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Abstract

Spike deconvolution is the problem of recovering the point sources from their convolution with a
known point spread function, which plays a fundamental role in many sensing and imaging applications.
In this paper, we investigate the local geometry of recovering the parameters of point sources—including
both amplitudes and locations—by minimizing a natural nonconvex least-squares loss function measuring
the observation residuals. We propose preconditioned variants of gradient descent (GD), where the search
direction is scaled via some carefully designed preconditioning matrices. We begin with a simple fixed
preconditioner design, which adjusts the learning rates of the locations at a different scale from those of
the amplitudes, and show it achieves a linear rate of convergence—in terms of entrywise errors—when
initialized close to the ground truth, as long as the separation between the true spikes is sufficiently large.
However, the convergence rate slows down significantly when the dynamic range of the source amplitudes
is large. To bridge this issue, we introduce an adaptive preconditioner design, which compensates for
the learning rates of different sources in an iteration-varying manner based on the current estimate. The
adaptive design provably leads to an accelerated convergence rate that is independent of the dynamic
range, highlighting the benefit of adaptive preconditioning in nonconvex spike deconvolution. Numerical
experiments are provided to corroborate the theoretical findings.
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1 Introduction
Spike deconvolution, also known as super-resolution [1], is the task of recovering a stream of point sources
from their convolution with a point spread function (PSF). This classical problem is at the core of many
sensing and imaging modalities, including but not limited to radar, sonar, optical imaging, neuroimaging,
and communication systems [2, 3, 4, 5]. The PSF, which models the physical limitations of the imaging
device involved in the experimental process, is commonly assumed to act as a band-limited and shift-invariant
low-pass filter on the point sources [6, 7]. The sharpness of the original sources, modeled by Dirac impulses,
is degraded through the convolution process, introducing undesirable ambiguity on the complex amplitudes
and locations of the sources. The spike deconvolution task amounts to inverting the low-passing effects of the
PSF, and to recovering the original sources as precisely as possible.

There is a rich literature on algorithmic investigations of the spike deconvolution problem, ranging from
classical root-finding methods such as Prony’s method, subspace methods such as MUSIC [8, 9], ESPRIT [10]
and matrix pencil [11], to more recent optimization methods such as atomic norm minimization (a.k.a. total
variation minimization) [12, 13, 14, 15, 16] and basis pursuit [17, 18]. While classical approaches harness
the algebraic properties of complex exponentials by mapping the observations onto a low-dimensional linear
subspace to recover the parameters of interest, optimization methods, on the other hand, attempt to recover
the parameters via minimizing some carefully-designed loss function. As such, optimization methods tend to
be more versatile in adapting to different imaging modalities, as well as amenable to modern advances in
large-scale optimization. Inspired by the development of compressive sensing [19, 20], initial approaches for
spike deconvolution relies on a discretization of the spike locations, and then attempts to recover a sparse
solution using sparsity-promoting convex relaxations such as the LASSO [21, 22]. However, the fundamental
issue of basis mismatch [23] inherent to the discretization process may significantly hinder the localization
performance, and increasing the grid size to reach finer precision levels leads to higher computational cost.
Therefore, there has been a surge of interest in developing provably correct convex programs—such as the
atomic norm minimization framework mentioned earlier—for spike deconvolution over the continuum in
recent years, with strong performance guarantees developed under sufficient separations between the point
sources [24, 25, 26, 27]. Nonetheless, the atomic norm framework requires solving a semidefinite program
whose complexity scales at least cubically with respect to the signal length; and therefore is computationally
expensive and memory inefficient. In addition, although it is in principle possible to examine the so-called
dual polynomial to localize the sources [14], it often boils down to an additional post-processing step on the
output of the convex program to recover the source parameters, which may hamper the guarantee of the
overall procedure.

Motivated by the recent success of nonconvex methods, especially simple first-order methods, in various
signal estimation and machine learning tasks [28, 29], we are interested in understanding the efficacy of
first-order methods in nonconvex spike deconvolution. In fact, first-order methods have already been popular
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empirically for spike deconvolution, but little is known about their theoretical underpinnings [30]. As a first
step, this paper focuses on the local geometry and performance guarantees of recovering the parameters of
point sources—including both amplitudes and locations—by minimizing a natural nonconvex least-squares
loss function measuring the observation residuals.

