
HAL Id: hal-03774793
https://hal.science/hal-03774793

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Approach for Virtual Machine Image
Provisioning in Cloud Computing

Tam Le Nhan, Gerson Sunyé, Jean-Marc Jézéquel

To cite this version:
Tam Le Nhan, Gerson Sunyé, Jean-Marc Jézéquel. A Model-Driven Approach for Virtual Machine
Image Provisioning in Cloud Computing. European Conference on Service-Oriented and Cloud Com-
puting, Sep 2012, Bertinoro, Italy. pp.107-121, �10.1007/978-3-642-33427-6_8�. �hal-03774793�

https://hal.science/hal-03774793
https://hal.archives-ouvertes.fr

A Model-Driven Approach for Virtual Machine
Image Provisioning in Cloud Computing

Le Nhan Tam1, Gerson Sunyé1,3, and Jean-Marc Jézéquel1,2

1 INRIA Rennes - Bretagne Atlantique, France
2 University of Rennes 1
3 University of Nantes

{tam.le_nhan,gerson.sunye,jean-marc.jezequel}@inria.fr

Abstract. The Cloud Computing Infastructure-as-a-Service (IaaS) layer
provides a service for on demand virtual machine images deployment.
This service provides a flexible platform for cloud users to develop, de-
ploy, and test their applications. However, one major issue of application
deployment is to ensure the compatibility of software components in-
stalled in a virtual machine image. This paper describes a model-driven
approach to manage, create configurations, and deploy images for virtual
machine image provisioning in Cloud Computing. This approach consid-
ers virtual image as product lines and uses feature models to represent
their configurations. It uses model-based techniques to handle automatic
deployment and reconfiguration, making the management of virtual im-
ages more flexible and easier than traditional approaches.

Keywords: Model-driven deployment, cloud computing, virtual image
provisioning, feature models

1 Introduction

Cloud Computing [2, 13] has been a hot topic in both of research and industry
community recently. It can be described as a new kind of computing in which
dynamically scalable and virtualized resources are provided as services over the
Internet. Cloud users can access cloud system and use the service through dif-
ferent devices and interfaces. They only have to pay what they use according
to Service Level Agreement contracts established between Cloud providers and
Cloud users [5]. One of the main features of Cloud computing is the virtualiza-
tion in which all cloud resources become transparent to the user. They do not
need any longer to control and maintain the underlying cloud infrastructure.
The virtualization in Cloud Computing combines a number of virtual machine
images (VMIs) on the top of physical machines. Each virtual image hosts a com-
plete software stack: it includes operating system, middleware, database, and
development applications. The deployment of a VMI typically involves booting
the image, as well as installation and configuration of software packages. In the
traditional approach, the creation of a VMI to fit user’s requirements and de-
ploying it in the Cloud environment are typically carried out by the technical

2 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

division of the Cloud service providers. They provide a platform as a service to
the user according to SLA contracts signed between the service provider and the
user. Usually, it is a pre-packaged platform with installed and configured software
components. The standard VMI contains many software packages, which rarely
get used and thus the image is typically larger than what would be necessary.
This can lead to several difficulties, such as wastage of storage space, memory,
operating costs, and waste of network bandwidth when cloning an image and
deploying it on the cloud nodes [1].

In the traditional approach, when a cloud user requests a new development
platform, the service provider administrators select an appropriate VMI for
cloning and deploying on cloud nodes. If there is no match found, then a new one
is created and configured to match the request. It can be generated by modifying
from the closest-fit existing VMI or from scratch. Several concerns would need
to be addressed by the cloud providers, such as: (i) How to create an optimal
configuration? (ii) Which software packages and their dependencies should be
installed? (iii) How to find the best-fit existing VMI and how to obtain a new
VMI by modifying this one?

