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This paper proposes a robust steer-by-wire (SBW) control architecture to provide high
assistance gains in the presence of internal and transmission delays. The proposed controller
is inspired by Smith’s predictor to compensate for the internal delays. The controlled system
is compared to the conventional proportional-derivative (PD) telemanipulation controller
and is associated with a method for estimating its delay margin. Our methodology is based
on frequency-domain techniques for stability analysis of time-delay systems, which provide
the allowable bound on the communication delay for the system. Simulations that compare
the proposed controller to a conventional PD controller are also included.

Topics / Steering, Brake, Tire, Suspension; Advanced Driver Assistance Systems; Steer-by-Wire.

1. INTRODUCTION

By-wire technologies offer flexible architectures
for vehicle systems. Among the features of steer-by-
wire (SBW) systems we may cite the steering column
removal [1] and the possibility of teleoperation [2].
They also allow more flexibility to accommodate per-
formance requirements, in terms of driving charac-
teristics, than the conventional automotive steering
architectures [3].

Replacing the physical link between the steer-
ing wheel and the pinion/rack decouples the steer-
ing system into two subsystems, which are connected
through actuators, sensors, a control unit, and a
communication network. It is therefore crucial to
study the stability margins of the resulting intercon-
nected system, where the communication between
the two subsystems are subject to network delays.
Moreover, both the steering wheel and the pinion
subsystems are subject to internal delays, induced
by the acquisition and processing of encoder events.
The study of this problem is similar to the ques-
tions addressed in robotics in the context of bilat-
eral teleoperation [4], where proportional-derivative
(PD) controllers are widely used. A major challenge
to preserve stability in the presence of these delays
is the use of high feedback-loop gains, which are re-
quired to reduce steering effort.

In this paper, inspired by [5] and [6], a modified
Smith predictor [7] is proposed to compensate for the
internal delays in the presence of disturbance signals.
These internal delays are usually smaller than the
transmission delays and are assumed to be known
and constant. Hence, their compensation allows to
remove them from both local feedback loops, and the
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Fig. 1: SBW block diagram.

stability margin of the interconnected system is re-
duced to a robustness analysis with respect to the
communication delays only. To that aim, a Padé ap-
proximation is used to compute an analytical expres-
sion of the delay margin of the SBW feedback loop.
Finally, the delay robustness analysis presented also
applies to remote vehicle operation, where the delays
can be even larger than in the local vehicle network.

2. STEER-BY-WIRE MODEL

Consider the dynamics of the SBW system

Jwθ̈w(t) + σwθ̇w(t) = Tw(t) + Td(t),

Jpθ̈p(t) + σpθ̇p(t) = Tp(t) + Tr(t),
(1)

where θw, θp are the angular positions, Jw, Jp, the
moments of inertia, σw, σp, the damping coefficients,
and Td, Tr, the torques generated by the driver and
the road. For the PD controller, the control inputs
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Fig. 2: Steering wheel/Road wheel subsystems
block diagram with PD controller.

Tw and Tp interconnect the system with the control
law

Tw(t) =kw(θp(t− τ2 − τp)− θw(t− τw))

+ ρw(θ̇p(t− τ2 − τp)− θ̇w(t− τw)),

Tp(t) =kp(θw(t− τ1 − τw)− θp(t− τp))

+ ρp(θ̇w(t− τ1 − τw)− θ̇p(t− τp)),

(2)

where kw, kp, ρw, ρp ∈ R+ are the control law pa-
rameters, τw, τp are the internal delays, and τ1, τ2 are
the transmission delays (see, e.g., [2]). This intercon-
nected system (1)-(2) is represented in Fig. 1, with
the steering wheel and the road wheel subsystems
as shown in Fig. 2, (i, j, T ) ∈ {(w, p, Td), (p, w, Tr)},
where the transfer function Pi and Ci, for i = w, p,
are expressed in the Laplace domain as

Pi(s) =
1

Jis2 + σis

and
Ci(s) = ki + ρis.

