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Speech enhancement with robust Beamforming for
spatially overlapped and distributed sources

XIONG Wenmeng, BAO Changchun, Senior Member, IEEE, JIA Maoshen, Senior Member, IEEE,
José PICHERAL

Abstract—Most of the existing Beamforming methods are
based on the assumptions that the sources are all point sources
and the angular separation between the direction of arrival
(DOA) of the source and the interference is large enough to assure
good performance. In this paper, we consider a tough scenario
where the target source and the interference are simultaneously
spatially distributed and overlapped. To improve the performance
of Beamforming in this scenario, we propose two approaches: the
first approach exploits the non-Gaussianity as well as the spec-
trogram sparsity of the output of the microphone array; the sec-
ond approach exploits the generalized sparsity with overlapped
groups of the Beampattern. The proposed criteria are solved by
methods based on linearized preconditioned alternating direction
method of multipliers (LPADMM) with high accuracy and high
computational efficiency. Numerical simulations and real data
experiments show the advantages of the proposed approaches
compared to previously proposed Beamforming methods for
signal enhancement.

Index Terms—speech enhancement, microphone array, MVDR,
DOA

I. INTRODUCTION

Beamforming [1] is a famous signal enhancing technique
which has been widely used in speech enhancement, acoustic
imaging, wireless communications, and radar processing, etc.
Early Beamformings are called ”fixed” Beamforming, includ-
ing delay-and-sum Beamforming, which are independent of
the received signals at the microphone array and have difficulty
in the interference cancellation. The adaptive Beamforming
algorithms are proposed latter and are more flexible, the
coefficients of the Beamformers can be changed according to
the received signals, in order to conserve the signal of interest
while reducing the noise and the interference. Among the
adaptive Beamforming algorithms, the MVDR Beamforming
[2] with one linear constraint is famous due to its ease
of implementation. The MVDR Beamforming minimizes the
power of the output signals or the power of the residual noise
of the microphone array[3], the latter formulation can achieve
a better output Signal to Interference plus Noise Ratio (SINR)
when the Input Signal to Noise Ratio (SNR) is high, but
the reconstructed interference plus noise covariance matrix
is difficult to obtain. The Linearly Constrained Minimum
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Variance (LCMV) Beamforming is an extension of the MVDR
Beamforming with multiple linear constraints which can not
only keep the target signals but also cancel the interferences.

The conventional MVDR and LCMV Beamforming tech-
niques suffers from two drawbacks: firstly, the performance is
sensitive to the steering vector mismatch, because the linear
constraints in the Beamforming criteria depend on the steering
vector of the sources or interferences; secondly, the objective
functions are mostly based on the second order statistics of
the array output, which are optimal for Gaussian signals and
noise, but suboptimal for the most real world signals which
are not Gaussian.

Many methods have been developed to solve the first
problem: the subspace based Beamforming [4] which has been
proved to be robust to various types of steering vector mis-
matches, but the performance degrades when the SNR is low.
The other important class of methods to improve the robust-
ness of Beamforming concerns relaxing the linear constraints
to nonlinear constraints and the criteria are solved by convex
optimization methods, such as the diagonal loading method
[5] and the worst-case performance optimization method [6].
More recently, in [7] a new Beamforming formulation has been
proposed with three constraints: a relaxed double-sided norm
constraint, an additional similarity constraint, and a constraint
enforcing the desired signal DOA to be far away from the
DOA interval of all linear combinations of the interference
steering vectors.

To solve the problem of non Gaussian source, various objec-
tive functions have been proposed: in [8] and [9], the lp norm
of the array output as the objective function is proposed, better
performance is achieved with p ≤ 2 for super-Gaussian signals
and p ≥ 2 for sub-Gaussian signals. In [10] the Gaussian
entropy of the array output is minimized for the reception
of second order non-circular/circular signal of interest. In
[11] the data is transformed to the probability distribution for
the Beamforming in the presence of non-Gaussian impulsive
noise. In [12] the third-order Volterra MVDR Beamforming
for non-Gaussian and non-circular interference cancellation is
proposed. In [13] a unit-modulus constraint is imposed on
the spatial filter and only the phase shifting at each sensor is
considered to reduce the computational burden. Note that in
some literature such as [14], the nonlinear constraint scenario
and non-Gaussian signal scenario are considered jointly for
new Beamformers.

Most of Beamforming techniques mentioned above as well
as other array processing techniques [15] are developed in
the scenario of point source. However, for many applications,
the source can no longer be considered as point source and
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angular spreads should be taken into consideration. According
to the statistical features of the emitted signal, the model of
spatially distributed source can be classified into two types:
incoherently distributed (ID) source and coherently distributed
(CD) source [16]. On one hand, for ID source, signals coming
from different points of the same distributed source can be
considered uncorrelated. On the other hand, in the scenario
of CD source, the emitted signal components are delayed and
scaled replicas from different points of the same signal. Plenty
methods have been investigated for the localization of ID and
CD source such as in [16][17][18]. However, few works have
focused on the signal enhancement problem in the scenario of
distributed source. More recently, in [19] the correlation matrix
of the received signals impinging from the scattered source is
imposed in the linear constraint instead of the steering vector
of the source and three Beamformers are proposed with the
aim to maximize the white noise gain (WNG), the directivity
factor (DF) and a compromise between the WNG and the
DF, respectively. However, it is difficult to estimate accurately
the correlation matrix of only the received signals on the
microphone array in practice.