Cloud service providers want to automate this process because the complex-
ity of interdependency between software packages, and the difficulty of mainte-
nance [7] is time-consuming for the creation of standard VMIs. In other words,
they want to give users more flexibility when choosing the appropriate VMI
to satisfy their requirements, while ensuring benefits for providers in terms of
time, operating costs, and resources. In this paper, we present an approach for
managing VMI for Cloud Computing environments, providing a way to adapt
to the needs of auto-scaling and self-configuring virtual machine images. In this
approach, we consider VMIs as a product line and use feature models to repre-
sent VMI configurations and model-based techniques to handle automatic VMI
deployment and reconfiguration. We claim that this approach makes the man-
agement (i.e., creation, configuration and adaption) of virtual image faster, more
flexible and easier than the traditional approach. We validate this approach by
an example showing that, given a base model representing all available artifacts,
one can easily derive a configuration model (a specific use of a subset of artifacts)
and generate all needed configuration scripts to generate its corresponding VMI.
The paper is organized as follows. Section 2 describes our solution of manag-
ing virtual machine image configurations by using feature models and using the
model-driven approach for virtual machine image deployment in Cloud Comput-
ing environment. Section 3 introduces an example about deploying a Java web
application development platform. Section 4 shows the experiment evaluations.
Section 5 discusses the related work, and is followed by the conclusion and future
work in Section 6.

2 Model-Driven Approach

In this section, we present a model-based approach for image provisioning. This
approach uses an image with a minimal configuration, containing the operating

A Model-Driven Approach for VMI Provisioning 3

system, some monitoring tools, and an execution model. The goal of the execution
model is to install and configure software packages, after booting the deployed
images.

2.1 Feature Modeling for VMI Configuration Management

Fig. 1. Feature Modeling Approach

Our approach uses feature modeling [11] to manage the configuration of
virtual-machine images. In terms of configuration derivation, a feature model
describes:

– The software packages that are needed to compose a Virtual Machine Image,
represented as configuration options.

– The rules dictating the requirements, such as dependent packages and the
libraries required by each software component.

– The constraining rules, which specifies how the choice of a given component
restricts the choice of other components, in the same Virtual Machine Image.

Feature models have a tree structure, with features forming the nodes of the
tree and groups of features representing feature variability. There are four types
of feature groups: Mandatory ; Optional ; Alternative; and Or. The model follows
some rules when specifying which features should be included in a variant. If a
variant contains a feature, then:

– All its mandatory child features must also be contained;
– Any number of optional child features can be included;
– Exactly one feature must be selected from an alternative group;
– At least one feature must be selected from an or group.

4 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

Fig. 2. Feature Diagram Represents a Base Model

Feature models support two cross-tree constraints: Requires; and Excludes.
Given two features, fa and fb: if fa requires fb, then the selection of fa implies
the selection of fb; if fa excludes fb, then the selection of fa prevents the selection
of fb.

Our approach deals with two models: base and resolved. The base model
represents the whole product line, with all its features, their relationships, and
constraints; The resolved model is obtained after the product derivation process,
it contains selected features and their dependencies.

Base Model The base model represents configuration options which would
be used for composing a VMI. The elements of the base model are features of
the configuration options of a VMI, they represent software packages and their
dependencies. These elements become elements of resolved models, according to
the resolutions of the corresponding selection models.

Figure 2 depicts a part of based model that represents VMI configuration
features. In this model, features and their relationships represent software pack-
ages:

– Operating System is a mandatory child feature of Virtual Machine Image,
which must be selected when Virtual Machine Image is selected.

– Operating System includes alternative child features: Windows and Linux
– When the Operating System feature is selected, then one of Windows 7 or

Ubuntu 11.10 must be selected.
– If the feature Ubuntu 11.10 is selected, then all features that requireWindows

7 cannot be selected, for instance: Visual Studio 2010, JRE 1.6 Windows,
etc.