Inspired by [5] and [6], to eliminate the inter-
nal delays from the feedback loop of the closed-loop
subsystems, we replace the PD control law (2) by
the modified Smith predictor control architecture de-
picted in Fig. 3, where the internal delays and the
system parameters are assumed known. To improve
the control architecture proposed in [5], we add to
the PD controllers Cw and Cp two lead filters given,
respectively, by 1 + τws and 1 + τps.

Using the proposed control architecture, the trans-
fer function from θj(s)e

−τjs to θi(s)e
−τis, is given by

θi(s)e
−τis

θj(s)e−τjs
=

(1 + τis)Ci(s)Pi(s)e
−τis

1 + Ci(s)Pi(s)
, (3)

and the transfer function from T (s) to θi(s) is given
by

θi(s)

T (s)
=

Pi(s)(1 + Ci(s)Pi(s)(1− (1 + τis)e
−τis))

1 + Ci(s)Pi(s)
.

(4)
Therefore, (3) and (4) imply that the block diagrams
of Fig. 3 and Fig. 4 are equivalent. Moreover, with-
out delays (i.e., τ1 = τ2 = τw = τp = 0), the pro-
posed control structure is equivalent to the conven-
tional PD control law in (2). The main advantage
of the proposed control structure is that the inter-
nal delays are removed from the feedback loop of the
closed-loop subsystems. Therefore, the SBW sys-
tem (1) with the control architecture of Fig. 3 is
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Pi(s)

1
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−τjs θi(s)e

−τis

−

−

T

−

Fig. 3: Steering wheel/Road wheel subsystems
block diagram with modified Smith predictor.
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Fig. 4: Steering wheel/Road wheel subsystems
block diagram with modified Smith predictor.

represented by the interconnected system in Fig. 5.
Where, from the closed-loop SBW system, we define
the open-loop transfer function L given by

L(s) = − (1 + τws)Cw(s)Pw(s)

1 + Cw(s)Pw(s)

× (1 + τps)Cp(s)Pp(s)

1 + Cp(s)Pp(s)
. (5)

3. STABILITY ANALYSIS

To check the stability of the interconnected sys-
tem, we use the Nyquist criterion [8] which provides
a convenient way to examine stability for linear time-
delay systems.

Proposition 1 Given the system in (1)-(2) without
delays (i.e., τ1 = τ2 = τw = τp = 0), the closed-loop
system is stable for any positive values of the control
parameters kw, kp, ρw, and ρp.

The delay margin [9] of a feedback loop with a
single delay is the bound ∆τ such that the closed-
loop system is stable for any delay in the interval
[0,∆τ). From Proposition 1, the system (1)-(2) is
stable for any values of the control parameters kw,
kp, ρw, and ρp if τ1 = τ2 = τw = τp = 0. We will
study below the stability of the system, to obtain the
largest value of the round trip delay τ̄R such that the
feedback loop in Fig. 5 is stable for all delay values
in the set {(τ1, τ2, τw, τp) | τ1 + τ2 + τw + τp < τ̄R}.

From the open-loop transfer function in (5), the
unity-gain crossover frequencies ωc are the real pos-
itive solutions of the equation |L(jωc)| = 1. Find-
ing the explicit expression for the solutions ωc of
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Fig. 5: SBW block diagram with modified
Smith predictor controllers.

this equation is difficult since the characteristic equa-
tion is a polynomial of degree 4. Nevertheless, we
can determine conditions under which the unity-gain
crossover frequency ωc of L exists and is unique as
detailed in the following proposition.

Proposition 2 If the control parameters kw, ρw, kp,
ρw verify

a > 0,

d < 0,

b2c2 + 18abcd < 27a2d2 + 4ac3 + 4b3d,

where

a = J2
wJ

2
p − τ2wτ

2
pρ

2
wρ

2
p,

b = J2
w(ρp + σp)

2 + J2
p (ρw + σw)

2 − 2kwJwJ
2
p

− 2kpJpJ
2
w − τ2wρ

2
w(τ

2
pk

2
p + ρ2p)

− τ2pρ
2
p(τ

2
wk

2
w + ρ2w),

c = 4kwkpJwJp + k2wJ
2
p + k2pJ

2
w − 2kwJw(ρp + σp)

2

− 2kpJp(ρw + σw)
2 + (ρw + σw)

2(ρp + σp)
2

− τ2wk
2
pρ

2
w − τ2pk

2
wρ

2
p − (τ2wk

2
w + ρ2w)(τ

2
pk

2
p + ρ2p),

d = k2w(ρp + σp)
2 + k2p(ρw + σw)

2 − 2kwJwk
2
p

− 2kpJpk
2
w − k2wρ

2
p − k2pρ

2
w − τ2wk

2
wk

2
p − τ2pk

2
wk

2
p,

then, the unity-gain crossover frequency ωc of L ex-
ists and is unique.