In this paper, we focus on the Beamforming technique
for the application of speech enhancement in the scenario
of overlapped distributed sources. The existing Beamforming
techniques can easily deal with the cases that the overlapped
distributed sources are all target sources or interferences, while
the performance degrades severely when the target sources and
the interferences are overlapped. To handle this problem, we
propose two methods for both CD sources and ID sources:
in the first approach we minimize jointly the l1 norm and
the entropy of the output of the array, for exploiting jointly
the sparsity and the non-Gaussianity of the spectrogram of
the speech signal; in the second approach we consider the
generalized sparsity with overlapped groups of the Beam-
pattern, for keeping the signal components impinging from
the directions within the distributed sources and minimizing
the signal components from other directions. We solve the
proposed criteria by LPADMM [20] based methods instead
of CVX toolbox, which are faster and provide more accurate
solutions. The projection gradient descent method is used in
each iteration of LPADMM. By introducing extra variables,
the problem formulation of the projection gradient descent is
transformed into a norm adaptation problem which is easy
to solve. Note that as a point source can be considered as a
special case of CD source when its angular spread becomes 0,
the proposed algorithms can be used also in the point source
scenario to improve the performance when the source and the
interference are too close to each other.

This paper is organized as follows: in section II we briefly
review the models of CD and ID sources, the conventional
Beamforming technique, and the maximum negentropy crite-
rion. In section III we propose two methods for Beamforming
in the scenario of overlapped distributed signals. In section
IV we present simulation results and real data experiments
to show the advantages of the proposed criteria. Finally
conclusions are given in V.

II. SIGNAL MODEL AND LCMV BEAMFORMING

A. CD source and ID source

Considering Q far-field wideband distributed sources imp-
ing from the direction θi, i = 1, ..., Q on M microphones. The
signals received on the microphone array at frequency ω can
be given as:

y(ω) =

Q∑
i=1

xi(ω) + n(ω), (1)

and xi(ω) =

∫
a(ω, θ)pi(ω, θ)dθ, (2)

where xi is the signal received by the microphone array from
source i, pi(ω, θ) is the signal component from the DOA
θ in the distributed source i, n(ω) is the noise which is
assumed to be uncorrelated, a(ω, θ) is the steering vector
of a point source from direction θ such that a(ω, θ) =[
1, e−jω∆t1(θ), ..., e−jω∆tM−1(θ)

]
∈ CM×1, when the first

microphone is taken as the reference, ∆tm(θ) is the time delay
from the mth microphone to the reference microphone.

The distributed source can be classified into CD source and
ID source according to its statistical features of the distribution
[16]. If the ith source is CD, pi(ω, θ) can be given as:

pi(ω, θ) = hi(ω, θ)si(ω), (3)

where si(ω) is the signal emitted by the ith source and
independent of θ. Using (2) and (3), the signal xi can be given
as:

xi(ω) =

∫
ai(ω, θ)hi(ω, θ)dθsi(ω), (4)

where hi(ω, θ) is the spatial distribution function of
the source i. In the following, we note ci(ω, hi) =∫

ai(ω, θ)hi(ω, θ)dθ ∈ CM×1 as the steering vector for the
CD source. The covariance matrix of the CD source received
on the microphone array can be given as:

Rxi
= E

[
xi(ω)xHi (ω)

]
= ci(ω, hi)cHi (ω, hi)σ

2
s , (5)

where ·H is the conjugate transposition operator, E [·] is the
expectation operator, σ2

s is the power of the signal.
If the ith source is ID, the model (4) is no longer valid,

and the covariance matrix of a ID source received on the
microphone array can be given as [16]:

Rxi =

∫ ∫
ρi(ω, θ, θ

′)ai(ω, θ)aHi (ω, θ′)dθdθ′

= σ2
s

∫
ai(ω, θ)aHi (ω, θ)dθ, (6)

where ρi(ω, θ, θ′) is the signal angular cross correlation kernel
such that:

ρi(ω, θ, θ
′) = E [pi(ω, θ)p

?
i (ω, θ

′)] =

{
σ2
s , if θ = θ′.
0, otherwise,

(7)
where ·? is the conjugate operator.

Note that as stated by Valaee [16], for a purely CD source,
the rank of the covariance matrix Rxi

is 1 from (5); while for
a purely ID source, the rank of Rxi

is M from (6). In the
case of partially coherently distributed source the rank of Rxi

is between 1 and M .
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B. The LCMV Beamforming

The conventional problem formulation of the LCMV Beam-
forming [1] for point source is as follows:

min
w(ω)

wH(ω)Ryw(ω) subject to wH(ω)ai(ω, hi) = ei,

i = 1, ..., Q, (8)

where w(ω) can be considered as an finite impulse response
filter applied to each microphone output at angular frequency
ω, hi is the spatial distribution function of source i as defined
in (3), if the ith source is useful and needed to be enhanced,
ei = 1, otherwise ei = 0, Ry is the covariance matrix of the
measured signals received on the microphone array such that:

Ry = E
[
y(ω)yH(ω)

]
. (9)

The output SINR is a noise reduction performance measure
of Beamforming methods, which is defined as:

SINR =
wHRxw

wHRi+nw
, (10)

where Rx = E[x(ω)xH(ω)] is the covariance matrix of the
target signal, and Ri+n = E[i(ω)iH(ω) + n(ω)nH(ω)] is the
covariance matrix of interference plus noise, i(ω) is the sum
of interferences received on the microphone array.

C. Maximum negentropy criterion

According to the central limit theorem, the probability
density function (PDF) of the sum of independent random
variables of any PDFs converges to Gaussian. In addition, it is
well known that the speech signals are always super-Gaussian
distributed, while noise is more nearly Gaussian distributed.
Based on this property, various source separation methods such
as independent component analysis (ICA) aims to find a signal
which is the least Gaussian.