Base models are built by IT experts of cloud providers, who have knowledge
about systems and software packages used to compose Virtual Machine Images.
The correctness of the base model relies on the correctness of the feature model

A Model-Driven Approach for VMI Provisioning 5

that represents the base models. Many approaches and tools were proposed to
automate analysis of feature models [16, 4, 14]. They offer to validate, check
satisfiability, detect the ”dead” features and analyze feature models. In our im-
plementation, we use constraints to ensure that the created feature model is
valid, and that configurations, which are derived from this feature model, are
also consistent with the base model. For example:

– Parent and child features cannot have a mutually exclusive relationship.
– Sibling features cannot be mutually exclusive.
– For two features f1 and f2, if f1 requires f2, then f2 cannot require f1.

Product Derivation Product Derivation is a process that is responsible for the
creation of the final configuration. It supports to derive the VMI configurations
from the base model [19]. To create a specific configuration of a VMI, the designer
selects some features from the base model and uses a mechanism to produce a
suitable configuration. The selection of each feature is checked and validated by
the Product Derivation process to ensure the selection is valid. When a feature
is selected, the Product Derivation process checks its relationships. Features
connected to the selected feature by a mutually exclusive relationship become
unavailable on the base model for next selections. All of the features that are
required by the selected feature are also selected.

Fig. 3. A Resolved Model Derived by the Product Derivation Process.

Resolved Models A resolved model stores user’s feature choices of the base
model and their dependencies. It is derived from the Product Derivation process
based on user ’s selection on the base model. A resolved model corresponds to a
specific configuration of a Virtual Machine Image. Figure 3 is an example of a
resolved model that is derived from the base model presented in Figure 2 with
the following user ’s selections: operating system is Ubuntu 11.10, integrated

6 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

development environment is Eclipse 3.5, and Apache Tomcat 5.5 for application
server. According to the base model, Eclipse 5.5 requires Java Runtime. Both
features have two alternative children: Windows and Linux. However, since the
selected operating system is Ubuntu 11.10, only the Windows version is available.
Addition, since Monitoring is a mandatory feature of Virtual Machine Image it
must be selected.

Comment: BEGIN-EDIT By using feature models, cloud providers have
flexibility to create Base models representing resources for VMI provisioning.
Features represent software packages or hardware options, such as RAM or vir-
tualization technology (e.g., KVM or Xen). These feature could also be used
to store other informations: time, cost, memory usage, etc., to support finding
optimal configurations. The first time for creating the base models might take
time and need experts on software packages and their dependencies. However,
once the Base model is created, it helps cloud users during the selection and the
creation of VMI configurations, reducing time, complexity, and errors during the
manipulation. Comment: END-EDIT

2.2 Model-Based Deployment Architecture

Comment: BEGIN-EDIT Unlike the traditional approach, where software pack-
ages are installed and configured when the VMI template is created, the model-
driven deployment approach installs and configures software packages at runtime
when a VMI template is booted. The approach also supports synchronization
of maintenance of the deployed VMIs at runtime. This mechanism allows users
to update, remove, and add new components to running VMIs, without image
shutdown and re-deployment. It is more flexible than the traditional approach.
Comment: END-EDIT.

In our approach, we create models that drive the creation of VMIs instance
on demand. Every time a new virtual machine is created on the cloud node, the
cloud provider selects features of VMI, generates configurations and applies the
model to it. Figure 4 describes an overview architecture of our approach.

– VMI Repository
The VMI Repository contains basic virtual machine images that are used as
the initial VMIs: e.g., Ubuntu11.10.img, fedora15.0.img. These are stan-
dard VMIs with minimum configuration, such as operating system and as-
sistance software, like monitoring tools.

– VMI Configuration Manager
The VMI Configuration Manager is responsible for the creation and the
management of configurations of virtual machine image to fulfill requested
requirements. By using the VMI configuration manager, users can easily
select the required software for creating the appropriate virtual machine. It
also helps the cloud providers to manage the preparation and provision of
resources as per client requirements.

– Execution Model
The Execution Model is responsible for reserving cloud nodes, deploying vir-
tual machines, and executing the corresponding configuration that resulted

A Model-Driven Approach for VMI Provisioning 7

Fig. 4. An Overall Architecture of Model-Driven Approach for VMI Deployment

from the reasoning of VMI Configuration Manager. It is an encapsulation of
Ruby and shell script files.