Below, we assume that the conditions on the con-
trol parameters given in Proposition 2 hold. This is
a realistic assumption since it is usually verified in
conventional SBW systems. These conditions give
an upper bound on the admissible round trip de-
lay τ̄R as shown in the following theorem. However,
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Fig. 6: Approximation at ωcw of the open-loop
transfer function L, for τw = τp = 5 ms: (top)
Nyquist locus. (bottom) Bode diagram.

it is also possible to find conditions on the control
parameters to ensure stability independently of the
delays.

Theorem 1 Assume that the unity-gain crossover
frequency ωc of L exists and is unique. For the inter-
connected system given by Fig. 1 and Fig. 3, there ex-
ists a constant τ̄R such that the closed-loop system is
stable for all the delay values in the set {(τ1, τ2, τw, τp) |
τ1 + τ2 + τw + τp < τ̄R}.

Table 1: SBW and controller parameters.

Parameter Value
Jw 0.044 Kg.m2

Jp 0.11 Kg.m2

kw 143.24 Nm/rad
kp 36kw Nm/rad
ρw 0.25 Nm.s/rad
ρp 7.75 Nm.s/rad
σw 0.25 Nm.s/rad
σp 1.34 Nm.s/rad
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gins τ̄R at several values of
kp

kw
, for τw = τp =

5 ms.

In this case, the delay margin is given by

τ̄R =
arg(L(jωc)) + π

ωc
, (6)

and the unity-gain crossover frequency ωcw of the
steering wheel subsystem, given by

ω2
cw = max

(
0,

−(ρw + σw)
2 + ρ2w + 2kwJw
J2
w

)
,

provides a first estimate of the solution ωc. Below,
we propose an approach to obtain a tighter estimate
of ωc.

First, we approximate the transfer function L us-
ing a Padé approximation at ωcw, defined by a first
order transfer function L̃ with complex coefficients.
That is, based on the Taylor series, we approximate
separately the numerator

NL(s) = −(1 + τws)(1 + τps)(ρws+ kw)(ρps+ kp)

and the denominator

DL(s) = (Jws
2 + (σw + ρw)s+ kw)

× (Jps
2 + (σp + ρp)s+ kp)

of L in the neighborhood of ωcw to obtain

L̃(jω) =
NL(jωcw) + j(ω − ωcw)

dNL

ds
(jωcw)

DL(jωcw) + j(ω − ωcw)
dDL

ds
(jωcw)

=
ajω + b

cjω + d
,

where a, b, c, and d are complex coefficients

a =
dNL

ds
(jωcw),

b = NL(jωcw)− jωcw
dNL

ds
(jωcw),

c =
dDL

ds
(jωcw),

d = DL(jωcw)− jωcw
dDL

ds
(jωcw).
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Fig. 8: Delay margin contours, in (ms), for
τw = τp = 5 ms. The conditions of Proposi-
tion 2 do not hold inside the domain bounded
by the red curve.

This approximation generates a circle tangent at
ωcw to the Nyquist locus (Fig. 6). The unity-gain

crossover frequency ω̃c of L̃ can be calculated ana-
lytically since the characteristic equation is a poly-
nomial of degree 2. It is given by

ω̃c =
−(biar − brai − dicr + drci)−

√
∆

a2r + a2i − c2r − c2i
,

with

∆ = (biar − brai − dicr + drci)
2

− (a2r + a2i − c2r − c2i )(b
2
r + b2i − d2r − d2i ),

where ar, ai, br, bi, cr, ci, dr, and di are, respectively,
the real and imaginary parts of a, b, c, and d.

