Max Muzeau 
email: max.muzeau@centralesupelec.fr
  
Chengfang Ren 
email: chengfang.ren@centralesupelec.fr
  
Sebastien Angelliaume 
email: sebastien.angelliaume@onera.fr
  
Mihai Datcu 
email: mihai.datcu@dlr.de
  
Jean-Philippe Ovarlez 
email: jean-philippe.ovarlez@onera.fr
  
Sebastien Angelliaume 
  
Sébastien Angelliaume 
  
  
SAR Anomalies Detection based on Deep Learning

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

La détection d'anomalies est un sujet fondamental en traitement d'image. Etudié dans de nombreux domaines comme l'imagerie médicale [START_REF] Baur | Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study[END_REF], la vidéo [START_REF] Xu | Learning Deep Representations of Appearance and Motion for Anomalous Event Detection[END_REF], l'imagerie hyperspectrale [START_REF] Jiang | Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection[END_REF] et dans notre cas, l'imagerie radar à synthèse d'ouverture (SAR) [START_REF] Sinha | Variational Autoencoder Anomaly-Detection of Avalanche Deposits in Satellite SAR Imagery[END_REF], la disponibilité de telles données s'étant fortement accrue ces dernières années suite à la mise en orbite de nombreux satellites tels que TerraSAR-X et Sentinel. Même si les données sont maintenant massivement disponibles, le manque d'annotation de celles-ci demeure un problème crucial pour l'utilisation d'algorithmes supervisés. De plus, le nombre de zones anormales est très largement inférieur au nombre de zones normales, ce qui rend un entraînement supervisé encore plus complexe. Dans ce contexte, l'emploi d'algorithme non supervisé est généralement préféré, parmi lesquels un des plus utilisé est le détecteur de Reed-Xiaoli [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF]. Récemment, de nombreux travaux se sont basés sur les réseaux de neurones profonds, principalement grâce à des autoencodeurs et des GAN [START_REF] Akçay | Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection[END_REF][START_REF] Schlegl | f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[END_REF] (voir § 2.2.1 et 2.2.2). Ils permettent de réduire fortement la taille des données d'entrée tout en préservant l'information. Leur utilisation permet de plus de ne pas reconstruire les zones anormales en sortie du décodeur (voir § 2.2.3). Certains auteurs ont appliqué ces algorithmes pour l'imagerie SAR [START_REF] Mabu | Anomaly Detection Using Convolutional Adversarial Autoencoder and One-class SVM for Landslide Area Detection from Synthetic Aperture Radar Images[END_REF][START_REF] Sinha | Variational Autoencoder Anomaly-Detection of Avalanche Deposits in Satellite SAR Imagery[END_REF], sans pour autant s'attacher à la problématique du bruit de speckle, qui pourtant accroît fortement la difficulté [START_REF] Goodman | Some fundamental properties of speckle[END_REF].

Un des objectif de ce papier est de répondre à ce problème grâce à l'ajout d'une étape de despeckling. Une fois l'effet du bruit minimisé, un adversarial autoencodeur est utilisé pour obtenir une image sans anomalie. Finalement, une approche de détection de changement entre images est utilisée. L'originalité réside alors dans l'utilisation conjointe d'une méthode de détection de changement usuelle et d'autoencodeurs pour la détection d'anomalies.

Méthode proposée 2.1 Filtrage du speckle

Les images SAR sont impactées par un bruit de speckle. Il est dû aux nombreux rétro-diffuseurs qui se somment de manière cohérente au sein d'une même cellule de résolution. Un modèle de ce bruit est proposé par Goodman [START_REF] Goodman | Some fundamental properties of speckle[END_REF]. Pour réduire son effet sur les images SAR, le réseau de neurones SAR2SAR [START_REF] Dalsasso | SAR2SAR: a self-supervised despeckling algorithm for SAR images[END_REF] pré-entraîné est utilisé sur les images en intensité.