– Cloud Nodes
Cloud Nodes are reserved nodes in the cloud infrastructure for hosting and
running virtual machines.

– Software Repository
The Software Repository stores software packages used to compose a VMI.
It can be a file server inside the cloud infrastructure or other repositories
from the Internet, such as the Debian repository.

2.3 Model-Based Deployment Process

The deployment process deals with the VMI Configuration Manager, the Exe-
cution Model, the Software Repositories, and the Cloud Nodes. It includes the
following steps:

– Create a VMI configuration.
In this step, cloud users interact with the VMI Configuration Manager to
select configuration options from the base model. The VMI Configuration
Manager analyzes the user’s choices and generates a resolved model (i.e., a
valid configuration of a VMI).

– Generate a deployment script file.
A resolved model is transformed into a deployment script file for automatic
deployment and configuration. In the current implementation, we use Chef4

4 http://wiki.opscode.com/display/chef/About

8 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

Execution Model

VMI Configuration Manager

Base model

Product
Derivation

User’s selections

Resolved models

Deployment scripts

Deployment
component

Cloud Nodes

Ubuntu

VMI 1
Node 1VMI 1VMI 1Ubuntu

VMI 2
VMI 1VMI 1Ubuntu

Chef

Java

Tomcat

MySQL

Chef

PHP

Apache2

MySQL …
1

2

3

1 : create a VMI configuration (represented by a Resolved model)

2 : generate a deployment script file from a Resolved model

3 : deploy a standard VMI and apply deployment scrip file for cloud nodes

Fig. 5. Model-Driven Process

to automatic install and configure software on a virtual machine. Chef is an
installation software that cloud providers use to deploy, install, and configure
software stacks on the cloud nodes at runtime. Chef requires an input file,
describing the node configuration: the required software, as well as their role.
Actually, the input file is a Ruby or JavaScript Object Notation5 (JSON)
source code.

– Deploy a standard VMI and apply the deployment script file to
the cloud nodes.
The Execution Model, based on the resolved model and deployment script
file, selects a standard VMI and launches it on the reserved nodes. After that,
it transfers the deployment script to the nodes and executes Chef. Finally,
it returns the successful nodes to the cloud user.

3 An example of the VMI for Java Web Application

To illustrate our approach, we introduce an example of VMI provisioning for the
Java Web Application Development platform. The configuration of this VMI
includes an operating system, a web application server, a database management
system, and a programming language compiler.

Cloud users select the required features on the base model by the using VMI
Configuration Manager, for example: Ubuntu, Eclipse, Apache Tomcat, and
Database. Figure 6 represents the selection of configuration options from the
base model.

A VMI includes only one operating system, so the choice of Ubuntu feature
is mutual exclusive with other operating systems and their dependencies. For ex-
ample, the users can select neither the SQL Server nor the Eclipse for Windows
because both features require Windows, which is a mutual exclusive feature of

5 http://www.json.org/

A Model-Driven Approach for VMI Provisioning 9

Fig. 6. Example of VMI Configuration Manager

Linux Ubuntu. The features JRE 1.6 for Linux, Chef-Linux are auto-selected be-
cause Apache Tomcat requires JRE 1.6 for Linux and Chef-Linux is a mandatory
feature.

The Product Derivation process generates a resolved model from the user’s
selections. The transformation from a resolved model into a script file helps to
automatic install and configure software stacks that are selected in the resolved
model. Figure 6 also shows the example of a resolved model and a deployment
script file, which are corresponding to the user’s selection from the base model.
The Deployment script is a JSON file, named deployscript.json. The Execution
model uses the script file for automatic installing and configuring software into
the selected virtual image. Listing 1 presents a partial Ruby code for executing
the script file on cloud nodes.

4 Experiment Evaluation

In this section, we present an experimental evaluation of our approach on the
easiness of manipulation and the performance of deployment, in terms of data
transfer and deployment duration. The experiment is executed on Grid50006, a
virtualization infrastructure for research in France. We use Grid5000 ’s tools to
reserve nodes and deploy VMIs to the nodes.

