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In this note a new high performance least squares parameter estimator is proposed. The main features of the estimator are: (i) global exponential convergence is guaranteed for all identifiable linear regression equations; (ii) it incorporates a forgetting factor allowing it to preserve alertness to time-varying parameters; (iii) thanks to the addition of a mixing step it relies on a set of scalar regression equations ensuring a superior transient performance; (iv) it is applicable to nonlinearly parameterized regressions verifying a monotonicity condition and to a class of systems with switched timevarying parameters; (v) it is shown that it is bounded-input-bounded-state stable with respect to additive disturbances; (vi) continuous and discrete-time versions of the estimator are given. The superior performance of the proposed estimator is illustrated with a series of examples reported in the literature.

Introduction

We have witnessed in the last few years an increasing interest in the analysis and design of new parameter estimators for linearly paramterized regression equations (LPRE) of the form y(t) = ϕ ⊤ (t)θ, with y(t) ∈ R, ϕ(t) ∈ R q measurable signals and θ ∈ R q a constant vector of unknown parameters. 1 The main motivation of this research is to relax the highly restrictive assumption of persistent excitation (PE) imposed to guarantee global exponential convergence of classical gradient, least squares (LS) or Kalman-Bucy algorithms [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF][START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF][START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. A second important motivation is to provide guaranteed good transient performance behavior since the one of the aforementioned schemes is highly unpredictable and only a weak monotonicity property of the norm of the vector of estimation errors can be insured.

Review of recent literature on LS estimators

It has recently been shown [START_REF] Barabanov | On global asymptotic stability of ẋ = ϕ(t)ϕ ⊤ (t)x with ϕ(t) bounded and not persistently exciting[END_REF][START_REF] Praly | Convergence of the gradient algorithm for linear regression models in the continuous and discrete-time cases[END_REF] that global asymptotic convergence-but not exponential-of the error equation for standard continous-time (CT) gradient estimators is ensured under a strictly weaker condition of generalized Email addresses: romeo.ortega@itam.mx (Romeo Ortega), jose.romerovelazquez@itam.mx (Jose Guadalupe Romero), stanislav.aranovskiy@centralesupelec.fr (Stanislav Aranovsky) 1 We consider the case of scalar y(t) to simplify the notation-as will be seen below all results can be directly extended for the case of vector y(t).

PE-see [START_REF] Barabanov | On global asymptotic stability of ẋ = ϕ(t)ϕ ⊤ (t)x with ϕ(t) bounded and not persistently exciting[END_REF][START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF] for its definition and [START_REF] Efimov | Robustness of linear time-varying systems with relaxed excitation[END_REF] for some robustness properties of the algorithm. Unfortunately, this condition is still extremely restrictive to be of practical use. In [START_REF] Bruce | Necessary and sufficient regressor conditions for the global asymptotic stability of recursive least squares[END_REF] it is shown that the classical discrete-time (DT) LS algorithm is asymptotically convergent if and only if the regressor ϕ(t) satisfies a new excitation property, called weak PE, that is strictly weaker than PE. This result is of limited interest because, on one hand, the definition is extremely technical and difficult to verify in applications. On the other hand, and more importantly, the analysis is limited to standard LS, without forgetting factor or covariance resetting that, as is well-known [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF][START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF], has a decreasing adaptation gain, loosing its alertness to track parameter variations, which is the main motivation for recursive algorithms. In [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF] the underexcited scenario where the Gram matrix of the regressor has a q 0 -dimensional kernel, with q 0 ≤ q, is considered. It is shown that incorporating into a CT LS (or gradient) estimator the information of a basis expanding this kernel-the columns of the matrix N ∈ R q0×q in equation ( 14) or [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF] whose columns v i ∈ R q , i = 1, . . . q 0 satisfy equation (4)-it is possible to guarantee consistent estimation to its complementary space. Clearly, if the regressor is PE the dimension q 0 of the aforementioned kernel is zero and convergence of all the parameters is guaranteed, confirming the well-known result of the PE case. This result is related to the partial convergence property of [START_REF] Sastry | Adaptive Control: Stability, Convergence and Robustness[END_REF]Theorem 2.7.4] where a similar fact is proven in the context of systems identification in underexcited situations. Although of theoretical interest, the result has little practical relevance because of the impossibilty to compute on-line the matrix N mentioned above. In [START_REF] Cui | A new algorithm for discrete-time parameter estimation[END_REF] a slight modification of the DT LS algorithm is proposed to deal with parameter variations in the LPRE, however the main convergence (to a compact set) results still rely on PE assumptions. In [START_REF] Krstic | On using least-squares updates without regressor filtering in identification and adaptive control of nonlinear systems[END_REF], an LS version of the well-known I&I estimator [START_REF] Astolfi | Nonlinear and Adaptive Control with Applications[END_REF] is proposed while in [START_REF] Lozano | Passivity-based adaptive control of mechanical manipulators using LS-type estimation[END_REF] a variation of LS that defines a passive operator is proposed.

In [START_REF] Shaferman | Continuoustime least-squares forgetting algorithms for indirect adaptive control[END_REF] an interesting generalization of the classical CT LS with forgetting factor is introduced, where the latter is allowed to be a time varying matrix. See [START_REF] Shin | A new exponential forgetting algorithm for recursive least-squares parameter estimation[END_REF] for a similar result in DT. The convergence analysis in both papers still relies on the PE assumption. In the very recent paper [START_REF] Bin | Generalized recursive least squares: Stability, robustness, and excitation[END_REF] a general structure to design and analyze DT LS-like recursive estimators parameterized in terms of some free functions is proposed-see equation [START_REF] Bruce | Necessary and sufficient regressor conditions for the global asymptotic stability of recursive least squares[END_REF]. A new definition of excitation, called t ⋆ -excitation, is given in [5, Definition 1]. Interestingly, this definition involves not only the regressor but also two of the aforementioned functions. A particular choice of these functions yields the classical LS estimator and t ⋆ -excitation is equivalent to PE. However, other choices of these free parameters may yield weaker excitation conditions, for instance the choice given in [START_REF] Lozano | Adaptive pole placement without excitation probing signals[END_REF]. However, this selection has again the problem of driving the adaptation gain to zero, loosing the estimator alertness and it is not clear if there are other choices that do not suffer from this drawback. Another novelty of [START_REF] Bin | Generalized recursive least squares: Stability, robustness, and excitation[END_REF] is that it incorporates a very interesting analysis of robustness to additive disturbances in the LPRE, encrypted in the input-to-state-stability property. The interested reader is referred to [START_REF] Bin | Generalized recursive least squares: Stability, robustness, and excitation[END_REF][START_REF] Shaferman | Continuoustime least-squares forgetting algorithms for indirect adaptive control[END_REF][START_REF] Shin | A new exponential forgetting algorithm for recursive least-squares parameter estimation[END_REF] for a review of the extensive literature on LS with forgetting factors.