The negentropy is a popular criterion for measuring the non-
Gaussianity of a signal, for a signal B, the negentropy can be
given as:

J(B) , S(BGauss)− S(B), (11)

where S(B) = −E [log(p(B))] is the entropy of B, p(B)
is the PDF of B, S(BGauss) is the entropy of a Gaussian
variable which has the same variance as B. As S(BGauss) is
constant, the value of J(B) depends on that of S(B). A larger
value of J(B) indicates that the signal B is less Gaussian.
Therefore, by maximizing J(B) or by minimizing S(B), a
least Gaussian signal as the signal B can be found. However,
the function p(B) is always very hard to obtained in reality,
which causes difficulties to obtain closed form expressions of
J(B). To solve this problem, one can maximize the contrast
function E[G(|B|2)] instead of minimizing the entropy, where
| · | is the absolute value operator [21], and G(·) is a smooth
even function. The contrast function is computationally simple
and its extrema coincides with that of S(B). Several choices

of G(|B|2) have been proposed in the previous literature [21]
such as:

G1(|B|2) =
√
b1 + |B|2, (12)

G2(|B|2) = log(b2 + |B|2), (13)

G3(|B|2) =
1

2
|B|4, (14)

where b1 and b2 are arbitrary constants, in our work, b1 ≈ 0.1
and b2 ≈ 0.1. Note that G1 and G2 grow more slowly than
G3 and they give estimators more robust against outliers.

The Beamforming algorithm reduces the noise by minimiz-
ing the power of the output of the microphone array while
adding some constraints for preserving the signal components
coming from the direction of the target source. However, when
a target distributed source is partially or totally overlapped
with a distributed interference, the constraint for preserving
the target source signal components will preserve also part of
the interference signal components. To handle this problem,
we introduce the maximization of the negentropy into the
Beamforming criterion to further separate the target source
and the interference.

III. BEAMFORMING FOR OVERLAPPED DISTRIBUTED
SOURCES

In this section, we study the Beamforming algorithm in
the case where the distributed sources are overlapped. In our
simulations, we have found that the LCMV works well when
the overlapped sources are all target sources or all interfer-
ences. However, when the target sources are overlapped with
the interferences, the performance of the LCMV algorithm
degrades severely. Thus, in the following, for the sake of
simplicity, we consider the case that one target distributed
source and one distributed interference are overlapped. Criteria
based on the sparsity property of the spectrogram of the output
of the microphone array and the Beampattern are proposed and
solved with LPADMM based methods. Note that the proposed
criteria can be easily generalized into the case of multiple
sources and multiple interferences and solved by multi-block
ADMM methods [22].

A. Sparsity of the microphone array output spectrogram

1) Target CD source and CD interference: In this sub-
section, we discuss the scenario that both the target source
and interference are CD. According to [8], the minimization
of lp-norm instead of the second order of the output of the
microphone array can improve the performance significantly,
where 0 < p < 2 for the super-Gaussian distributed infor-
mation bearing signals such as speech. Here, we take p = 1
for exploiting also the sparsity property of the spectrogram of
the speech, and add the entropy function defined in (11) of
the output of the microphone array for extracting the signal
component which is the least Gaussian. We propose to define
the Beamforming filter as the solution:

min
w

S(wH(ω)yd(ω)) + λ1‖wH(ω)Y(ω)‖1

s.t. wH(ω)w(ω) ≤ δw,wH(ω)c1 = 1,wH(ω)c2 = 0, (15)
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where Y(ω) ∈ CM×D are the samples of the signals received
at the microphone array at frequency band ω after the short
time Fourier transform (STFT), yd is the dth column of the
matrix Y(ω), ω is omitted in the following as all the algorithms
are studied in the same sub-frequency band, D is the number
of samples at each sub-frequency band, λ1 is the sparsity
penalization weighting parameter, δw is the constraint that we
impose on the norm of the Beamforming filter, c1 and c2 are
assumed to be the steering vectors corresponding to the target
source and the interference, respectively. The problem (15) can
be solved by the CVX toolbox directly. However, the CVX
toolbox solves the entropy family functions such as (12)-(14)
using an experimental successive approximation method which
is slower and less reliable than the method employed for other
problems. To solve this problem, we reformulate (15) with
only linear constraints as the problem (16), where the entropy
replaces the contrast function. Note that the problem (16) is
non-convex and non-continuous, we solve this problem by the
LPADMM which is faster and more accurate.

Introducing an extra variable z, the problem (15) can be
reformulated as:

min
w,z
− E

[
G(|wHyd|2)

]
+ λ1‖z‖1 + ι(w)

s.t. wHc1 = 1,wHc2 = 0,YHw = z, (16)

where E
[
G(|wHyd|2)

]
can be approximated by

1
D

∑D
d=1G(|wHyd|2) due to the ergodicity of the signals,

ι(w) is an indicator function such that:

ι(w) =

{
0, if wHw ≤ δw,

+∞, otherwise.
(17)

The augmented Lagrangian of (16) is:

L(w, z,η) = −E
[
G(|wHY|2)

]
+ λ1‖z‖1 + ι(w)

+R{ηH(YHw− z)}+
ρz

2
‖YHw− z‖22,

s.t. wHc1 = 1,wHc2 = 0. (18)

According to [23], when the ADMM-type methods are used
to solve (18), a stationary solution is achievable when ρz
is large enough even if the term −E

[
G(|wHY|2)

]
is not

always convex. The problem (18) can be solved via some
iterative steps, in the (k + 1)th iteration, the parameters can
be determined by:

w(k+1) = arg min
w

L(w(k), z(k),η(k)),

s.t. w(k+1)H c1 = 1,w(k+1)H c2 = 0, (19a)

z(k+1) = arg min
z
L(w(k+1), z(k),η(k)), (19b)

η(k+1) = η(k) + γ(YHw(k+1) − z(k+1)), (19c)

where γ is the step size parameter.
The details for solving the problem (19) can be found in

Appendix A.
In addition, backtracking steps are given in [20] for the

selection of dynamic Lipschitz constants to guarantee the
convergence when the objective functions are continuously
differentiable. In this paper, we utilise the same method for the

Algorithm 1 LPADMM based Beamforming for CD sources.