6 https://www.grid5000.fr/mediawiki/index.php

10 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

Listing 1. A Partial Code in Ruby of the Execution on the Cloud Nodes

Net : : SSH : : Multi . s t a r t do | s e s s i o n |
access servers v ia a gateway
s e s s i o n . v ia STRGATEWAY, CONFIG[’ username ’]
deployment [" nodes "] . each do | node |

s e s s i o n . use " root@ #{ node }"
end

u r l = ’ http :// public . grenoble . grid5000 . fr /~ tlenhan / TamlnChefScripts / ’
s e s s i o n . exec ’ hostname ’
s e s s i o n . loop
s e s s i o n . exec ’ mkdir ␣ -p␣/ tmp / chef - solo ’
s e s s i o n . loop
s e s s i o n . exec ’ wget ␣ ’ u r l ’ deployscript . json ’
s e s s i o n . loop
s e s s i o n . exec ’chef - solo ␣ -j␣ deployscript . json ␣ -r␣ ’ u r l ’ cookbooks . tgz ’
s e s s i o n . loop

end

4.1 Scenario Description

Our simple scenario deployment generates a VMI that includes selected software
stacks in the previous example (Java, Tomcat, MySQL). We deploy this VMI
to the reserved nodes on Grid5000. We compare our approach to the traditional
approach in terms of time for setting up the environment, amount of data transfer
through the network, and operating steps. We evaluate the traditional approach
in two cases:

– Case 1: There is no existing VMI that fits the requirements. The cloud
provider needs to create a new VMI containing Java, Tomcat and MySQL.

– Case 2: There is an existing VMI that fits the requirements. It is used as
a standard VMI for deploying on the cloud nodes. However, for meeting
different user requirements, it also contains software that may not be used:
Java, Tomcat, MySQL, Apache2, Jetty, PHP5, Emacs, PostgreSQL, DB2-
Express C, Jetty, LibreOffice, etc.

4.2 Traditional Approach vs Model-Driven Approach

Time and Operations of the Deployment In the traditional approach most
decisions are taken by experts, because they require the knowledge of underlying
systems and software dependencies. Our approach provides a graphical interface,
the VMI Configuration Manager, which guides cloud users in the selection of a
set of configuration options. After that, the Configuration Manager deploys the
new VMI on cloud nodes, making easy to update and to maintain the running
VMI. Table 1 shows a comparison between the traditional and the model-driven
approaches, in terms of operations and deployment duration. Experiments show
that the deployment duration of our approach is slightly better that the tradi-
tional approach, if there is an existing VMI that fits the requirements. However,
if there is no appropriate VMI and the cloud provider creates a new one, then
our approach is faster than the traditional approach.

A Model-Driven Approach for VMI Provisioning 11

(*)$$:$$$$$9$minutes$for$case$1,and12$minutes$for$case$2$
(**):$$$$$21$minutes$for$case$1,and13$minutes$for$case$2!
!
!
!
!
!

Operation$ Archive$Size$ Installation$Size$
Install!Java!JRE! 60.3!MB! 172!MB!
Install!Tomcat6! 5,522!KB! 7,246!KB!
Install!MySQL! 24.1!MB! 60.8!MB!
Install!Apache2! 2,062!KB! 6,975!KB!
Install!PHP5! 6,928!KB! 18.4!M!
!
!
SVi:!Size!of!a!clean!VMIi!

Traditional Approach Model-driven Approach
Operations Handled

by
Estimated

Time
Operations Handled

by
Estimated

Time
1. Find the existing

VMI in repository
that fit the
requirements.