Relaxing the PE condition

A major breakthrough in the design of recurrent estimators is the proof that it is possible to establish global convergence under the extremely weak assumption of interval excitation2 (IE) [START_REF] Kreisselmeier | Richness and excitation on an interval-with application to continuous-time adaptive control[END_REF]-called initial excitation in [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF] and excitation over a finite interval in [START_REF] Tao | Adaptive Control Design and Analysis[END_REF]. To the best of the authors' knowledge the first estimators where such a result was established are the concurrent and the composite learning schemes reported in [START_REF] Chowdhary | Concurrent learning adaptive control of linear systems with exponentially convergent bounds[END_REF] and [START_REF] Pan | Composite learning robot control with guaranteed parameter convergence[END_REF], respectively; see [START_REF] Ortega | On modified parameter estimators for identification and adaptive control: a unified framework and some new schemes[END_REF] for a recent survey on new estimators. These algorithms, which incorporate the monitoring of past data to build a stack of suitable regressor vectors, are closer in spirit to off-line estimators. See also [START_REF] Krause | Parameter information content of measurable signals in direct adaptive control[END_REF][START_REF] Ortega | An on-line least-squares parameter estimator with finite convergence time[END_REF] for two early references where a similar idea is explored. As is well-known, the main drawback of off-line estimators is their inability to track parameter variations, which is very often the main objective in applications. This situation motivates the interest to develop bona-fide on-line estimators that relax the PE condition preserving the scheme's alertness [START_REF] Ljung | Theory and Practice of Recursive Identification[END_REF]. New on-line estimators relying on the use of the dynamic regressor extension and mixing (DREM) technique with weaker excitation requirements have been recently proposed. DREM was first proposed in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF] for CT and in [START_REF] Belov | Guaranteed performance adaptive identification scheme of discrete-time systems using dynamic regressor extension and mixing[END_REF] for DT systems. In Appendix A it is recalled that the main step in the derivation of DREM estimators is the construction of a new extended LPRE Y (t) = Φ(t)θ, with Y (t) ∈ R q and Φ(t) ∈ R q×q a new square matrix regressor. Two procedures to construct the extended LPRE, reported in [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] and [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF], respectively, were originally consideredfor the sake of completeness both constructions are reviewed in Appendix A. The final-and critical-mixing step consists of the multiplication of this extended LPRE by the adjugate of Φ(t). 3 Clearly, this operation creates a new scalar LPRE of the form Y i (t) = ∆(t)θ i , i ∈ q, with Y(t) := adj{Φ(t)}Y (t) and ∆(t) := det{Φ(t)} a scalar regressor, which is the essential feature of the approach. 4DREM estimators have been successfully applied in a variety of identification and adaptive control problems, both, theoretical and practical ones, see [START_REF] Ortega | On modified parameter estimators for identification and adaptive control: a unified framework and some new schemes[END_REF][START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF] for an account of some of these results.

The convergence properties of DREM-based estimators clearly depend on the scalar regressor ∆(t). Due to the scalar nature of ∆(t), it is clear that the parameter error converges if and only if ∆(t) is not square integrable (summable for DT systems) and convergence is exponential if and only if ∆(t) is PE, facts that were proven in [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. In [START_REF] Gerasimov | Adaptive control of multivariable systems with reduced knowledge of high frequency gain: Application of dynamic regressor extension and mixing estimators[END_REF] a DREM-based algorithm using the extended regressor of [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] that ensures convergence in finite-time imposing the IE assumption on ∆(t) was proposed. An interesting open question was to establish the relation of the excitation of ∆(t) and the original regressor ϕ(t), which was studied in [START_REF] Korotina | On parameter tuning and convergence properties of the DREM procedure[END_REF] and [START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF] for the extended regressors of [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] and [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF], respectively. The equivalence between PE of ∆(t) and PE of the original regressor ϕ(t) was established for both extended regressors-proving that DREM-based estimators are at least as good as standard gradient or LS schemes for excited LPRE. On the other hand, in [START_REF] Korotina | On parameter tuning and convergence properties of the DREM procedure[END_REF] it is shown that if ϕ(t) is IE then ∆(t) is also IE for the extended regressor [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF], while in [START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF] it was shown that the scheme of [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF] ensures the stronger property that ∆(t) is bounded away from zero in an open interval [t c , ∞) with t c > 0. Finally, in [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF]Proposition 3] a new extended regressor which guarantees exponential convergence under conditions that are strictly weaker than regressor PE was presented.

Three major developments in this line of research reported recently are:

(i) the proposal in [START_REF] Korotina | Persistent excitation is unnecessary for on-line exponential parameter estimation: a new algorithm that overcomes this obstacle[END_REF] and [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] of two new, fully on-line, DREM-based estimators where exponential conver-gence is established imposing only the IE condition to ϕ(t);

(ii) the proof in [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] that IE of the regressor ϕ(t) is equivalent to identifiability of the LPRE. It should be recalled that identifiability of a LPRE is the existence of q linearly independent regressor vectors [53, Definition 2] ϕ(t i ), i ∈ q, and is a necessary and sufficient condition for the on-or off-line estimation of the parameters [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF];

(iii) the proof in [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] that the proposed estimator is applicable also to separable NLPRE of the form (1), provided the mapping G(θ) verifies a monotonicity condition. Estimators for this kind of NLPRE were reported before in [START_REF] Ortega | Parameter estimation of nonlinearly parameterized regressions: application to system identification and adaptive control[END_REF], but the convergence condition was expressed in terms of the scalar regressor ∆(t).

The estimators of [START_REF] Korotina | Persistent excitation is unnecessary for on-line exponential parameter estimation: a new algorithm that overcomes this obstacle[END_REF] and [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] rely on the generation of new LPRE using the main idea of generalized parameter estimation based observer (GPEBO), which is a technique to design state observers for state-affine nonlinear systems, first proposed in [START_REF] Ortega | A parameter estimation approach to state observation of nonlinear systems[END_REF] and latter generalized in [START_REF] Ortega | Generalized parameter estimation-based observers: Application to power systems and chemical-biological reactors[END_REF]. GPEBO translates the problem of state-estimation into one of parameter estimation from a LPRE. The latter is generated exploiting the well-known property [START_REF] Rugh | Linear Systems Theory[END_REF]Property 4.4] that the trajectories of an LTV system can be expressed as linear combinations of the columns of its fundamental matrix. Besides the addition of the computationally demanding calculation of the fundamental matrix, a potential drawback of GPEBO is that it essentially reconstructs the initial conditions of some error equation, an operation which may adversely affect the robustness of the estimator, [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF]Remark 7] and [START_REF] Ortega | Comments on recent claims about trajectories of con-trol systems valid for particular initial conditions[END_REF], see also [START_REF] Wu | Predefinedtime parameter estimation via modified dynamic regressor extension and mixing[END_REF]. The procedure followed in the construction of the estimator of [START_REF] Korotina | Persistent excitation is unnecessary for on-line exponential parameter estimation: a new algorithm that overcomes this obstacle[END_REF] is first the application of DREM and then invoke GPEBO, hence we refer to it as D+G. On the other hand, the estimator of [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] uses also GPEBO and DREM, but in the opposite order, so we refer to it in the sequel as G+D.

Contributions of the paper

In this paper we provide an alternative to the D+G and G+D estimators that also ensures global exponential convergence under the weak assumption of IE of the original regressor ϕ(t). The main features of this new estimator are summarized as follows.