1: Initialization: k = j = 0, µw, Lw, ρw, µz, Lz, ρz;
2: repeat
3: j = 0;
4: repeat
5: µ

(j)
w = L

(j)
w + ρw‖Y‖2,

6: Calculate (32a) and (32b);
7: if G(w(j+1))−G(w(j))−

〈
g(w(j)),w(j+1) − w(j)

〉
>

Lw
2 ‖w

(j+1) − w(j)‖2 then
8: L

(j+1)
w = 2L

(j)
w , go to line 5;

9: else
10: L

(j+1)
w = L

(j)
w ;

11: end if
12: j = j + 1;
13: until Convergence;
14: w(k+1) = w(j);
15: µ

(k)
z = L

(k)
z + ρz;

16: Calculate (19b);
17: if (‖z(k+1)‖1 − ‖z(k)‖1)−

〈
∂‖z(k)‖1, z(k+1) − z(k)

〉
>

Lz
2 ‖z

(k+1) − z(k)‖2 then
18: L

(k+1)
z = 2L

(k)
z , go to line 15;

19: else
20: L

(k+1)
z = L

(k)
z ;

21: end if
22: Calculate (19c);
23: k = k + 1;
24: until Convergence;

Lipschitz constant Lw in the steps to solve the objective func-
tion G(·), and extend this method for the Lipschitz constant
Lz in the steps to solve the non continuously differentiable
objective function such as l1 norm with subgradient, where
∂· is the subgradient operator. The algorithm for solving
the problem (16) is summarized in Algorithm 1. In our
simulations, we have found that large enough values for the
initialization of the Lipschitz constants are important for the
efficiency of the algorithm.

2) Target CD source and ID interference: In the appli-
cations such as noise reduction, the target source is always
information bearing and CD. However, the interference can
be either CD or directional ID with limited angular spread
and definite DOA. The common scenarios of such directional
ID source is the cluster of noise, such as the noise at the
outlet of the air-condition, or the aero-acoustic source related
to a turbulent flow. In this subsection, we discuss the scenario
that the target source is CD and the interference is ID. The
steering vector of the target source can be directly given by
c1, while no constant steering vector can be directly associated
to the ID interference. Assuming that the angular spread of
the ID interference is small enough (< 10◦), we propose to
use an steering vector of an equivalent CD source to model
it. That is to say, we use the DOA and the angular spread
of the ID interference in a CD source steering vector. In
the proposed algorithm (20), we relax the linear constraints
wHc1 = 1 and wHc2 = 0 in (15) to some extent for the
reasons that: 1) A trade-off can be considered between the
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linear constraint wHc1 = 1 and the output SINR. 2) As
explained before, c2 is an approximate model for the ID
interference. To compensate for the error introduced by this
approximation, we relax the equality constraint on the steering
vectors in (15) to an inequality constrained by δ2. We propose
to define the Beamforming as the solution:

min
w

S(wHY) + λ1‖wHY‖1

s.t. wHw ≤ δw, ‖wHc1 − 1‖22 ≤ δ1, ‖wHc2‖22 ≤ δ2, (20)

where δw, δ1 and δ2 can be given the minimum values as the
convergence of the algorithm is guaranteed. Introducing an
extra variable z, the problem (20) can be reformulated as:

min
w,z
− E

[
G(|wHY|2)

]
+ λ1‖z‖1 + ι(w)

s.t. YHw = z, ‖wHc1 − 1‖22 ≤ δ1, ‖wHc2‖22 ≤ δ2. (21)

The augmented Lagrangian of (20) is:

L(w, z,η) =− E
[
G(|wHY|2)

]
+ λ1‖z‖1 + ι(w)

+R{ηH(YHw− z)}+
ρz

2
‖YHw− z‖22,

s.t. ‖wHc1 − 1‖2 ≤ δ1, ‖wHc2‖2 ≤ δ2, (22)

The problem (22) can be solved via some iterative steps, in
the (k + 1)th iteration, the parameters can be determined by:

w(k+1) = arg min
w

L(w(k), z(k),η(k)),

s.t. ‖w(k+1)H c1 − 1‖2 ≤ δ1, ‖w(k+1)H c2‖2 ≤ δ2, (23a)

z(k+1) = arg min
z
L(w(k+1), z(k),η(k)), (23b)

η(k+1) = η(k) + γ(YHw(k+1) − z(k+1)), (23c)

where γ is the step size parameter.
The details for solving the problem (23) can be found in

Appendix B.
Note that the projection gradient is also used in [14], the

advantage of our method is that by introducing extra variables,
it is possible to avoid solving a fourth order equation for the
optimal Lagrange multiplier and the computational complexity
is further reduced.

The algorithm for solving the problem (20) with backtrack-
ing steps is given in Algorithm 2. Note that there is no need
to utilise backtracking steps for estimate µu1 and µu2 , as
the objective functions for µu1 and µu2 can be regarded as
constants.

B. Generalized sparsity with overlapped groups for the Beam-
pattern

It is well known that the Beampattern shape is related to
the performance of the Beamforming, a Beampattern with a
higher resolution implies better noise reduction performance.
In our simulations, we have found when a distributed source
and a distributed interference are too close to each other, the
responses of the spatial filter to the signals coming from other
directions different from the target source are amplified, which
causes severe degradation of the Beampattern. Considering this
fact, we propose a criteria for CD and ID sources based on

Algorithm 2 LPADMM based Beamforming for ID sources.