• If found: go to
operation 3,

• If not found:
create a new one
or modify an
existing VMI

Expert
(Manually)

1 minute 1. Create a VMI
configuration
& Generate a
deployment script
file

Expert &
Non-

expert
(Manually)

2 minutes

2. Create a new VMI
• Boot a clean VMI
• Install and

configure software
• Save to an image

Expert
(Manually)

11
minutes

2. Reserve 50 nodes
& deploy the
standard VMI to
the nodes

Automatic 8 minutes

3. Reserve 50 cloud
nodes & deploy
the VMI to the
nodes

Expert
(Manually)

9 / 12
minutes
(*)

3. Copy the
deployment file to
the running nodes
& execute it to
install, configure
software

Automatic 2 minutes

Total time 21 / 13
minutes
(**)

Total time 14
minutes

Table 1. The Operations of Model-Driven Approach and Traditional Approach

3.26	

6.52	

9.78	

13.04	

16.30	

19.55	

22.81	

26.07	

29.33	

32.59	

4.70	

8.68	

12.65	

16.63	

20.61	

24.58	

28.56	

32.54	

36.51	

40.49	

7.85	

15.70	

23.54	

31.39	

39.24	

47.09	

54.93	

62.78	

70.63	

78.48	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

90.00	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Da
ta
	
 T
ra
ns
fe
r	
 (
G
B)
	

Number	
 of	
 Cloud	
 nodes	

Model-­‐Driven	
 Approach	

Tradi>onal	
 Approach	
 -­‐	
 case	
 1	

Tradi>onal	
 Approach	
 -­‐	
 case	
 2	

Fig. 7. Data Transfer Through the Network of the VMI Deployment

12 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

Data Transfer Through the Network In our experiment, we use a clean
image Squeeze-x64-nsf7 (333.587 MB), which is available on the Grid5000 ’s
repository. This is also the standard VMI for the case 1 of the traditional ap-
proach. In our approach, we use minimal configuration images, only containing
an installation software and its dependencies (i.e., Chef). Comment: Begin-
Edit After the installation of the minimal software, the image size is 339.955
MB. In the case 2, unused software is installed for adapting different require-
ments from users. This makes the size of a standard VMI is much bigger, 803.60
MB. Comment: End-Edit Figure 7 shows that in both cases, the model-driven
approach transfers less data than the traditional approach. Especially when the
pre-packaged VMI contains more software installed, and deploy to a large number
of cloud nodes. In this example, when we deploy 100 cloud nodes, the traditional
approach transfers 40.49GB of data for case 1, and 78.48GB of data for case 2,
while the model-driven approach only transfers 32.59GB of data. The traditional
approach reduces the amount of data in 19.5% and 58.47%, comparing to cases
1 and 2, respectively.

5 Related Work

Our work is related to two areas: Configuration management and the deployment
of VMI in cloud environment.

5.1 Virtual Machine Image Configuration Management

Some research efforts use feature models to capture configuration options of
complex systems [8, 17]. Wenzel et al. [17] explain how feature models help to
simplify the selection of configuration options. Similarly to our approach, the
authors use feature models and cross cutting constraints for managing the con-
figuration. This can reduce requirement elicitation errors and support automated
choice propagation [10]. Nevertheless, they focus on creating the database of the
configuration management system, while we used feature model to manage the
configuration of VMIs for supporting the automatic deployment process in cloud
computing.

Dougherty et al. [8] present a technique to minimize the number of idle VMs
in an auto-scaling queue. The technique helps to reduce the energy consumption
and the operating cost and satisfies the constraint of response time. Their work
defines a method to represent VMI configuration options by using feature models
with constraints in the form of Constraint Solving Problems (CSP). It uses
an auto-scaling queue to store created images in idle status. This leads to an
improvement of response time when the request matches the available image in
the queue. T.Zhang et al. [18] present the concept of typical virtual appliances
(TVA) and their management. A TVA contains popular software, and the system
can provide a set of frequently used virtual appliances. It helps to minimize the

7 https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-nfs-1.1

A Model-Driven Approach for VMI Provisioning 13

transformation time from an existing virtual appliance to a new one that fits the
request. However, in both approaches, the composition of virtual image occurs
at design time and at the administrator side, before the system copy and deploys
it into cloud nodes. This makes it difficult to synchronize the maintenance and
modification of the running images as needed when the amount of running cloud
nodes is large. For example, upgrading the software version, or installing a new
software package on the running virtual machines. Our approach composes VMI
at runtime, when the standard VMI is deployed on cloud nodes. We put the
configuration file into the running cloud nodes (they clone the standard VMI),
and the installation and configuration occurs inside these nodes. Therefore, it is
easy to maintain or modify the running images.