Ces images subissent généralement une pondération pour réduire les lobes secondaire des fortes cibles ou ayant nécessité un sur-échantillonnage pour garantir des pixels carré, mais la contrepartie est la présence d'une corrélation spatiale entre pixels. Un des avantages des méthodes de despeckling par Deep Learning par rapport aux méthodes statistiques est la prise en compte de cette corrélation.

L'algorithme SAR2SAR est une adaptation pour le SAR de l'algorithme noise2noise [START_REF] Lehtinen | Noise2Noise: Learning Image Restoration without Clean Data[END_REF]. Il répond à un problème majeur qui est l'absence d'images sans speckle comme référence. Dans [START_REF] Lehtinen | Noise2Noise: Learning Image Restoration without Clean Data[END_REF], les auteurs montrent qu'il n'est pas nécessaire de argmin

Z E Y ∥Z -Y∥ 2 F = E Y [Y] (1) 
où Z représente l'image en sortie du réseau et Y une image de la même zone avec une réalisation différente du bruit. D'après (1), minimiser l'erreur quadratique moyenne revient à prédire par le réseau la valeur moyenne des données bruitées. Il faut donc que le bruit soit centré et que les réalisations soient décorrélées. Dans le cas de données biaisées (ce qui est le cas des images SAR en log intensité), il convient de soustraire la moyenne du bruit au résultat s'il est additif. L'utilisation de cette méthodologie nécessite l'emploi de deux données de télédétection acquises sur la même zone mais avec un décalage temporel ou géométrique suffisant pour assurer deux réalisations de bruit différentes. Les apports de SAR2SAR concernent l'utilisation d'une fonction de coût adaptée à la distribution des images SAR ainsi qu'une étape de compensation des éventuels changements sur la baseline temporelle entre les acquisitions, ce qui est le cas pour la majorité des satellites d'observation de la Terre actuellement en orbite dans l'espace. Cet algorithme fonctionne sur des images monovariées (mono canal). Dans le cas de données multivariées, il sera nécessaire de l'appliquer successivement sur chacun des canaux (polarimétrique par exemple) tout en ajustant la normalisation pour conserver une même dynamique entre les canaux. Une illustration est donnée en Fig. 2.

Reconstruction sans anomalies

Le processus de reconstruction requiert l'introduction des deux algorithmes suivants. On utilisera les notations E(.), D(.) et D c (.) pour définir respectivement l'encodage, le décodage et la sortie de discriminateur.

Generative adversarial networks

Un Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative adversarial networks[END_REF] est un algorithme d'apprentissage non supervisé ayant pour but initial la génération d'images de synthèse. Un générateur et un discriminateur sont entraînés conjointement, le premier devant générer une image la plus réaliste possible, à partir d'un vecteur source aléatoire de faible dimension distribué selon une loi multivariée choisie, et le deuxième devant vérifier la représentativité de cette image. Cette architecture est utilisée dans notre cas, non pas pour générer des images, mais pour l'encoder dans un espace latent de faible dimension et dont la loi du vecteur aléatoire est connue. (voir Fig. 1)

Adversarial Autoencoder

Un adversarial autoencoder [START_REF] Makhzani | Adversarial Autoencoders[END_REF] est composé d'un générateur (encodeur+décodeur) et d'un discriminateur dans l'espace latent. Le générateur se décompose en deux parties : l'encodeur qui va transformer une entrée X (ici, une image SAR multivariée, X ∈ R h×w×c de taille h × w et de profondeur c, avec h et w le nombre de pixels en azimut et en distance possédant c canaux de polarisation) en un vecteur latent z = E(X) suivant une distribution a posteriori z ∼ p(z) . Le décodeur va, à partir de ce vecteur, faire une estimation de l'entrée X = D(z). La différence avec un autoencoder est l'ajout d'une régularisation de l'espace latent. Un discriminateur (à la manière d'un GAN) contraint z à suivre une distribution gaussienne en déterminant si le vecteur d'entrée est issue d'une loi gaussienne centrée réduite (z real ∼ N (0, I)) ou non (z f ake ∼ p(z)).

