
dimensional case. It is worth stressing that:

(i) RFC holds automatically for important classes of delay
systems such as those ruled by a globally Lipschitz
vector field. This reminds the results proved in [17]
for globally Lipschitz systems (see Condition 4, p. 128,
Definition 28.1, p. 131, Definition 30.2, p. 146, and
pages 150, 151 in [17]).

(ii) RFC can often be established by using Lyapunov-like
functionals (see [1] for the finite-dimensional case and
[11] for the time-delay case). For example, the existence
of a functional U : C0([−r, 0];Rn) → R+ which is
Lipschitz on bounded sets of C0([−r, 0];Rn) and for
which there exist a function a ∈ K∞ and a constant
µ ≥ 0 such that the inequalities U(x) ≥ a(|x(0)|) and

lim sup
h→0+

U(Ph(x))− U(x)

h
≤ µU(x)

hold for all x ∈ C0([−r, 0];Rn), where (Ph(x))(s) =

x(s+h) for h ≥ 0 and s ∈ [−r,−h], and (Ph(x))(s) =

x(0) + (s + h)f(x) for h > 0 and s ∈ [−h, 0], is
sufficient to guarantee RFC.

Since GA obviously implies forward completeness, the RFC
requirement in Theorem 1 could be removed if one could
establish that forward completeness implies RFC for time-
delay systems (as it holds in finite dimension). To date, this
crucial question remains open.

The fact that LagS trivially ensures RFC, gives us the
following corollary. Notice that, differently from [15, Theo-
rem 6.3.1, p. 73], here the LagS property is invoked. Notice
also that LS ∧ LagS is equivalent to LS with the additional
requirement that the δ(ε) for which

sup {‖φ(t, x0)‖∞ : t ≥ 0, x ∈ C, ‖x0‖∞ ≤ δ(ε)} ≤ ε

can be chosen arbitrarily large for sufficiently large ε > 0.

Corollary 3.1: For system (2), it holds that

GAS ∧LagS ⇔ UGAS.

B. Uniformity in Sobolev and Hölder spaces

The second contribution of this paper is to show that, when
working in a Sobolev space W 1,p([−r, 0]) with p ∈ (1,+∞]

or a Hölder space C0,q([−r, 0]) with q ∈ (0, 1], the RFC
requirement can be removed from the above implications. It
is a fact that if the initial condition x0 ∈ C0([−r, 0],Rn) is of
class W 1,p([−r, 0]) for some p ∈ [1,+∞], then the solution
φ(t, x0) is of class W 1,p([−r, 0]) for each t ≥ 0 at which it
exists. Similarly, if the initial condition x0 ∈ C0([−r, 0],Rn)

is of class C0,q([−r, 0]) for some q ∈ (0, 1], then the solution
φ(t, x0) is of class C0,q([−r, 0]) for each t ≥ 0 at which it
exists. These facts have been utilized in some works on delay
systems (see for example [13], [14], [22] with p = +∞ or
q = 1). Therefore, instead of considering the state space to be
C0([−r, 0];Rn), we may consider as state space the normed
linear space X = W 1,p([−r, 0]) for some p ∈ (1,+∞] with

‖x‖X = ‖x‖∞ + ‖ẋ‖p , ∀x ∈W 1,p([−r, 0]),

or the normed linear space X = C0,q([−r, 0]) for some q ∈
(0, 1] with

‖x‖X = max {‖x‖∞ , Px} , ∀x ∈ C0,q([−r, 0]),

where Px was defined in (1).

The change of the state space requires updating of the
properties listed above by replacing the sup norm by the
Sobolev norm or the Hölder norm. This leads to the following
counterparts in which X may denote either the Sobolev space
W 1,p([−r, 0]) for some p ∈ (1,+∞] or the Hölder space
C0,q([−r, 0]) for some q ∈ (0, 1].