1: Initialization: k = j = 0, µw, Lw, ρw, µz, Lz, ρz, µu1
,

Lu1 , ρu1 , µu2 , Lu2 , ρu2 ;
2: repeat
3: j = 0;
4: repeat
5: µ

(j)
w = L

(j)
w + ρw‖Y‖2;

6: Calculate (41a)-(41e);
7: if G(w(j+1))−G(w(j))−

〈
g(w(j)),w(j+1) − w(j)

〉
>

Lw
2 ‖w

(j+1) − w(j)‖2 then
8: L

(j+1)
w = 2L

(j)
w , go to line 5;

9: else
10: L

(j+1)
w = L

(j)
w ;

11: end if
12: j = j + 1;
13: until Convergence;
14: w(k+1) = w(j);
15: µ

(k)
z = L

(k)
z + ρz;

16: Calculate (23b);
17: if (‖z(k+1)‖1 − ‖z(k)‖1)−

〈
∂‖z(k)‖1, z(k+1) − z(k)

〉
>

Lz
2 ‖z

(k+1) − z(k)‖2 then
18: L

(k+1)
z = 2L

(k)
z , go to line 15;

19: else
20: L

(k+1)
z = L

(k)
z ;

21: end if
22: Calculate (23c);
23: k = k + 1;
24: until Convergence;

Fig. 1: The discretized angular sector of interest with over-
lapped groups

the generalized sparsity of the Beampattern. That is to say,
the responses of the spatial filter to the signal components
within the sector of the distributed source are kept constant,
while that to the signal components from other directions are
minimized.

To exploit the generalized sparsity with overlapped groups
of the Beampattern, firstly, we divide the angular sector of
interest into overlapped groups as illustrated in Figure 1.
Assume that the whole angular sector of interest is discretized
by L grid point such that φk = φ1 + (k − 1)δ, k = 1, ..., L,
where δ is the angular separation between two points of the
grid. We assume the position and the spatial extension of
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the source are known (they can be previously estimated with
methods such as [24]). We assume that the target source is
spread over n grid points and that ∆n is the number of
points within the overlapped sector of the target source and
the interference as illustrated in Figure 1. The overlapped
groups can be constructed such that: 1)There are n points
in each group and ∆n points in the overlapped sector of two
neighbour groups. 2)The lth group corresponds to the target
source and the (l− 1)th or the (l+ 1)th group corresponds to
the interference, where 1 ≤ l ≤ L + 1 − n. 3)To ensure that
the lth group is centered on the DOA of the target source, the
minimum bound of the sector φ1 has to been chosen correctly.
In this way, N = b L−nn−∆n + 1c groups are formed, where b·c
is the floor operator.

In addition, we can define A = [a(φ1), ..., a(φk), ..., a(φL)]
as the matrix composed of the steering vectors corresponding
to all the φk, thus, the vector AHw gives the Beampattern
for the sector of interest. We introduce the matrix K such
that the generalized sparsity with overlapped groups of the
Beampattern can be considered as a generalized Lasso problem
[25] and can be achieved by the minimization of ‖KAHw‖1.
The (N × L) matrix K is defined as follow:

K =


1, ..., 1, 0, 0, ..., 0, 0, 0

...
0, ..., 0, 1, ..., 1, 0, ..., 0

...
0, 0, 0, ..., 0, 0, 1, ..., 1

 , (24)

where each line corresponds to a group with n elements equal
to 1 and other elements are 0. More precisely, the (p, q)th

component of K can be given as:

Kp,q =

 1, if (n−∆n)(p− 1) + 1 ≤ q
≤ (n−∆n)(p− 1) + n,

0, otherwise,
(25)

Note that in the case the angular spread of the interference is
larger than that of the target source, without loss of generality,
assuming that the interference locates in the (l+1)th line of K
and there are n1 points within the interference, where n1 > n,
the (l + 1)th line of K can be given as:

Kl+1,q =

 1, if (n−∆n)l + 1 ≤ q
≤ (n−∆n)l + n1,

0, otherwise.
(26)

In the following, we discuss the Beamforming based on the
generalized sparsity with overlapped groups of the Beampat-
tern in the scenario of CD and ID sources.

1) Target CD source and CD interference: In the scenario
that both the target source and interference are CD, the
proposed Beamforming algorithm can be given as:

min
w
‖KAHw‖1

s.t. wHw ≤ δw,wHc1 = 1,wHc2 = 0, (27)

Similarly to section III-A1, we can introduce an extra
parameter t = KAHw and the augmented Lagrangian for the
new problem can be given as:

L(w, t,η3) =λ2‖t‖1 + ι(w)

+R{ηH3 (KAHw− t)}+
ρt

2
‖KAHw− t‖22,

s.t. wHc1 = 1,wHc2 = 0. (28)

The problem (27) can be solve with similar steps in Algo-
rithm 1 for the problem (18).

2) Target CD source and ID interference: In the scenario
that the target source is CD and the interference is ID, the
main idea of the extension of the linear constraints on c1 and
c2 to non-linear constraints is similar to that in III-A2, the
proposed Beamforming algorithm can be given as:

min
w
‖KAHw‖1

s.t. wHw ≤ δw, ‖wHc1 − 1‖22 ≤ δ1, ‖wHc2‖22 ≤ δ2. (29)

The augmented Lagrange for problem (29) can be given as:

L(w, t,η4) =λ2‖t‖1 + ι(w)

+R{ηH4 (KAHw− t)}+
ρt

2
‖KAHw− t‖22,

s.t. ‖wHc1 − 1‖22 ≤ δ1, ‖wHc2‖22 ≤ δ2, (30)

which can be solved by similar steps based on LPADMM in
Algorithm 2 with the introduction of extra variables u1 =
wHc1 − 1 and u2 = wHc2.