5.2 Virtual Machine Image Deployment

Konstantinou et al. [12] describe a model-driven engineering approach for virtual
image deployment in virtualized environments. They focus on reusable virtual
images and their composition. The authors introduce the concept of virtual
solution models. This concept defines the solution as a composition of multi-
ple configurable virtual images. The virtual solution model is an abstract de-
ployment plan and it is platform-independent. According to the specific cloud
platform, the model can be transformed into an executable deployment plan[9].
Chieu et al. [6, 7] and Arnold et al. [3] propose the use of virtual image templates.
Their approaches describe a provisioning system that provide pre-installed vir-
tual images according to the deployment scenario. M. Sethi et al. [15] present
an approach for automated modification of dependency configuration in SOA
deployment. In their work, the software stacks are installed and configured at
deployment time, transferring smaller VMIs through the cloud network. Sun Mi-
crosystems [1] proposes an approach to deploy applications in cloud computing
environment. Similarly to our approach, their approach uses shell-script files to
execute on running cloud nodes at runtime. However, both approaches need ex-
perts on virtual image provisioning. By using feature models to represent the
configuration options, our approach can support both experts and non-experts,
who lack knowledge about virtual image provisioning and underlying software
systems and dependencies. It can reduce errors and improve the consistency of
configurations during the composing of VMIs.

6 Conclusion and Future Work

In this paper, we presented a model-driven approach to manage and create con-
figurations, as well as deploy images for virtual machine image provisioning in
Cloud Computing. We consider virtual images as product lines, use feature mod-
els to capture their configurations, and use model-based techniques for automatic
deployment of virtual images. This approach makes the management of virtual
image more flexible and easier to use than the traditional approach. On the
implementation side, we developed a prototype for validating the approach. It

14 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

helps cloud users to select configuration options, to create virtual images and to
deploy them on cloud nodes. We used Grid5000 as a Cloud Computing environ-
ment testbed for deploying virtual images.

The framework includes two major parts: the VMI Configuration Manager
and the Execution Model. The VMI Configuration Manager helps cloud users
to select configuration options, create a valid configuration of a VMI through a
graphical user interface. It also generates deployment script files. The Execution
Model uses these files to automatically deploy and configure software into cloud
nodes at runtime without any manual intervention.

We compared our approach to the traditional cloud deployment approach in
two different scenarios, using an existing compatible VMI and creating a new
one. Experiments showed that the model-driven approach helps cloud users to
create the configurations and deploy VMIs on demand easily. It minimizes error-
prone manual operations. Additionally, our approach reduces the network data
transfer, comparing to the traditional approach. Especially, if a pre-packed VMI
contains unwanted software. In this case, experiments showed that our approach
reduces the data transfer up to 58.47%. It saves network resources during VMIs
provisioning in Cloud Computing.

Our framework could be extended to support cloud users for estimating the
deployment time and operational costs as needed. Therefore, it could improve
the performance of virtual machine image provisioning. However, the reasoning
engine of our Product Derivation process is still limited with simple constraints
of the configuration. It is a challenge to deal with more elaborated configurations
that have optimal requirements on the complex constraints of multiple param-
eters. In the future, we plan to improve the reasoning engine of the Product
Derivation process, to deal with more complex configuration options and con-
straints. We believe that a reasoning engine could enhance the performance of the
Product Derivation process in the VMI configuration management. Comment:
BEGIN-EDIT Currently, our current prototype only works in the Grid5000 envi-
ronment. We are improving the prototype to have the ability to work with some
open-source cloud platforms, such as OpenNebula, Nimbus, etc. Comment:
END-EDIT