(LS-X ) Lyapunov Stability: For every ε > 0, there
exists δ > 0 such that

sup {‖φ(t, x0)‖X : t ≥ 0, x0 ∈ X , ‖x‖X ≤ δ} ≤ ε.

(GA-X ) Global Attractivity: For every x0 ∈ X ,

lim
t→∞

‖φ(t, x0)‖X = 0.

(UGA-X ) Uniform Global Attractivity: For every ε, ρ >
0, there exists T > 0 such that

sup {‖φ(t, x0)‖X : t ≥ T, x0 ∈ X , ‖x0‖X ≤ ρ} ≤ ε.

(LagS-X ) Lagrange Stability: For every ρ > 0,

sup {‖φ(t, x0)‖X : t ≥ 0, x0 ∈ X , ‖x0‖X ≤ ρ} <∞.

(RFC-X ) Robust Forward Completeness: For every
ρ, T > 0,

sup {‖φ(t, x0)‖X : t ∈ [0, T ], x0 ∈ X , ‖x0‖X ≤ ρ} <∞.

(GAS-X ) Global Asymptotic Stability: Both LS-X and
GA-X hold.
(UGAS-X ) Uniform Global Asymptotic Stability: There
exists σ ∈ KL such that, for all x0 ∈ X ,

‖φ(t, x0)‖X ≤ σ(‖x0‖X , t), ∀ t ≥ 0.

With these definitions at hand, we are able to show that
simple forward completeness (i.e., global existence of solu-



tions for arbitrary initial condition) implies RFC in particular
Sobolev or Hölder spaces.

Theorem 2: Let p ∈ (1,+∞] be given. Suppose that
(2) is forward complete in the sense that for every x0 ∈
C0,1−1/p([−r, 0]), the solution x(t) of (2) with initial con-
dition x0 exists for all t ≥ 0. Then (2) with state space
X = W 1,p([−r, 0]) or state space C0,1−1/p([−r, 0]) owns
the RFC-X property.

Moreover, in this case we are able to show that Lyapunov
stability combined with (non-uniform) global attractivity
implies uniform global asymptotic stability.

Theorem 3: Let X denote the Sobolev space W 1,p([−r, 0]

or the Hölder space C0,1−1/p([−r, 0]) for some p ∈ (1,+∞].
Suppose that (2) is forward complete, in the sense that for
every x0 ∈ C0,1−1/p([−r, 0]), the solution x(t) ∈ Rn of (2)
with the initial condition x0 exists for all t ≥ 0. Then the
following equivalence holds for system (2):

GAS-X ⇔ UGAS-X .

Clearly, when X = C0,1−1/p([−r, 0]), the assumption
in Theorem 3 that for every x0 ∈ C0,1−1/p([−r, 0]) the
solution x(t) ∈ Rn of (2) with the initial condition x0 ∈
C0,1−1/p([−r, 0]) exists for all t ≥ 0 is a redundant
assumption (since both GAS-X and UGAS-X imply this
property). Thus, when working with the Hölder spaces
C0,1−1/p([−r, 0]) with p ∈ (1,+∞], the combination of
Lyapunov stability and global attractivity is equivalent to
uniform global asymptotic stability, just like for finite-
dimensional systems.

The stability properties of system (2) viewed in different
state spaces are related. The next theorem uses the following
stability notion, which provides a KL bound on the sup
norm of the state in terms of the Sobolev norm (when
X = W 1,p([−r, 0]) or the Hölder norm (when X =

C0,1−1/p([−r, 0])) of the initial condition.

(Q-X ) There exists σ ∈ KL such that, for all x0 ∈ X ,

‖φ(t, x0)‖∞ ≤ σ (‖x0‖X , t) , ∀ t ≥ 0.

Theorem 4: Let X denote the Sobolev space W 1,p([−r, 0]

or the Hölder space C0,1−1/p([−r, 0]) for some p ∈ (1,+∞].
Then the following implications hold for system (2):

UGAS ⇒ Q-X ⇔ UGAS-X .