IV. SIMULATIONS

Expected if specified, we consider the following scenarios:
the target source is uniformly distributed impinging from 60◦

and the interference is uniformly distributed impinging from
the sector within 66◦. The angular spreads of both target
source and interference are assumed to be 8◦. That is to say,
the angular overlap of the target source and interference is
62◦ ∼ 64◦. We set SIR = 0dB and SNR = 10dB. According
to section II, the steering vector of a CD source indexed by i
can be modelled by ci as the integration of the steering vector
ai over the whole angular spread of the signal. In our simula-
tions, the steering vector of an ID source is approximated by
continuous independent CD sources whose angular spreads are
all 1◦. The source is a female speaker reading a book from
the dataset Librispeech [26], the total snapshots number is
217, the sampling rate of the source is 16 kHz, the STFT is
computed with half-overlapping Hann window of 256 samples.
The interference is a Gaussian random signal. A uniform linear
array (ULA) of M = 20 omnidirectional microphones spaced
by 5 cm is considered. Sources are assumed to be in far field.

The Beampatterns and SINRs of the conventional LCMV
Beamforming (legend: ”LCMV”), the l1 norm Beamforming
proposed in [27] which is solved by the CVX toolbox (legend:
”CVX”), and the two proposed Beamforming criteria (legend:
”Entropy” for (15) and (20), ”GeneLasso” for (27) and (29))
are compared in different configurations. The optimal value
of the output SINR is the maximum eigenvalue of the matrix
(Ri+n)−1Rx, where Rx and Ri+n are the covariance matrix of
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source and the covariance matrix of interference plus noise,
respectively. The log is used in the contrast function as in
(13). 300 Monte Carlo trials are performed for the computation
of the RMSE ans SINR. To illustrate the robustness, in all
the simulations δw = 0.35 and 0.25 for CD sources and ID
sources, respectively, δ1 = δ2 = 0.1.

A. Simulated data experiments
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(a) Spectrogram sparsity based methods
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(b) Beampattern sparsity based methods

Fig. 2: Objective functions vs. number of iterations (θ1 = 60◦,
θ2 = 66◦, uniformly distributed sources, M = 20)

1) Performance without steering vector mismatches: In
figure 2, we first investigate the convergence behaviour of the
proposed criteria with backtracking steps for the selection of
the dynamic Lipschitz constants and with arbitrary Lipschitz
constants, respectively. The objective functions versus the
number of iterations for (15) and (20) are plotted in figure
2a, and that for (27) and (29) are plotted in figure 2b. It
can be seen that in all the scenarios the LPADMM based
methods can achieve convergence within 500 iterations with
the backtracking steps, while it is hard to achieve convergence
if improper values are selected for Lipschitz constants.

In figure 3 we show the Beampatterns of the conventional
LCMV and the proposed criteria. It can be seen that the
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(a) Target CD source and CD interference for (15)
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(b) Target CD source and ID interference for (20)
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(c) Target CD source and CD interference for (27)

0 100 200 300 400

Direction of arrival (degree)

-100

-80

-60

-40

-20

0

B
e
a
m

p
a
tt
e
rn

 (
d
B

)

GeneLasso

LCMV

(d) Target CD source and ID interference for (29)

Fig. 3: Beampatterns (θ1 = 60◦, θ2 = 66◦, uniformly
distributed sources, M = 20)
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Beampatterns of the LCMV method and that of the proposed
criteria are similar in the region of the overlapped sources,
while in other regions the Beampatterns of the proposed
criteria are much lower than that of the LCMV method. The
results illustrate the advantage in the reduction of the overall
noise of the proposed criteria. By comparing figure 3c and
figure 3d to figure 3a and figure 3b we can see that due to
the direct minimization of the Beampattern in the objective
functions, the criteria proposed in section III-B has better
overall noise reduction performance than that proposed in
III-A.
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(a) Target CD source and CD interference
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(b) Target CD source and ID interference

Fig. 4: Simulation data: Output SINR vs. signal angular
separation (θ1 = 60◦, θ2 = 65◦ ∼ 69◦, SIR = 0dB, SNR
= 10dB, uniformly distributed signals, M = 20)

In figure 4, we plot the output SINR as a function of
the angular separation between central DOAs of the two
distributed sources for both CD and ID sources. The central
DOA of the target distributed source is θ1 = 60◦, while the
central DOA of the distributed interference is varying from
65◦ ∼ 69◦. In general, the output SINR increases as the
angular separation between the source and the interference
increases for all the Beamforming techniques. The advantages

of the proposed criteria are more obvious when the angular
separation is smaller.
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Fig. 5: Simulation data: Output SINR vs. SIR (θ1 = 60◦,
θ2 = 66◦, uniformly distributed signals, M = 20)

In figure 5 the output SINR as a function of SIR is
presented. In general, the output SINRs of the proposed
criteria outperform other methods for all the SIRs. From figure
5a we can see that the conventional LCMV, the l1 norm
Beamforming, and the Beampattern sparsity based criterion
proposed in section III-B are robust to SIR due to the linear
constraint wHc = 0, while in figure 5b the performance
improves as the SIR increases for all methods.