Le générateur et le discriminateur sont entraînés en deux phases successives :

1 -Erreur de reconstruction : cette phase permet au générateur de reconstruire une image avec une erreur pixel à pixel la plus faible. On minimise donc l'erreur de reconstruction L rec 1 pour les anomalies, ces zones sont reconstruites moins fidèlement ce qui les rendent plus identifiables :

L rec = 1 h w c i,j,k X i,j,k -Xi,j,k 1 .
(2)

2 -Erreur de régularisation : cette étape permet de contrôler la distribution de l'espace latent et d'obtenir également une meilleure reconstruction [START_REF] Mabu | Anomaly Detection Using Convolutional Adversarial Autoencoder and One-class SVM for Landslide Area Detection from Synthetic Aperture Radar Images[END_REF][START_REF] Makhzani | Adversarial Autoencoders[END_REF]. Pour cela, les poids des ré-seaux E et D c doivent être estimés de manière à obtenir : min

E max Dc L lat = E z real ∼N (0,I) [log(D c (z real )] +E E(X)∼p(z) [log (1 -D c (E(X))] . (3)

Méthode d'utilisation

En synthèse, le modèle de reconstruction ainsi exposé ne permettra a priori pas une reconstruction suffisamment exhaustive de l'ensemble des motifs en entrée. L'objectif étant de reconstruire uniquement ceux suffisamment présents dans les données, les motifs rares seront ainsi vus comme des "anomalies".

Détection de changement

Une fois l'étape de reconstruction effectuée, une méthode classique de détection de changements (comparaison des matrices de covariance entre chaque pixel (k, l) des 2 images SAR X et X) est appliquée suivant la dimension c comme :

A X (k, l) = ΣX k,l - Σ X k,l 2 F (4) où ΣX k,l (resp. Σ X k,l
) est l'estimée de la covariance locale de l'image X (resp. de l'image X) dans une fenêtre carrée B k,l centrée sur le pixel (k, l) au sens du Maximum de Vraisemblance pour une loi gaussienne, ce qui donne l'estimateur communément appelé Sample Covariance Matrix définie par :

ΣX k,l = 1 |B k,j | i,j∈B k,j X i,j -μX k,l X i,j -μX k,l T , (5) 
avec μX k,l = |B k,j | -1 i,j∈B k,l
X i,j .

3 Application pratique

Données SAR polarimétriques

Les données utilisées sont des images SAR acquises en bande X par le capteur aéroporté SETHI de l'ONERA sur la région de Nîmes-Garons en 2014. Ce sont des données en polarisation complète (HH, HV, V H, V V ), soit c = 4, l'angle d'incidence est de 45°en milieu de fauchée et les résolutions spatiales de 0.27 m en distance (géométrie slant) et 0.34 m en azimut. La zone imagée est principalement constituée de parcelles agricoles, soit des zones relativement homogènes sans anomalies. L'entraînement est réalisé de façon non supervisée, aucun tri n'a été effectué en pré-traitement pour exclure les anomalies, elles apparaissent avec très peu d'occurence. Aucune vérité terrain concernant les anomalies n'est donc nécessaire, ni une séparation des données de test. Le réseau s'entraîne en aveugle. Les images en log et normalisées entre 0 et 1 sont utilisées en entrée de générateur.

Architecture et paramètres

Nous avons mise en oeuvre la méthodologie avec et sans filtrage du speckle. Comme illustré Fig. 1, l'encodeur est constitué d'un enchaînement de couches de convolution et de normalisation par batch suivi d'un leakyReLU (pente de 0.1 pour les valeurs négatives). Pour le décodeur, l'architecture est la même, en replaçant la couche convolutive par une convolution transposée [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF]. En suivant les recommandations de l'article DCGAN [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF], on utilise un pas de 2 pour les opérations de convolution (noyau 4 × 4) afin de s'affranchir de l'étape de max-pooling. Il en est de même pour la convolution transposée qui donne une feature map de sortie deux fois plus large en hauteur et en largeur que celle en entrée. Les couches du discriminateur sont totalement connectées suivies d'un dropout (probabilité de 0.2) et d'un ReLU. On a une sigmoïde en sortie du discriminateur et une tangente hyperbolique en sortie du générateur.