F1 In contrast to the D+G and G+D estimators that implement a gradient descent search, we use the classical LS technique, hence we refer to it in the sequel as LS+D estimator. The superior convergence properties of LS estimators, as opposed to gradient-based, are widely recognized [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF][START_REF] Ljung | System Identification: Theory for the User[END_REF][START_REF] Rao | Linear Models: Least Squares and Alternatives[END_REF].

F2

We avoid the use of the GPEBO technique but instead exploit some structural properties of the LS estimator to construct the extended regressor. This fact removes the need to calculate the computationally demanding fundamental matrix.

F3 Similarly to the G+D scheme, the stability mechanism and, consequently, the stability analysis of the LS+D estimator is much more transparent than the one of the D+G estimator. There are two consequences of this fact, on one hand, the procedure of tuning the estimator to achieve a satisfactory transient performance, which is difficult for the D+G scheme, is straightforward for the LS+D one.

F4 A time-varying forgetting factor that allows the estimator to preserve its alertness to time-varying parameters is incorporated.

F5 Besides the case of LPRE we consider (separable and monotonic) NLPRE, with the associated estimator preserving all the properties of the case of LPRE. Also, we show that the proposed estimator is applicable to NLPRE with switched time-varying parameters.

F6 We show that the new estimator is robust with respect to additive disturbances, by proving that it defines a bounded-input-bounded-state (BIBS) stable system.

F7

The behaviour of many physical systems is described via CT models. On the other hand, DT implementations of estimators are of significant practical relevance. Therefore, similarly to [START_REF] Korotina | Persistent excitation is unnecessary for on-line exponential parameter estimation: a new algorithm that overcomes this obstacle[END_REF][START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF][START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF], to comply with both scenarios we consider in the paper both kinds of LPREs. Interestingly, in contrast to [START_REF] Korotina | Persistent excitation is unnecessary for on-line exponential parameter estimation: a new algorithm that overcomes this obstacle[END_REF], the construction and analysis tools of both cases are essentially the same-however, for the sake of clarity, they are presented in separate sections.

The remainder of the paper is organized as follows. In Section 2 we present the main result of the paper for CT systems, while the DT version is given in Section 3. For the sake of brevity we give both results for the general case of NLPRE, presenting the LPRE case as a corollary. Section 4 is devoted to the derivation of the proposed extended NLPRE applying directly the DREM construction procedure. Section 5 is devoted to the proof of robustness of the new estimator. Simulation results of some examples reported in the literature are given in Section 6 to illustrate the superior performance of the proposed LS+D estimator. The paper is wrapped-up with concluding remarks in Section 7.

Notation. I n is the n × n identity matrix and 0 s×r is an s × r matrix of zeros. R >0 , R ≥0 , Z >0 and Z ≥0 denote the positive and non-negative real and integer numbers, respectively. For q ∈ Z >0 we defined the set q := {1, 2, . . . , q}. For a ∈ R n , we denote |a| 2 := a ⊤ a, and for any matrix A its induced norm is ∥A∥. vec : R p×p → R p 2 is an operator that piles up the columns of a matrix. CT signals x : R ≥0 → R n are denoted x(t), while for DT se-quences x : Z ≥0 → R n we use x k := x(kT s ), with T s ∈ R >0 the sampling time. The action of an operator H on a CT signal s(t) is denoted as H[s](t), and H[s](k) for a sequence s k .

Main Result for Continuous-time Systems

In this section we present the proposed LS+D interlaced estimator for CT systems, with the first estimator being the LS with bounded-gain forgetting factor proposed in [START_REF] Slotine | Applied Nonlinear Control[END_REF]Subsection 8.7.6]. First, we consider the case of NLPRE and then specialize to LPRE that, as expected, ensures stronger convergence properties.

Nonlinearly parameterized regression equations

Consider the following CT NLPRE

y(t) = ϕ ⊤ (t)G(θ) (1) 
where y(t) ∈ R, ϕ(t) ∈ R p and G : R q → R p , q ≤ p, a smooth mapping verifying the following.

Assumption A1.

[Monotonicity] There exists a matrix Q ∈ R q×p such that mapping G(θ) verifies the linear matrix inequality

Q∇G(θ) + ∇ ⊤ G(θ)Q ⊤ ≥ ρI q > 0, ∀ θ ∈ R q , (2) 
for some ρ ∈ R >0 . Consequently [START_REF] Demidovich | Dissipativity of nonlinear systems of differential equations[END_REF][START_REF] Pavlov | Convergence dynamics, a tribute to Boris Pavlovich Demidovich[END_REF], The mapping QG(θ) is strongly monotone, that is, 

(a -b) ⊤ [QG(a) -QG(b)] ≥ ρ|a -b| 2 > 0, ∀ a, b ∈ R q , (3) 
η(t) = αF (t)ϕ(t)[y(t) -ϕ ⊤ (t)η(t)], η(0) =: η 0 ∈ R p (5a) Ḟ (t) = -αF (t)ϕ(t)ϕ ⊤ (t)F (t)+β(t)F (t), F (0) = 1 f 0 I p (5b) θ(t) = γQ∆(t)[Y(t) -∆(t)G( θ)], θ(0) =: θ 0 ∈ R q (5c) ż(t) = -β(t)z(t), z(0) = 1, (5d) 
where we defined

β(t) := β 0 1 - ∥F (t)∥ M (6a) ∆(t) := det{I p -z(t)f 0 F (t)} (6b) Y(t) := adj{I p -z(t)f 0 F (t)}[η(t) -z(t)f 0 F (t)η 0 ], (6c) 
with tuning gains α > 0, f 0 > 0, β 0 > 0, M ≥ 1 f0 and γ > 0. Define the parameter estimation error θ(t) := θ(t) -θ. Then, for all f 0 > 0, η 0 ∈ R p and θ 0 ∈ R q , we have that lim t→∞ θ(t) = 0, (exp), [START_REF] Bruce | Necessary and sufficient regressor conditions for the global asymptotic stability of recursive least squares[END_REF] with all signals bounded.

Proof. With some abuse of notation, define the signal

G(t) := η(t) -G(θ),
whose derivative is given by

Ġ(t) = -αF (t)ϕ(t)ϕ ⊤ (t) G(t), (8) 
where we replaced (1) in (5a). Now, from

d dt [F -1 (t)] = -F -1 (t) Ḟ (t)F -1 (t),
we have that

d dt [F -1 (t)] = -β(t)F -1 (t) + αϕ(t)ϕ ⊤ (t), (9) 
and consequently

d dt [F -1 (t) G(t)] = F -1 (t) Ġ(t) + d dt [F -1 (t)] G(t) = -αϕ(t)ϕ ⊤ (t) G(t) + αϕ(t)ϕ ⊤ (t) G(t) -β(t)F -1 G(t) = -β(t)F -1 (t) G(t).
This implies that

F -1 (t) G(t) = z(t)f 0 G(0), ∀t ≥ 0, ( 10 
)
where we used the definition of the function z(t) and the fact that F -1 (0) = f 0 I p . The latter may be rewritten as6 

η(t) -G(θ) = z(t)f 0 F (t)[η 0 -G(θ)],
from which we define the extended NLPRE

Y (t) = Φ(t)G(θ) (11a) Y (t) := η(t) -z(t)f 0 F (t)η 0 (11b) Φ(t) := I p -z(t)f 0 F (t). ( 11c 
)
Following the DREM procedure we multiply (11a) by adj{Φ(t)} to get the following NLPRE with scalar regressor

Y(t) = ∆(t)G(θ), (12) 
where we used (6b) and (6c). Replacing [START_REF] Demidovich | Dissipativity of nonlinear systems of differential equations[END_REF] in (5c) we get

θ(t) = -γ∆ 2 (t)Q[G( θ(t)) -G(θ)].
To analyse the stability of the latter system define the Lyapunov function candidate

V ( θ(t)) := 1 2γ | θ(t)| 2 . ( 13 
)
Computing its time derivative yields

V (t) = -∆ 2 (t)[ θ(t) -θ] ⊤ Q[G( θ(t)) -G(θ)] ≤ -∆ 2 (t)ρ| θ(t)| 2 = -2ργ∆ 2 (t)V (t),
where we invoked the Assumption A2 of strong monotonicity (3) of QG(θ) to get the first bound.