The output SINR as a function of SNR is shown in figure 6.
In general the output SINRs of all the Beamforming techniques
increase as the SNR increases. We can see that the proposed
criteria outperform the other methods in most cases except
when the SNR is higher than 30 dB in the CD source and ID
interference scenario. In this case the values of the parameters
δw, δ1 and δ2 given at the beginning of this section are no
longer optimal for the proposed criteria. The methods for
choosing the optimal values automatically for the parameters
in different configurations will be investigated in the future
work.
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Fig. 6: Simulation data: Output SINR vs. SNR (θ1 = 60◦,
θ2 = 66◦, uniformly distributed signals, M = 20)

2) Performance with steering vector mismatches: In figure
7 we consider the performance of the Beamforming techniques
when steering vector mismatches are caused by the DOA
estimation error: The central DOA of the target source in
Beamforming is assumed to be 60◦ while the actual central
DOA of the target source is 58◦. It can be seen that as the
SNR increases, the performance of the LCMV and the l1 norm
Beamforming degrades severely due to the steering vector
model mismatch, while the proposed criteria achieve almost
the same performance as in the scenario without steering
vector mismatch.

In figure 9 we investigate the performance of the Beamform-
ing techniques when steering vector mismatches are caused
by the microphone position error: The difference between the
coordinate of actual microphone array and that in the steering
vector model used in Beamforming is 3 cm. It can be seen
that the microphone position mismatch influences little the
performance of the Beamforming techniques due to the far
field assumption, except for the LCMV in the high SNR
scenario.
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Fig. 7: Simulation data: Output SINR vs. SNR (θ1 = 58◦,
θ2 = 66◦, uniformly distributed signals, M = 20)

Fig. 8: Microphone array and soundboxes used in real data
experiments (the larger soundbox width: 40 cm, the smaller
soundbox width: 5 cm)
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Fig. 9: Simulation data: Output SINR vs. SNR (θ1 = 60◦,
θ2 = 66◦, microphone position mismatch 3 cm, uniformly
distributed signals, M = 20)

B. Real data experiments

Sources DOA Angular spread
fig.10a CD target source 90.5◦ 7.6◦

CD interference 87.5◦ 7.6◦

fig.10b CD target source 90◦ 7.6◦

ID interference 87.5◦ 5◦

TABLE I: Angular configurations of CD/ID sources in real
data experiments.

The real data experiments are realized at Beijing Institute
of Technology. As shown in figure 8, a linear uniform array
consisting of ten omnidirectional microphones is used to pick
up sound signals. Soundboxes are placed about 3 m far away
from the microphone array and two types of soundboxes are
used: the smaller one is 5 cm wide and its angular spread
is 1◦, the larger one is 40 cm wide and its angular spread
is about 7.6◦. Thus, the larger soundbox can be considered
as a CD source, while an ID source can be constructed by
placing the smaller soundbox at continuous DOA and then
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Fig. 10: Real data: Output SINR vs. SIR (θ1 = 90◦, θ2 =
87.5◦, inter-element space of microphone 2 cm, uniformly
distributed signals, M = 10)

adding up all the received signals at the microphone array.
It is true that the constructed source is not a real physical
ID source, but the approximation is mathematically legitimate.
Music segments are used as target sources and white Gaussian
noise segments are used as interferences. The overall noise is
estimated by noise-only frames. The SNR is about 20 dB. Here
the soundboxes are chosen as an example of the distributed
source because the parameters such as the distance between
the soundbox and the microphone array are easy to control.

In figure 10 the performance of the noise reduction methods
is compared, the DOAs and angular spread configurations are
given in TABLE I. We can see that in the CD target source-
CD interference scenario, the angular overlap of the target
source and the interference is 86.7◦ ∼ 91.3◦; in the CD target
source-ID interference scenario, the angular overlap of the
target source and the interference is 86.2◦ ∼ 90◦. We can
also see that due to the different SNRs, the reverberation, the
DOA estimation error, the hardware limitation, etc, the output
SINRs in the real data experiments are different compared to
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the simulated data experiments (see figure 5). Nevertheless,
the two proposed algorithms still outperform the baseline
algorithms.

V. CONCLUSIONS

In this paper, we have proposed two Beamforming criteria
for the case that the target source and the interference are
spatially distributed and overlapped: in the first criterion we
exploit the entropy/non-Gaussianity as well as the sparsity
of the spectrogram of the output of the microphone array;
in the second criterion we exploit the generalized sparsity
with overlapped groups of the Beampattern. In the two pro-
posed criteria, the constraints for keeping the target source
and cancelling the interference are linear for CD sources
and are relaxed to non linear ones for ID interference. The
criteria are solved by LPADMM based methods including
soft-thresholding and projection gradient descent with high
accuracy and high computational efficiency. The simulations
and real data experiments have shown the advantages of the
proposed criteria compared to previously proposed Beamform-
ing methods.

APPENDIX A
The subproblem (19a) is an optimization problem with

linear constraints. To solve (19a), firstly, ignoring the constants
terms, the augmented Lagrangian of (19a) can be given as:

La(w,η1) =− E
[
G(|YHw|2)

]
+R{ηH(YHw− z)}

+
ρz

2
‖YHw− z‖22 +R{ηH1 (CHw− p)}

+
ρw

2
‖CHw− p‖22 + ι(w), (31)

where C = [c1, c2], p = [1; 0]. Similarly to (18), this sub-
problem can be solved via some iterative steps, for the (j+1)th

iteration to solve (31) in the (k + 1)th iteration in (19), the
parameters can be determined as:

w(j+1) = arg min
w

La(w(j),η
(j)
1 , z(k),η(k)), (32a)

η
(j+1)
1 = η

(j)
1 + γ1(CHw(j+1) − p), (32b)

where γ1 is the step size parameter.
Linearizing both the lower semi-continuous function and

the linear constraint terms, and introducing the proximal term
µw
2 ‖w−w(j)‖22, and ignoring the constants terms, the problem

(32a) can be given as:

w(j+1) = arg min
w

< ∇wF (w(j),η
(j)
1 , z(k),η(k)),w− w(j) >

+
µw

2
‖w− w(j)‖22 + ι(w),

= arg min
w

µw

2
‖w− (w(j) − 1

µw
∇wF (w(j),η

(j)
1 , z(k),η(k)))‖22

+ ι(w), (33)

where 〈·, ·〉 is the inner product operator, F and
∇wF (w(j),η

(j)
1 , z(k),η(k)) are given in (34) and

(35) at the top of next page, respectively, where
∇wF (w(j),η

(j)
1 , z(k),η(k)) is the gradient of F in terms of

w, and g(x) is the gradient of G(x) in terms of a scalar x.