C. Lyapunov-Krasovskii characterizations of GAS

This section contains our third contribution. Using funda-
mental properties of delay systems and the converse Lya-
punov theory in [11] we obtain the following Lyapunov
characterization of the UGAS-X property when X denotes
either a Sobolev or a Hölder space.

Theorem 5: Let X denote the space W 1,p([−r, 0] or the
space C0,1−1/p([−r, 0]) for some p ∈ (1,+∞]. Then the
system (2) is UGAS-X if and only if there exist a functional
V : X → R+ which is Lipschitz on bounded sets of X and
functions a1, a2 ∈ K∞ such that, for all x ∈ X ,

a1(‖x‖X ) ≤ V (x) ≤ a2(‖x‖X ) (4)

V (φ(t, x)) ≤ exp(−t)V (x), ∀ t ≥ 0. (5)

The problem with Theorem 5 is that we were not able to
obtain a differential inequality that is equivalent to inequality
(5). Indeed, (5) implies the differential inequality

lim sup
t→0+

V (φ(t, x))− V (x)

t
≤ −V (x), (6)

but the differential inequality (6) does not necessarily imply
(5) since we do not know whether the mapping t 7→
V (φ(t, x)) is lower semi-continuous or not (if it were lower
semi-continuous then an application of Lemma 2.12 on pages
77-78 in [11] would imply (5)). However, when p < ∞,
the mapping t 7→ V (φ(t, x)) is in fact continuous in the
topology of W 1,p([−r, 0]) (see [12, Lemma 1]). Therefore,
when X = W 1,p([−r, 0]) for some p ∈ (1,+∞), we are able
to characterize the GAS-X (hence, the UGAS-X ) property
through a coercive Lyapunov-Krasovskii functional whose
upper right Dini derivative leads to an exponential decay
estimate.

Theorem 6: Let X denote the space W 1,p([−r, 0]) for
some p ∈ (1,+∞). Suppose that (2) is forward complete in
the sense that for every x0 ∈ C0,1−1/p([−r, 0]), the solution
x(t) ∈ Rn of (2) with initial condition x0 exists for all t ≥ 0.
Then the following statements are equivalent for system (2).

(i) GAS-X
(ii) UGAS-X

(iii) There exist a functional V : X → R+ which is
Lipschitz on bounded sets of X and functions a1, a2 ∈
K∞ such that, for all x ∈ X ,

a1(‖x‖X ) ≤ V (x) ≤ a2(‖x‖X ) (7)

lim sup
t→0+

V (φ(t, x))− V (x)

t
≤ −V (x) (8)

(iv) There exist a functional V : X → R+ which is
Lipschitz on bounded sets of X , a continuous positive
definite function Q : Rn → R+ and functions a1, a2 ∈
K∞ such that, for all x ∈ X ,

a1(|x(0)|) ≤ V (x) ≤ a2(‖x‖X ); (9)

lim sup
t→0+

V (φ(t, x))− V (x)

t
≤ −Q(x(0)). (10)

It can be easily checked that (7)-(8) imply (9)-(10). Indeed,
(7)-(8) are conditions for a coercive Lyapunov-Krasovskii
functional with dissipation rate involving the whole func-
tional itself, whereas the functional in (9)-(10) is not required



to be coercive and its dissipation rate merely involves the
current value of the solution. As discussed in [4], [5], [3],
the use of non-coercive Lyapunov-Krasovskii functional with
point-wise dissipation rate is often more convenient to ensure
GAS in practice.

The assumption that (2) is forward complete in the sense
that for every x0 ∈ C0,1−1/p([−r, 0]), the solution x(t) ∈ Rn

of (2) with initial condition x0 exists for all t ≥ 0 is
not redundant in Theorem 6. This assumption is needed
only for the implication (i) ⇒ (ii) (guaranteed by means of
Theorem 3). Indeed, the property GAS-X does not guarantee
the required forward completeness assumption when X =

W 1,p([−r, 0]).
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