To complete the proof we first notice that in [START_REF] Slotine | Applied Nonlinear Control[END_REF] it is shown that F (t) ≤ M I p and that β(t) ≥ 0-the latter implies that z(t) is non-increasing and upper bounded by one. We consider two cases: when z(t)F (t) → 0 and when z(t)F (t) ≥ ρI q > 0. In the first case we notice that and if z(t)F (t) → 0 then ∆(t) → 1 and, consequently, ∆(t) is PE. For the second case, we solve (9) to get

F -1 (t) = z(t)f 0 I p + α t 0 e -t τ β(s)ds ϕ(τ )ϕ ⊤ (τ )dτ, ∀t ≥ 0,
which may be rewritten as

I p -z(t)f 0 F (t) = αF (t) t 0 e -t τ β(s)ds ϕ(τ )ϕ ⊤ (τ )dτ = αF (t)z(t) t 0 1 z(τ ) ϕ(τ )ϕ ⊤ (τ )dτ ≥ αF (t)z(t) t 0 ϕ(τ )ϕ ⊤ (τ )dτ ≥ αρ t 0 ϕ(τ )ϕ ⊤ (τ )dτ, ∀t ≥ 0.
Now, from the implication

ϕ(t) ∈ IE ⇒ t 0 ϕ(τ )ϕ ⊤ (τ )dτ > 0, ∀t ≥ t c ,
we conclude that the matrix I p -z(t)f 0 F (t) is nonsingular for all t ≥ t c , which implies that ∆(t) is PE. This concludes the proof. □□□ Remark 1. Notice that, as indicated above, if z(t) → 0 then ∆(t) → 1 and, in view of the extended NLPRE (11a), we have that Y(t) → G(θ). Consequently the parameter update law (5c) will verify

θ(t) → γQ[G(θ) -G( θ(t))],
and the Lyapunov stability analysis still holds.

Linearly parameterized regression equations

In the next corollary we specialize the result of Proposition 1 for the case of LPRE. To streamline the presentation of the result we recall the following. Definition 1. [START_REF] Goodwin | Adaptive Filtering Prediction and Control[END_REF] The LPRE

y(t) = ϕ ⊤ (t)θ ( 14 
)
where y(t) ∈ R, ϕ(t) ∈ R q and θ ∈ R q is said to be identifiable if and only if there exists a set of time instants-

{t i } i∈q , t i ∈ R >0 , such that rank ϕ(t 1 )|ϕ(t 2 )| • • • |ϕ(t q ) = q.
For the sake of completeness we also recall the following result of [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] Lemma 1. The LPRE ( 14) is identifiable if and only if the regressor vector ϕ is IE.

We are in position to present the main result of the subsection whose proof follows immediately from Lemma 1, the proof of Proposition 1 and [38, Proposition 2].

Corollary 1. Consider the LPRE ( 14) and assume it is identifiable. Define the LS+D interlaced estimator with time-varying forgetting factor

η(t) = αF (t)ϕ(t)[y(t) -ϕ ⊤ (t)η(t)], η(0) =: η 0 ∈ R p Ḟ (t) = -αF (t)ϕ(t)ϕ ⊤ (t)F (t)+β(t)F (t), F (0) = 1 f 0 I p θ(t) = γ∆(t)[Y(t) -∆(t) θ], θ(0) =: θ 0 ∈ R q ż(t) = -β(t)z(t), z(0) = 1,
with tuning gains α > 0, f 0 > 0, β ≥ 0, M ≥ 1 f0 and γ > 0, and we used the definitions [START_REF] Bobtsov | Generation of new exciting regressors for consistent on-line estimation of a scalar parameter[END_REF]. Then, for all f 0 > 0, η 0 ∈ R q and θ 0 ∈ R q , we have that [START_REF] Bruce | Necessary and sufficient regressor conditions for the global asymptotic stability of recursive least squares[END_REF] holds with all signals bounded. Moreover, the individual parameter errors verify the monotonicity condition

| θi (t a )| ≤ | θi (t b )|, ∀ t a ≥ t b ≥ 0, i ∈ q.

Main Result for Discrete-time Systems

In this section we present the proposed LS+D estimator for DT systems. Similarly to the previous section, we consider first the case of NLPRE and then specialize to LPRE. As will be shown below, in the DT case we need an additional Lipschitz assumption on the mapping G(θ), which is conspicuous by its absence in CT.

Nonlinearly parameterized regression equations

Consider the following DT NLPRE

y k = ϕ ⊤ k G(θ) (15) 
where y k ∈ R, ϕ k ∈ R p and G : R q → R p , q ≤ p. Assume G(θ) verifies Assumption A1 and the following.

Assumption A3.

[Lipschitz] The mapping G(θ) satisfies the Lipschitz condition

|G(a) -G(b)| ≤ ν|a -b|, ∀a, b ∈ R q , (16) 
for some ν > 0. Moreover, assume the regressor ϕ k satisfies. Assumption A4. [Interval Excitation] [52, Definition 3.3] The regressor ϕ k is IE. That is, there exists constants

C d > 0 and k c > 0 such that Σ kc j=0 ϕ j ϕ ⊤ j ≥ C d I p . ( 17 
)
Proposition 2. Consider the NLPRE [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF] with G(θ) satisfying Assumption A1 and A3 and ϕ k verifying Assumption A4. Define the normalized LS+DREM interlaced estimator

ηk+1 = ηk + 1 β + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k (y k -ϕ ⊤ k ηk ), ( 18a 
)
F k = 1 β I p - 1 β + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k ϕ ⊤ k F k-1 (18b) θk+1 = θk + γQ ∆ k 1 + ∆ 2 k [Y k -∆ k G( θk )], θ0 =: θ 0 ∈ R q (18c) z k = βz k-1 , z -1 = 1, (18d) 
with initial conditions η0 =: η 0 ∈ R p , F -1 = 1 f0 I p and the definitions

∆ k := det{I p -f 0 z k F k-1 } (19a) Y k := adj{I p -f 0 z k F k-1 }(η k -f 0 z k F k-1 η 0 ), (19b) 
with tuning parameters the initial condition f 0 > 0, the forgetting factor β ∈ (0, 1] and the adaptation gain γ > 0, which is selected such that

σ := ρ - γν 2 2 λ max {Q ⊤ Q} > 0. ( 20 
)
Define the parameter estimation error θk := θk -θ. Then, for all f 0 > 0, η 0 ∈ R p and θ 0 ∈ R q , we have that

lim k→∞ | θk | = 0, (exp), (21) 
with all signals bounded.