Therefore, since L̃ is an approximation of L, ω̃c

approximates ωc more precisely, which can be used
to compute the delay margin τ̄R in (6).

The approximate values of the delay margins ob-
tained by L(jω̃c) and ω̃c in (6) are illustrated in

Fig. 7. On the one hand, for small values of
kp

kw
, the

unity-gain crossover frequencies of the steering wheel
subsystem and that of the road wheel subsystem are
close, resulting in an abrupt change in the phase of
the transfer function L. This change in phase gener-
ates a significant error in the estimation of the delay

margin. On the other hand, when the value of
kp

kw
is

large (which is always the case in an assisted steering
system), these two unity-gain crossover frequencies
are far apart and, as a consequence, the unity-gain
crossover frequency ωcw is close to ωc.

The assist gains kw and kp are fixed by the system
requirement. The derivative gains ρw and ρp have a
significant effect on the stability of the SBW system.
However, determining an explicit expression for the
values of the parameters ρw and ρp that maximizes
the delay margin is difficult [10, Theorem 3.1]. Fig. 8
shows that the derivative gains ρw and ρp have a non-
monotonic effect on the delay margin.
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Table 2: Simulation cases.

Delay Case 1 Case 2 Case 3
τw (ms) 2.5 5 5
τp (ms) 2.5 5 5
τ1 (ms) 5 5 10
τ2 (ms) 5 5 10
τ̄R (ms) 46.04 48.47 48.47

4. SIMULATION

In this section, we compare the performance of
the proposed modified Smith predictor and the con-
ventional PD controller at same control parameter
values as reported in Table 1.

We assume that the road torque is given by

Tr(t) = −krθp(t)− ρr θ̇p(t), (7)

where kr = 300 Nm/rad and ρr = 25 Nm.s/rad. To
obtain a more realistic steering feel [11], we introduce
a nonlinear torque map κ in the control law Tp,

Tp(t) = kw(θw(t− τ1 − τw)− θp(t− τp))

+
(kp − kw)

kw
κ(kw(θw(t− τ1 − τw)− θp(t− τp)))

+ ρp(θ̇w(t− τ1 − τw)− θ̇p(t− τp)),

where κ is illustrated in Fig. 9 and kp > kw.
We simulate the SBW system in three different

cases, in which we change the values of the delays
as depicted in Table 2. In each case, we consider
two scenarios: the first scenario, a square-like steer-
ing torque input is applied and the control signal are
examined; the second scenario, a sinusöıdal steer-
ing torque input of amplitude 5 Nm and frequency
of 0.1 Hz is applied and the steering wheel angle is
plotted with respect to the driver steering torque.
The performance of the system is measured by the
hysteresis generated by this curve. That is, by the
distance between the two intersection points with the
imaginary axis at θw = 0deg.

For Case 1, since the values of the delays are
small, the two controllers have approximately the
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Fig. 10: Case 1: (top) Control signals for
a square-like steering torque input. (bot-
tom) SBW steering feel for a sinusöıdal driver
torque input.

same performance, as shown in Fig. 10. For Case 2,
as shown in Fig. 11, the modified Smith predictor
compensates the internal delays and performs almost
as in Case 1. However, the PD controller exhibits
slight vibrations. These vibrations are a result of the
fact that the internal delays are still present in the
feedback loop of the steering wheel and road wheel
subsystems. For Case 3, where we consider larger
communication delays τ1 + τ2 + τw + τp = 30 ms,
as shown in Fig. 12, the modified Smith predictor
starts to oscillate since we approach the delay mar-
gin τ̄R = 48.47 ms.

5. CONCLUSION

This paper studied a SBW control law based on
PD schemes. To circumvent their reduced delay mar-
gin, in the case of high feedback gains, a modified
Smith predictor was introduced to compensate for in-
ternal delays and reduce transient oscillations. More-
over, an approximation of the delay margin based on
a Padé approximation of the open-loop transfer func-
tion was proposed. Finally, to asses the performance
of the proposed control laws, the “steering feel” of
the system was evaluated for a specific driver input.
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