1.1 Observation model
Formally, we formulate the spike deconvolution problem as follows. Consider a vector of 2r parameters
θ⋆ = [a⋆1, . . . , a

⋆
r , τ

⋆
1 , . . . , τ

⋆
r ]

T, where a⋆ℓ ∈ C and τ⋆ℓ ∈ R correspond to the complex amplitude and location
of the ℓ-th spike, respectively, ℓ = 1, . . . , r. Denoting by M the set of Radon measures over the reals, we
assume that the point source signal µ⋆ ∈ M to resolve is of the form

µ⋆ = µ(θ⋆) =

r∑
ℓ=1

a⋆ℓδτ⋆
ℓ
, (1)

where δτ stands for the Dirac function located at τ ∈ R. Let us further denote the largest and the smallest
amplitude of the spikes as

a⋆max = max
1≤ℓ≤r

|a⋆ℓ | = ∥a⋆∥∞ , a⋆min = min
1≤ℓ≤r

|a⋆ℓ | .

The dynamic range of the measure µ⋆, an important quantity that will be used repetitively later, is thus
defined as a⋆max/a

⋆
min. Denoting by g ∈ L1(R) the PSF, the temporal signal x ∈ L1(R) resulting from the

convolution of the point source signal µ⋆ and the PSF g reads

x(τ) = (g ∗ µ⋆) (τ) =

r∑
ℓ=1

a⋆ℓg(τ − τ⋆ℓ ), (2)

where ∗ denotes the convolution product.
A versatile observation model commonly encountered in practice considers the measurements to be taken

from a uniform sampling of the Fourier transform of the temporal signal x. Denote by F(·) the Fourier
transform of a measure µ lying in M, given by

F(µ)(f) =

∫
R
e−i2πfτdµ(τ), ∀µ ∈ M, ∀f ∈ R. (3)

Denote by G = F(g) and X = F(x) the Fourier transform of g and x, respectively. We assume that the
PSF is band-limited within the bandwidth B = 1 so that it constrains no frequency greater than 1/2, i.e.
G(f) = 0 for |f | > 1

2 .1 For convenience, we assume that an odd number N = 2n+ 1 of measurements are
taken in the Fourier domain, uniformly spaced in the bandwidth [− 1

2 ,
1
2 ]. The sampled signal x ∈ CN writes

x = Φ(µ⋆)

= diag(g)
[
F(µ)

(
− n

N

)
, . . . ,F(µ)

( n

N

)]⊤
, (4)

where Φ : M → CN represents the observation operator and g ∈ CN is a vector with generic term gk = G
(

k
N

)
for k = −n, . . . , n. Up to a scaling, we assume g to have unit Euclidean norm, i.e. ∥g∥2 = 1. The goal of
spike deconvolution is thus to recover the measure µ⋆, or equivalently, the parameter θ⋆, from x.

1.2 Our contributions
In the rest of this paper, we assume that the model order r is known, and consider a natural nonconvex
loss function, which aims to minimize the quadratic loss of the parameters θ = [a1, . . . , ar, τ1, . . . , τr]

T of the
Radon measures, given by

min
θ

L(θ) = 1

2
∥Φ(µ(θ))− x∥22 . (5)

1The normalization B = 1 is made without loss of generality, up to a rescaling of the source locations τ⋆ℓ . Assuming that
τ⋆ℓ ∈ [−T

2
, T
2
], where T is the length of the observation window, the deconvolution problem only depends on the time-bandwidth

product T ·B [31].
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Due to the nonlinear form of the parameters, the loss function L(θ) is clearly nonconvex. As a first step
towards nonconvex spike deconvolution, we are interested in understanding the local geometry of the loss
function (5) and its implications on the computation efficacy of first-order methods. Without loss of generality,
we assume the autocorrelation function h of the PSF g to be a triangular low pass function, i.e.

h(τ) =

∫ ∞

−∞
f(u+ τ)f(u)du = C

sin2
(
πτ
2

)(
πτ
2

)2 , (6)

where C > 0 is a constant, and that their respective Fourier transform H(f) and G(f) are linked through the
relation G(f) =

√
H(f) for all f ∈ R. It comes that

gk = G

(
k

N

)
=

√
H

(
k

N

)
=

√
1

n+ 1

(
1− |k|

n+ 1

)
, (7)

for all k = −n, . . . n after rescaling with the constraint ∥g∥2 = 1. Note that the triangular low-pass function
and the Fejér kernel—its discrete counterpart—play an important role in the deconvolution literature and
have been extensively proposed as a convolution kernel to evaluate the norm and distance between Radon
measures [14]. Additionally, our main results can be re-derived with any other bandlimited PSF g by following
analogous reasoning, as long as it autocorrelation h is an absolutely integrable function.