Proof. To simplify the notation we define the normalization sequence

m k := β + ϕ ⊤ k F k-1 ϕ k . (22) 
With some abuse of notation, define the error signal

ηk := ηk -G(θ), (23) 
whose dynamics is given by

ηk+1 = I p - 1 m k F k-1 ϕ k ϕ ⊤ k ηk , (24) 
where we used ( 15) and (18a). Now, direct application of the matrix inversion lemma to (18b) shows that,

F -1 k = βF -1 k-1 + ϕ k ϕ ⊤ k . (25) 
Combining ( 24) and ( 25) we can prove the following fundamental property of LS

F -1 k ηk+1 = βF -1 k-1 ηk .
Solving this difference equation we get

F -1 k-1 ηk = β k F -1 -1 η0 = z k f 0 η0 , ∀k ≥ 0,
where we replaced the solution of (18d) and the initial condition choice F -1 = 1 f0 I p to get the second identity. Using the definition ( 23), the equation above may be rewritten as the extended LPRE

(I p -f 0 z k F k-1 )G(θ) = ηk -f 0 z k F k-1 η 0 . (26) 
Following the DREM procedure we multiply ( 26) by adj{I p -f 0 z k F k-1 } to get the following NLPRE

Y k = ∆ k G(θ), (27) 
where we used (19a) and (19b). Replacing [START_REF] Lozano | Adaptive pole placement without excitation probing signals[END_REF] in (18c) we get the dynamics of the parameter error

θk+1 = θk -γ ∆2 k Q[G( θk ) -G(θ)], (28) 
where, to simplify the notation, we defined the normalized scalar regressor sequence

∆2 k := ∆ 2 k 1 + ∆ 2 k ≤ 1. (29) 
To analyze the stability of this equation define the Lyapunov function candidate

V k = 1 2γ | θk | 2 , (30) 
that satisfies

V k+1 =V k -∆2 k θ⊤ k Q[G( θk ) -G(θ)] + γ 2 ∆4 k [G( θk ) -G(θ)] ⊤ Q ⊤ Q[G( θk ) -G(θ)] (31) ≤V k -ρ ∆2 k | θk | 2 + γν 2 2 λ max {Q ⊤ Q} ∆4 k | θk | 2 ≤V k -ρ - γν 2 2 λ max {Q ⊤ Q} ∆2 k | θk | 2 (32) =V k -σ ∆2 k | θk | 2 .
where we invoked Assumption A2 and Assumption A3 to get the first bound, ( 29) for the second one and used [START_REF] Kreisselmeier | Richness and excitation on an interval-with application to continuous-time adaptive control[END_REF] in the last identity. Summing the inequality above we get

V k -V 0 ≤ - k j=1 σ ∆2 j | θ(t) j | 2 ⇒ V 0 σ ≥ k j=1 ∆2 j | θ(t) j | 2 .
Taking the limit as k → ∞ we conclude that

∆ k | θk | ∈ ℓ 2 , consequently lim k→∞ ∆k | θk | = 0. ( 33 
)
Now, from the Algebraic Limit Theorem [46, Theorem 3.3] we know that the limit of the product of two convergent sequences is the product of their limits. On the other hand, from the fact that

V (k + 1) ≤ V (k) ≤ V (0), ∀k ∈ Z >0 ,
we have that | θ(k)| is a bounded monotonic sequence, hence it converges [START_REF] Rudin | Principes of Mathematical Analysis[END_REF]Theorem 3.14]. Finally, if ∆(k) converges to a non-zero limit, we conclude from (33) that | θk | → 0. We will proceed now to prove that (17) of Assumption A4 ensures this property of ∆ k , which together with the fact that if ∆ k converges to a non-zero limit, then ∆k also converges to a non-zero limit. Indeed, the solution of the difference equation ( 25) is given by

F -1 k = β k+1 f 0 + β k k j=0 β -j ϕ j ϕ ⊤ j .
Evaluating this expression for k = k c yields

I p -f 0 z kc+1 F kc = β kc F kc kc j=0 β -j ϕ j ϕ ⊤ j .
The IE assumption ensures that the summation term is positive definite, since F kc is nonsingular this ensures that the matrix on the left hand side is nonsingular. The proof that this property holds for any k > k c stems from the observation that, for any k b > 0 we have that

kc+k b j=0 β -j ϕ j ϕ ⊤ j = kc j=0 β -j ϕ j ϕ ⊤ j + kc+k b j=kc+1 β -j ϕ j ϕ ⊤ j ,
preserving the positivity property mentioned above. This completes the proof. □□□

Linearly parameterized regression equations

In this section, we use the result of Proposition 2 for the case of LPRE-obviously, in this linear case Assumption A1 and Assumption A3 are automatically satisfied. As a first step we recall [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] that Definition 1 and Lemma 1, given for continuous functions, are also valid for sequences.

As a second step notice that for the LPRE case [START_REF] Ljung | Theory and Practice of Recursive Identification[END_REF] takes the form

(I p -f 0 z k F k-1 )θ = ηk -f 0 z k F k-1 η 0 , consequently (27) now becomes Y i (k) = ∆ k θ i , i ∈ q,
and the dynamics of the parameter error ( 28) is now given by θk+1 = θk -γ ∆2 k θk , whose stability is follows immediately from the IE assumption [START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF]Proposition 2] .

Corollary 2. Consider the LPRE and assume it is identifiable. Define the normalized LS+D interlaced estimator with forgetting factor

ηk+1 = ηk + 1 β + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k (y k -ϕ ⊤ k ηk ), F k = 1 β I p - 1 β + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k ϕ ⊤ k F k-1 θk+1 = θk + γ ∆ k 1 + ∆ 2 k [Y k -∆ k θk ], θ0 =: θ 0 ∈ R q ,
with initial conditions η0 =: η 0 ∈ R q , F -1 = 1 f0 I p , tuning gains f 0 > 0, β ∈ (0, 1] and γ > 0, and we used the definitions [START_REF] Krause | Parameter information content of measurable signals in direct adaptive control[END_REF]. Then, for all f 0 > 0, η 0 ∈ R q and θ 0 ∈ R q , we have that [START_REF] Ortega | Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: Removing the highfrequency gain assumption[END_REF] holds with all signals bounded. Moreover, the individual parameter errors verify the monotonicity condition

| θi (k a )| ≤ | θi (k b )|, ∀ k a ≥ k b ≥ 0, i ∈ q.
Remark 2. The importance of the element-by-element monotonicity property of the parameter error can hardly be overestimated. It played a key role for the relaxation of the assumption of known sign of the high frequency in model reference adaptive control [START_REF] Gerasimov | Adaptive control of multivariable systems with reduced knowledge of high frequency gain: Application of dynamic regressor extension and mixing estimators[END_REF][START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] as well as in the solution of the adaptive pole placement problem [START_REF] Pyrkin | A Globally convergent direct adaptive pole-placement controller for nonminimum phase systems with relaxed excitation assumptions[END_REF].