References

[1] Model-driven application deployment for cloud comput-
ing environments. White Paper, Sun Microsystem Inc. (Jan-
uary 2010), http://www.techrepublic.com/whitepapers/

model-driven-application-deployment-for-cloud-computing-environments/

1829151, available online (18 pages)
[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds:
A Berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley (2009)

[3] Arnold, W., Eilam, T., Kalantar, M.H., Konstantinou, A.V., Totok, A.: Auto-
matic realization of SOA deployment patterns in distributed environments. In:

A Model-Driven Approach for VMI Provisioning 15

Service-Oriented Computing - ICSOC 2008, 6th International Conference, Syd-
ney, Australia, December 1-5, 2008. Proceedings. pp. 162–179 (2008)

[4] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. Lecture Notes in Computer Science 3520, 381–390 (2005)

[5] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599 – 616 (2009)

[6] Chieu, T., Mohindra, A., Karve, A., Segal, A.: Solution-based deployment of com-
plex application services on a cloud. In: Service Operations and Logistics and
Informatics (SOLI), 2010 IEEE International Conference on. pp. 282 –287 (july
2010)

[7] Chieu, T., Mohindra, A., Karve, A., Segal, A.: Dynamic scaling of web applications
in a virtualized cloud computing environment. In: e-Business Engineering, 2009.
ICEBE ’09. IEEE International Conference on. pp. 281 –286 (oct 2009)

[8] Dougherty, B., White, J., Schmidt, D.C.: Model-driven auto-scaling of green cloud
computing infrastructure. Future Generation Computer Systems 28(2), 371 – 378
(2012)

[9] Han, R., Guo, L., Guo, Y., He, S.: A deployment platform for dynamically scaling
applications in the cloud. In: Cloud Computing Technology and Science (Cloud-
Com), 2011 IEEE Third International Conference on. pp. 506 –510 (29 2011-dec
1 2011)

[10] Hubaux, A., Classen, A., Mendonca, M., Heymans, P.: A preliminary review on
the application of feature diagrams in practice. In: 4th International Workshop on
Variability Modelling of Software-Intensive Systems - VaMOS. Proceedings (2010)

[11] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute (November 1990)

[12] Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Snible,
E.: An architecture for virtual solution composition and deployment in infrastruc-
ture clouds. In: Proceedings of the 3rd international workshop on Virtualization
technologies in distributed computing. pp. 9–18. VTDC ’09, ACM, New York,
NY, USA (2009)

[13] Mell, P., Grance, T.: The nist definition of cloud computing. Tech. rep., National
Institute of Standard and Technology - NIST (2011)

[14] Mendonça, M., Wasowski, A., Czarnecki, K.: Sat-based analysis of feature models
is easy. In: 13th International Conference on Software Product Lines (SPLC 2009),
San Francisco, CA, USA (2009)

[15] Sethi, M., Kannan, K., Sachindran, N., Gupta, M.: Rapid deployment of SOA
solutions via automated image replication and reconfiguration. In: Services Com-
puting, 2008. SCC ’08. IEEE International Conference on. vol. 1, pp. 155 –162
(july 2008)

[16] Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models.
In: ICSE. pp. 254–264. IEEE (2009)

[17] Wenzel, S., Berger, T., Riechert, T.: How to configure a configuration manage-
ment system – an approach based on feature modeling. In: 1st International Work-
shop on Model-driven Approaches in Software Product Line Engineering (MAPLE
2009) at SPLC 2009. San Francisco, CA (Aug 2009)

[18] Zhang, T., Du, Z., Chen, Y., Ji, X., Wang, X.: Typical virtual appliances: An op-
timized mechanism for virtual appliances provisioning and management. Journal
of Systems and Software 84(3), 377 – 387 (2011)

16 Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel

[19] Ziadi, T., Jézéquel, J.M.: Software product line engineering with the UML: De-
riving products. In: Käkölä, T., Dueñas, J.C. (eds.) Software Product Lines, pp.
557–588. Springer (2006)