Les images en entrée de l'encodeur sont découpées en patches de taille 64×64 avec un recouvrement 50% grâce à une fenêtre glissante de pas 32, ce qui donne 116200 patches pour l'entraînement. Les poids sont optimisés via l'optimiseur ADAM [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF], avec un learning rate de 10 -3 que ce soit pour L rec (eq. 2) ou pour L lat (eq. 3). Le modèle est implémenté avec Pytorch et la carte graphique utilisée est une GeForce RTX 3080 Ti 12G. L'entraînement dure 1h40 pour 20 époques. Pour la prédiction, les matrices de covariance nécessaires à la détection de changement sont calculées sur des fenêtres glissantes de taille 7x7.

Résultats

Chaque canal des images SAR polarimétriques est seuillé pour réduire l'impact des forts contributeurs sur la dynamique de l'image. Une fois la détection de changement éffectuée, le résultat est normalisé entre 0 et 1 et transformé en échelle log. On présente les résultats de l'algorithme de détection d'anomalies avec et sans l'étape de despeckling sur la Fig. 3.

Si l'algorithme de reconstruction est entraîné sur les images X noisy , l'autoencoder reconstruit des images sans le speckle. Ce phénomène peut s'expliquer de la même manière que l'algorithme noise2noise : de nombreux patches ont un fond similaire mais une réalisation différente du speckle. Une autre explication peut être la capacité de reconstruction du réseau qui n'est pas suffisante pour conserver le speckle. En comparant les matrices de covariance de X noisy et de Xnoisy , on retrouve ce bruit, rendant la détection d'anomalies plus difficile.

Au contraire, quand on entraîne le réseau sur les images X filtrée, il ne faut plus reconstruire le speckle, ce qui permet une meilleure reconstruction ainsi qu'une carte de détection A X avec un taux de fausses alarmes réduit. De plus, l'estimation de la matrice de covariance avec l'eq. 5 est optimisée pour un bruit gaussien, alors que le logarithme de l'intensité du bruit est, lui, distribué selon un cas particulier de la loi de Fisher-Tippett p(s) = e s e -e s . Comme attendu, les résultats semblent visuellement meilleurs lorsque l'étape de débruitage est préalablement appliquée.

Dans les extraits analysés Fig. 2, on observe des anomalies produites par des échos de forte énergie mais aussi par des points et des lignes qui répondent différemment selon les polarisations. La figure 3 montre que ces anomalies sont détectées dans la plupart des cas mais elles sont mieux mises en évidence avec la carte de détection A X . Sans despeckling, 

Conclusion

Dans cet article, nous avons montré que les méthodes de détection d'anomalies avec de l'apprentissage profond peuvent être efficacement appliquées au SAR, cela en utilisant un algorithme de détection de changement entre les images en entrée et en sortie de réseau. Une étape de pré-traitement (filtrage du bruit de speckle) permet qualitativement d'améliorer les résultats. Le réseau employé pour le despeckling est effectivement très performant [START_REF] Dalsasso | Selfsupervised training strategies for SAR image despeckling with deep neural networks[END_REF]. La méthode de détection de changement utilisée ici est assez triviale et pourrait largement être raffinée, par exemple en prenant en compte l'information de phase des canaux polarimétriques au travers d'un réseau de neurones à valeurs complexes.
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 1 FIGURE 1 -Architecture utilisée pour détecter les anomalies
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 23 FIGURE 2 -Images SAR avec speckle (haut) et image après débruitage (bas)

Une norme L 1 est ici privilégiée par rapport à une norme L 2 afin de ne pas pénaliser le réseau lorsque l'écart entre X et X est élevé.