Switching parameters case

In this section, we consider the case of switched parameters estimation. Whereas the results are presented in DT only, similar results can be formulated for the CT case in a straightforward manner. Rewrite [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF] as

y k = ϕ ⊤ k G(θ * σ k ), ( 34 
)
where θ * σ k denotes the switched unknown parameter vector with θ

* σ k ∈ {θ * 1 , θ * 2 , . . . , θ * s }, s ∈ Z >0 . The switching signal σ k : Z ≥0 → s is a known 7 piecewise-constant function defining the behavior of θ * σ k , i.e., θ * σ k = θ * i when σ k = i, i ∈ s.
The known time instants when σ k changes its value are further denoted as t r,i , i ∈ Z ≥0 . The estimator ( 18), ( 19) is not capable of estimating switched parameters as for β < 1 the sequence z k converges to zero, and for β = 1 the LS estimator looses its alertness. To deal with switching parameters, we propose a resetting-based modification of the estimator ( 18), ( 19):

ηk+1 = ηk + 1 1 + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k (y k -ϕ ⊤ k ηk ), (35a) θk+1 = θk + γQ ∆ k 1 + ∆ 2 k [Y k -∆ k G( θk )], θ0 =: θ 0 ∈ R q , (35b) F k = N k F k-1 if t k ̸ = t r,i ∀i, 1 f0 I p otherwise, (35c) 
N k = I p - 1 1 + ϕ ⊤ k F k-1 ϕ k F k-1 ϕ k ϕ ⊤ k , ψ k+1 = ψ k if t k ̸ = t r,i ∀i, ηk+1 otherwise, , ψ 0 = η 0 , (35d) 
where η0 =: η 0 ∈ R p , F -1 = 1 f0 I p , and

∆ k = det{I p -f 0 F k-1 }, (36a) 
Y k := adj{I p -f 0 F k-1 }(η k -f 0 F k-1 ψ k ). ( 36b 
)
Between the reseting instances t r,i , the estimator ( 35), (36) reproduces the estimator ( 18), [START_REF] Krause | Parameter information content of measurable signals in direct adaptive control[END_REF] with β = 1 and thus z k ≡ 1. Then, at each reset instance t r,i , the matrix F k is reset to its initial condition F -1 , and the state ψ k saves the value of ηk . The state ψ k thus plays the same role as η 0 in [START_REF] Ljung | Theory and Practice of Recursive Identification[END_REF], compare (36b) and (19b). Following the properties of ( 18), [START_REF] Krause | Parameter information content of measurable signals in direct adaptive control[END_REF], the proposed estimator ensures the boundedness of the states and is capable of estimating θ * σ k if the following assumption holds. Assumption A5. [Switching Interval Excitation]. The switching signal σ k is such that the regressor ϕ k is IE between two subsequent switching instants. That is, there exist constants C d > 0 and k c > 0 such that for any

i ∈ Z ≥0 t r,i + k c ≤ t r,i+1
and

kc ℓ=0 ϕ tr,i+ℓ ϕ ⊤ tr,i+ℓ ≥ C d I p .
Remark 3. In words, Assumption A5 means that the regressor satisfies the IE condition inside each subinterval [t r,i , t r,i+1 ]. For simplicity we have taken that the constants k c and C d that appear in the definition of IE are the same for all subintervals [t r,i , t r,i+1 ], but this is clearly not necessary.

Derivation of the Extended NLPRE (11) via DRE

To simplify the reading of the material presented in this section we refer the reader to Appendix A where the procedure to derive DREM is recalled.

In Proposition 1 it is shown that the dynamic extension (5a) and (5b) generates the extended NLPRE [START_REF] Ph | On the stabilizability condition in indirect adaptive control[END_REF] to which we apply the mixing step S4 of Appendix A to generate the scalar NLPRE [START_REF] Demidovich | Dissipativity of nonlinear systems of differential equations[END_REF]. In this section we prove that this extended NLPRE can also be derived directly applying the DREM step S2 of Appendix A for a suitably defined LTV operator H. 8 For the sake of brevity we only consider the CT case, with the DT case following verbatim. Proposition 3. Define the state space realization of the LTV operator H : u → U used in step S2 of Appendix A as in (.1) with

A(t) := -αF (t)ϕ(t)ϕ ⊤ (t), b(t) := αF (t)ϕ(t), with F (t) defined in (5b). Starting from the NLPRE y(t) = ϕ ⊤ (t)G(θ), construct Y (t) ∈ R p and Φ(t) ∈ R p×p via (.3
) that is, as the solutions of the dynamic extension

Ẏ (t) = -αF (t)ϕ(t)ϕ ⊤ (t)Y (t) + αF (t)ϕ(t)y(t), (37a) Φ(t) = -αF (t)ϕ(t)ϕ ⊤ (t)Φ(t) + αF (t)ϕ(t)ϕ ⊤ (t), (37b) and initial conditions Y (0) = 0 p×1 and Φ(0) = 0 p×p . i) The extended NLPRE Y (t) = Φ(t)G(θ) holds.
ii) The signals Y (t) and Φ(t) satisfy (11b) and (11c), respectively, with η(t) ∈ R p and F (t) ∈ R p×p solutions of the differential equations (5a) and (5b), respectively.

Proof. The fact that the extended NLPRE Y (t) = Φ(t)G(θ) holds follows trivially from linearity of the operator H.

To prove the claim (ii) we invoke (11b) and do the following calculations

Ẏ (t) = η(t) -z(t) Ḟ (t)η 0 -ż(t)f 0 F (t)η 0 = αF (t)ϕ(t)[y(t) -ϕ ⊤ (t)η(t)] + β(t)z(t)f 0 F (t)η 0 + z(t)[αF (t)ϕ(t)ϕ ⊤ (t)F (t)-β(t)F (t)]η 0 = αF (t)ϕ(t)y(t) -αF (t)ϕ(t)ϕ ⊤ (t)[η(t) -z(t)f o F (t)η 0 ] = A(t)Y (t) + b(t)y(t).
In the same spirit as above we compute the time derivative of Φ(t) as defined in (11c) to get

Φ(t) = -ż(t)f o F (t) -z(t)f 0 Ḟ (t) = αz(t)f o F (t)ϕ(t)ϕ ⊤ (t)F (t) = αF (t)ϕ(t)ϕ ⊤ (t) -αF (t)ϕ(t)ϕ ⊤ (t)[I q -z(t)f o F (t)] = A(t)Φ(t) + b(t)ϕ ⊤ (t).
This completes the proof. □□□ Remark 4. It is important to note that the relation Y (t) = Φ(t)G(θ) imposes the constraint Y (0) = Φ(0)G(θ), which is satisfied with the zero initial conditions imposed in Proposition 3. As expected, this choice is consistent with the choice of initial conditions for η(t) and F (t) given in Proposition 1.

Remark 5. The dynamic extension (5b)and ( 37) provides an alternative to the construction of the proposed estimator. The relationship between the two implementations boils down to a standard diffeomorphic change of coordinates. Indeed, while the state of the system in ( 5) and (5d) is given by col(η(t), vec(F (t)), z(t), θ(t)) ∈ R (p+p 2 +1+q) , the state of the system of Proposition 3 is col(Y (t), vec(Φ(t)), z(t), θ(t)) ∈ R (p+p 2 +1+q) , and the first two components are related by a simple invertible coordinate change

η(t) vec(F (t)) = Y (t) + [I p -Φ(t)]η 0 1 z(t)f0 vec(I p -Φ(t))
.