The problem (33) can be solved by the projection gradient
descent which can be given as:

w(j+1) = Pc(w(j) − 1

µw
∇wF (w(j),η

(j)
1 , z(k),η(k))), (36)

where Pc(x) is the projection operator for a vector x such that:

Pc(x) =

{
x, if xHx ≤ δx,√

δxx
‖x‖2 , otherwise.

(37)

Similarly, to solve (19b), noting that
V (w(k+1), z(k),η(k)) = R{η(k)H (YHw(k+1) − z(k))} +
ρz
2 ‖Y

Hw(k+1) − z(k)‖22, and the gradient of V in terms of
z as ∇zV (w(k+1), z(k),η(k)) = −η(k) − YHw(k+1) + z(k),
introducing the proximal terms and ignoring the constants
terms, (19b) can be given as:

z(k+1) = arg min
z

< ∇zV (w(k+1), z(k),η(k)), z− z(k) >

+
µz

2
‖z− z(k)‖22 + λ1‖z‖1

= arg min
z

µz

2
‖z− (z(k) − 1

µz
∇zV (w(k+1), z(k),η(k)))‖22

+ λ1‖z‖1

=Sλ1/µz

(
z(k) − 1

µz
∇zV (w(k+1), z(k),η(k))

)
, (38)

where Sλ1/µz(x) is the soft thresholding operator of the vector
x such that:

Sλ1/µz(x) =

{
x− λ1/µz, if x ≥ λ1/µz,

0, otherwise,
(39)

where the comparisons and subtractions are applied element-
wise.

APPENDIX B

To solve (23a), introducing two extra variables u1 =
wHc1 − 1 and u2 = wHc2, the augmented Lagrangian of
this sub-problem can be given as:

La(w, u1, u2, η1, η2) =

− E
[
G(|wHY|2)

]
+ ι(w) + ι(u1) + ι(u2)+

R{ηH(YHw− z) + η?1(wHc1 − 1− u1) + η?2(wHc2 − u2)}+
ρz

2
‖YHw− z‖22 +

ρu1

2
‖wHc1 − 1− u1‖22 +

ρu2

2
‖wHc2 − u2‖22,

(40)

where ·? is the conjugate operator.
Similarly to the CD sources scenario, based on LPADMM,

the parameters in (40) can be determined by several iterations,
for the (j + 1)th iteration to solve the problem (40) in the
(k+ 1)th iteration in (23) , the parameters can be determined
by:

w(j+1) = Pc
(

w(k) − 1

µw
∇wF1(w(j), u

(j)
1 , u

(j)
2 , η

(j)
1 , η

(j)
2 )

)
,

(41a)

u
(j+1)
1 = Pc

(
u

(j)
1 −

1

µu1

(−η(j)
1 − w(j+1)H + 1 + u

(j)
1 )

)
,

(41b)
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F (w(j),η
(j)
1 , z(k),η(k)) =− E

[
G(|YHw(j)|2)

]
+R{η(k)H (YHw(j) − z(k))}+

ρz

2
‖YHw(j) − z(k)‖22

+R{η(j)H

1 (CHw(j) − p)}+
ρw

2
‖CHw(j) − p‖22, (34)

∇wF (w(j),η
(j)
1 , z(k),η(k)) =− E

[
g(|YHw(j)|2)YYHw(j)

]
+ Yη(k) +

ρz

2
(YYHw(j) − Yz(k))

+ Cη
(j)
1 +

ρw

2
(CCHw(j) − Cp), (35)

u
(j+1)
2 = Pc

(
u

(j)
2 −

1

µu2

(−η(j)
2 − w(j+1)H + u

(j)
2 )

)
,

(41c)
η

(j+1)
1 = η

(j)
1 + γ2(u

(j+1)
1 − w(j+1)H c1 + 1), (41d)

η
(j+1)
2 = η

(j)
2 + γ3(u

(j+1)
2 − w(j+1)H c2), (41e)

where ∇wF1(w(j), u
(j)
1 , u

(j)
2 , η

(j)
1 , η

(j)
2 ) is the gradient

of F1(w(j), u
(j)
1 , u

(j)
2 , η

(j)
1 , η

(j)
2 ) in terms of w,

F1(w(j), u
(j)
1 , u

(j)
2 , η

(j)
1 , η

(j)
2 ) can be given as:

F1(w(j), u
(j)
1 , u

(j)
2 , η

(j)
1 , η

(j)
2 ) = −E

[
G(|w(j)HY|2)

]
+

R{η(j)H(YHw(j) − z(k))}+R{η(j)
1

?
(w(j)Hc1 − 1− u(j)

1 )}

+R{η(j)
2

?
(w(j)Hc2 − u(j)

2 )}+
ρz

2
‖YHw(j) − z(k)‖22

+
ρu1

2
‖w(j)Hc1 − 1− u(j)

1 ‖22 +
ρu2

2
‖w(j)Hc2 − u(j)

2 ‖22.
(42)

The problem (23b) can be solved with the same method for
the problem (19b).
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