However, the original implementation (5) clearly reveals the mechanism underlying the operation of the estimator, namely, the use of a classical LS update and the creation of the extended NLPRE exploiting the well-known property of LS (10).9 

Robustness Analysis of the CT LS+D Estimator

In this section we analyze the robustness vis-à-vis additive perturbations of the CT LS+D estimator of Proposition 1. That is, we consider the perturbed NLPRE

y(t) = ϕ ⊤ (t)G(θ) + d(t), (38) 
where d(t) represents an additive perturbation signal. This signal may come from additive noise in the measurements of y(t) and ϕ(t) or time variations of the parameters, that is, d(t) may be decomposed as

d(t) = d y (t) + d ⊤ θ (t)ϕ(t) + d ⊤ ϕ (t)G(θ),
where d y (t) ∈ R and d ϕ (t) ∈ R p represent the measurement noise added to y(t) and ϕ(t), respectively, and d θ (t) ∈ R p captures time variations in the parameters. We make the reasonable assumption that these signals are all bounded and prove that the CT LS+D estimator defines a boundedinput-bounded-state (BIBS) stable system. The main result is summarized in the proposition below.

Proposition 4. Consider the perturbed NLPLPRE [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF] with d(t) a bounded signal. Assume the regressor ϕ(t) is IE. The LS+D estimator of Proposition 1 applied to this NLPRE is BIBS stable.

Proof. In the light of Remark 3, to carry out the proof we rely on the use of the alternative implementation of the extended NLPRE of Proposition 3. Applying the operator H of Propositions 3 to the perturbed NLPRE [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF] yields the perturbed version of the extended LPRE (11a) as

Y (t) = Φ(t)G(θ) + H[d](t), (39) 
where we exploited the property of linearity of H. Next we proceed to show that the operator H is BIBO-stable. This is done by proving that, for all bounded d(t), the signal 

H[d](t)
Y(t) = ∆(t)G(θ) + ξ(t), (40) 
where we defined the signal

ξ(t) := adj{Φ(t)}x d (t). (41) 
We notice that this signal is bounded. Replacing [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF] in the estimator (5c) yields

θ(t) = -γ∆ 2 (t)Q[G( θ(t)) -G(θ)] + γ∆(t)Qξ(t).
Computing the derivative of the Lyapunov function candidate (13) we get

V (t) = -∆ 2 (t)[ θ(t) -θ] ⊤ Q[G( θ(t)) -G(θ)] + ∆(t) θ⊤ (t)Qξ(t) ≤ -ρ∆ 2 (t)| θ(t)| 2 + ∆(t)| θ(t)||Qξ(t)| = - ρ 2 ∆ 2 (t)| θ(t)| 2 - ρ 2 [∆(t)| θ(t)| - 1 ρ |Qξ(t)|] 2 + 1 2ρ |Qξ(t)| 2 ≤ -ργ∆ 2 (t)V (t) + 1 2ρ |Qξ(t)| 2 .
The proof of boundedness of θ(t) is completed recalling that in Proposition 1 it is shown that ∆(t) is PE. □□□

Simulation Examples

In this section we present simulations of the proposed CT and DT estimators using different examples recently reported in the literature.

Example 5 of [29]

Consider the second order stable, CT, linear system described by

ẋ1 (t) =x 2 (t) ẋ2 (t) = -θ 1 x 1 (t) -θ 2 + θ 3 u(t) y(t) =x 1 (t), or equivalently ẍ1 (t) = -θ 1 x 1 (t) -θ 2 ẋ1 (t) + θ 3 u(t) (42) 
where θ 1 , θ 2 and θ 3 are unknown parameters. Applying the filter H(p) = 1 p + λ where p := d dt , to both sides of ( 42) and rearranging the terms, we get the LPRE [START_REF] Gerasimov | Adaptive control of multivariable systems with reduced knowledge of high frequency gain: Application of dynamic regressor extension and mixing estimators[END_REF] with

y(t) = pH(p)[x 2 ](t), ϕ(t) = H(p)[col(-x 1 (t), -px 1 (t), u(t))], (43) 
and θ := col(θ 1 , θ 2 , θ 3 ).

To carry out the simulations we use the same conditions that [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF], that is, we set to zero the initial conditions of the filters, as well as the initial value of the parameter estimation vector θ(0) = 0, η(0) = col(0.1, 0.1, 0.1), u(t) = 5 and fix θ = col(2, 3, 1). Besides, the tuning parameters of the proposed estimator of Corollary 1 were α = 20.3, f 0 = 4, β = 0.07 and γ = 700. In Fig. 1 we appreciate the transient behavior of the estimated parameters, which clearly shows the estimation of the real values. This result should be contrasted with the non-converging behavior of the estimates reported in [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF] with the gradient scheme and their modified gradient. To illustrate the use of the NLPRE (1), we notice that from the proposed values for θ, we have that θ 3 can be rewritten as θ 3 = θ 2 -θ 1 . Hence, after the application of the filter H(p), the system (42) can be written as the NLPRE (1) with G(θ) := col(θ 1 , θ 2 , θ 2 -θ 1 ), Thus, using the same initial conditions, estimator gains and verifying Assumption A1 with Q = 1 0 0 0 1 0 , and ρ = 1, we carry out a simulation to estimate only θ 1 and θ 2 with the estimator of Proposition 1. Fig. 2 shows the transient behavior of the estimated parameters, showing again parameter convergence. 

Example 4 of [15]

Consider the first order linear system

y k = θ 2 q -θ 1 u k , ( 44 
)
where q is the forward-shiff operator and θ 1 and θ 2 are unknown parameters. After some simple calculations, we have that (44) can be written as a LPRE y k = ϕ ⊤ k θ with

ϕ k = col(y k-1 , u k-1 ), θ = col(θ 1 , θ 2 ).
To carry out the simulations we have also used the same initial conditions and parameters of [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF], that is, θ 1 = 0.4, θ 2 = 0.8, θ 0 = col(0, 0) and the input signal u k = 1. 10The tuning gains of the estimator of Corollary 2 were chosen as β = 1, f 0 = 0.14, γ = 0.4 and initial conditions η0 = col(1, 1). It is important to note that for this system [START_REF] Pyrkin | A Globally convergent direct adaptive pole-placement controller for nonminimum phase systems with relaxed excitation assumptions[END_REF], the estimator proposed in [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF] only ensures the boundedness of θi , with i = 1, 2 (see Fig. 3 of [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF]). This should be contrasted with our estimator, which, as can be seen in Fig. 3, converges to the real value. 

Example 8 of [30]

We consider the DT system

y k = -0.5y k-1 + 0.1y k-2 + u k-1 -0.4u k-2 ,
which switches for k ≥ k c to

y k = 1.4y k-1 -0.3y k-2 + u k-1 -1.3u k-2 .
Note that for k ≥ k c the plant is unstable and not minimumphase. The initial conditions are y -1 = -0.2, y -2 = 0. In this example, we consider the indirect adaptive poles placement for the reference tracking, where the reference signal is denoted as r k . Then the control signal u is given by

u k = c 1,k y k + c 2,k y k-1 + c 3,k u k-1 + c 4,k r k ,
where the time-varying coefficients c 1,k , c 2,k , c 3,k , and c 4,k are computed based on the current parameter estimate θk to provide the desired poles and unit gain of the closedloop system; if for a value of θk the computations are ill-conditioned, then u k = 0 is chosen. For this example, the desired poles for this are e -1 , e -0.5+0.86 √ -1 , and e -0.5-0.86 √ -1 , and the reference signal is r k ≡ 1. To estimate the parameters, we apply the resettingbased estimator [START_REF] Ortega | Generalized parameter estimation-based observers: Application to power systems and chemical-biological reactors[END_REF], [START_REF] Ortega | Parameter estimation of nonlinearly parameterized regressions: application to system identification and adaptive control[END_REF], where we set f 0 = 0.4, γ = 500, η 0 = 0, and θ 0 = 0.1 -0.3 0.5 -0.05 . Note that θ 0 cannot be chosen zero as such a choice yields zero input to the system and the regressor ϕ is not IE; for a nonzero choice of θ 0 , the interval excitation is provided by the transients of the plant.

The simulation results are depicted in Fig. ?? for the output signal y and in Fig. 5 for the estimation errors θk = θk -θ * σ k . It can be observed that after the switch, parameters estimation errors remain almost constant for approximately 30 steps, and then quickly converge. Further investigation shows that the regressor ϕ is not exciting on this initial interval, and thus the estimation does not progress. As soon as the IE condition is satisfied, the estimates θk converges to the true value θ * 2 . 

Concluding Remarks

We have presented in this paper a new robust DREMbased parameter estimator that proves global exponential convergence of the parameter errors with the weakest excitation assumption, namely, identifiability of the LPREwhich is, actually necessary for the off-or on-line estimation of the parameters. The main features of the estimator are: (i) it relies on the use of a high performance LS search, in contrast to the usually slower gradient descents; (ii) it ensures component-wise monotonicity of the parameter estimation errors; (iii) it incorporates a forgetting factor avoiding the well-known covariance wind-up problem of LS; (iv) it is applicable to NLPRE, which are separable and monotonic as well as to switching parameters; (v) it constructs the extended regressor avoiding the use of the computationally demanding GPEBO technique, exploiting instead the key structural property of the LS estimator captured in [START_REF] Cui | A new algorithm for discrete-time parameter estimation[END_REF]; and (vi) CT and DT implementations of the estimator are given. Several simulation results, borrowed from the literature, show the superior performance of the proposed estimator.
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 41 with a ̸ = b. Assumption A2. [Interval Excitation] The regressor ϕ(t) is interval exciting (IE) [52, Definition 3.1]. That is, there exists constants C c > 0 and t c > 0 such that 5 tc 0 ϕ(s)ϕ ⊤ (s)ds ≥ C c I p . (Proposition Consider the NLPRE (1) with G(θ) satisfying Assumption A1 and ϕ(t) verifying Assumption A2. Define the LS+D interlaced estimator with timevarying forgetting factor

Figure 1 :

 1 Figure 1: Transient behavior of the estimated parameters θi (t) with i = 1, 2, 3.
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 2 Figure 2: Transient behavior of the estimated parameters θi (t) with i = 1, 2 using the NLPRE (1).

Figure 3 :

 3 Figure 3: Transient behavior of the parameter estimates θi with i = 1, 2.

  [START_REF] Belov | Guaranteed performance adaptive identification scheme of discrete-time systems using dynamic regressor extension and mixing[END_REF], and u -1 = u -2 = 0, and k c = 50.The system can be written in the form[START_REF] Ortega | On modified parameter estimators for identification and adaptive control: a unified framework and some new schemes[END_REF] settingG(θ * σ k ) = θ * σ k , ϕ k := -y k-1 -y k-2 u k-1 u k-2 k < k c , 2 for k ≥ k c ,which corresponds to t r,0 = 0 and t r,1 = k c .

  Transients after the switch, kc = 50
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 4 Figure 4: Transients of y k .

  Transients after the switch, kc = 50

Figure 5 :

 5 Figure 5: Transients of θ.

It should be pointed out that IE is strictly weaker than the generalized PE of[START_REF] Yi | Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters[END_REF], the weak excitation PE property of[START_REF] Bruce | Necessary and sufficient regressor conditions for the global asymptotic stability of recursive least squares[END_REF] and the t ⋆ -excitation of[START_REF] Bin | Generalized recursive least squares: Stability, robustness, and excitation[END_REF].

It is interesting to note that this operation was independently reported in[START_REF] Chen | Recursive Identification and Parameter Estimation[END_REF] in the context of stochastic estimator convergence analysis.

In Appendix A DREM is applied to nonlinearly parameterized regression equation (NLPRE) of the form[START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF], which is also considered in this paper.

In[START_REF] Tao | Adaptive Control Design and Analysis[END_REF] Definition 3.1] there is an initial time in the integral that, for simplicity and without loss of generality, is taking here as zero.

This key identity is given in[START_REF] Slotine | Applied Nonlinear Control[END_REF] Equation (8.108)] for the case of LPRE.

Such a scenario arises in several practical control scenarios, when the known switching signal σ k characterizes known changes in operation regimes[START_REF] Liberzon | Switching in Systems and Control[END_REF].

We refer the interested reader to[START_REF] Wang | Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control[END_REF] Proposition 3] where the DREM operator H for the G+D estimator reported in [53, Proposition 2] is identified.

To the best of the authors' knowledge, this property was first reported in[11, equation (17)] and was widely used for the implementation of projections in indirect adaptive controllers[START_REF] Lozano | Adaptive pole placement without excitation probing signals[END_REF].

We notice that there is an unfortunate typo in the definition of u k in[START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency[END_REF] Example 4].
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Appendix A

In this appendix we briefly review the main steps in the construction of DREM-based estimators proceeding from the NLPRE [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF]. For the sake of brevity we restrict ourselves to CT versions, with the DT ones constructed verbatim. The interested reader is refered to [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF] for further details on these constructions.

Derivation of classical DREM-based estimators S1

Starting from the NLPRE y(t) = ϕ ⊤ (t)G(θ), with y(t) ∈ R, ϕ(t) ∈ R p measurable signals, G : R q → R p , p ≥ q and θ ∈ R q a constant vector of unknown parameters.

S2 (Creation of the extended regressor) Inclusion of a free, stable, linear operator H : u(t) → U (t), with u(t) ∈ R and U (t) ∈ R p , via its state space realization

with

with

We underscore the fact that the new extended regressor Φ(t) is a square matrix.

S3 (Lion's and Kreisselmeier REs) For Lion's RE [START_REF] Lion | Rapid identification of linear and nonlinear systems[END_REF] we select for H the LTI filter

For Kreisselmeier RE we select LTV operators with

S4 (Mixing step) Multiplication of the extended LPRE (.2) by the adjugate of Φ(t) to create the new NLPRE

with

and scalar regressor ∆(t). Notice that in the case of LPRE y(t) = ϕ ⊤ (t)θ we obtain q scalar LPREs of the form Y i (t) = ∆(t)θ i , i ∈ q.