Concretely, we propose and analyze preconditioned variants of gradient descent (GD), where the search
direction is scaled via some carefully designed preconditioning matrices. Our contributions are summarized
as follows.

• We begin with a simple fixed preconditioner design, which adjusts the learning rates of the locations at
a different scale from those of the amplitudes, and show it achieves a linear rate of convergence—in
terms of entrywise errors—when initialized close to the ground truth, as long as the separation between
the true spikes is sufficiently large. However, the convergence rate slows down significantly when the
dynamic range of the source amplitudes is large.

• To bridge this issue, we introduce an adaptive preconditioner design, which compensates the learning
rates of different sources in an iteration-varying manner based on the current estimate. The adaptive
design provably leads to an accelerated convergence rate that is independent of the dynamic range,
highlighting the benefit of adaptive preconditioning in nonconvex spike deconvolution.

Our result is based on understanding the geometric properties of scaled Hessian matrices via a set of novel
summation bounds on the absolute sums of sampled Fejér kernels and higher-order derivatives, which might
be of independent interest in other contexts.

1.3 Related work
The closest work to ours on recovering spike signals from low-pass observations using nonconvex optimization
is [32]. The radius of the basin of attraction for gradient descent is characterized whenever the observation
operator satisfies the restricted isometry property over the set of well-separated sparse measures. Although
the problem setup is versatile, specializing this result in our context of low-pass measurements yields a
convergence region whose size scales inversely with the number of sources, which is pessimistic when the
number of sources is large. Moreover, the analysis in [32] focuses on the Euclidean error of the parameters,
while we focus on the entrywise error, which is more meaningful for gauging the recovery quality of the
point sources. Projected gradient methods, which merge pairs of colliding spikes at each iteration, have been
proposed in [33, 34] but without theoretical convergence guarantees.

Our work can be viewed as falling into a growing line of research on developing provably efficient nonconvex
methods—especially first-order methods—for high-dimensional signal estimation, examples including phase
retrieval [35, 36], low-rank matrix estimation [37, 28], blind (sparse) deconvolution [38, 39, 40], dictionary
learning [41, 42], multi-channel sparse deconvolution [43, 44], and so on. In particular, the preconditioned gra-
dient methods considered in this paper are motivated by [45, 46, 47], which demonstrated that preconditioning
can efficiently accelerate the convergence of gradient descent in ill-conditioned low-rank estimation.
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1.4 Notation and paper organization
Vectors and matrices are denoted by boldface and capital boldface letters, respectively. Vectors x ∈ CN

with odd dimension N = 2n+ 1 are indexed between −n and n, so that x = [x−n, . . . , xn]
⊤ for convenience.

Transpose and Hermitian transpose of a vector or a matrix A are denoted by A⊤ and AH, respectively.
Furthermore, the adjoint of the operator Φ is denoted by Φ∗. We write 1d and 0d the all-one and null vector
(or matrix) in dimension d, respectively. With a slight abuse of notation, we denote by |a|, |a|2, a−1 the
vector with entries equal to the modulus, the squared modulus, and the inverse of the entries of a, respectively.
The element-wise product between two vectors a and a′ is written as a⊙ a′. We denote by Dℓ the space of
ℓ-times differentiable functions of the real variable. For any function h ∈ Dℓ, we write its ℓth derivative h(ℓ).
We denote by ⟨· , ·⟩ and ⟨· , ·⟩R = ℜ (⟨· , ·⟩) the usual inner product and real inner product between Radon
measure, respectively. Additionally, we let δ(ℓ) ∈ M be the functional which satisfies

g(ℓ)(τ) =
〈
δ(ℓ)τ , g

〉
, ∀g ∈ Dℓ,∀τ ∈ R. (8)

Fejér kernel We denote by FN (·) the normalized Fejér kernel of order N = 2n+ 1 defined by

FN (t) =
1

n+ 1

n∑
k=−n

(
1− |k|

n+ 1

)
ei2πkt

=

{
sin2(π(n+1)t)
(n+1)2 sin2(πt)

if t /∈ Z
1 otherwise.

(9)

The Fejér kernel is a trigonometric polynomial, hence it is infinitely differentiable. We point out that the
second derivative of FN (·) at the origin satisfies

F ′′
N (0) =

1

n+ 1

n∑
k=−n

−4π2k2
(
1− |k|

n+ 1

)
= −2

3
π2n(n+ 2) < 0. (10)

Some of its properties, key to this paper, are derived and discussed in Appendix A. The Fejér kernel plays an
important role in the sequel as the Gramian Φ∗Φ : M → M of the observation operator Φ is a convolution
product with FN , i.e.

Φ∗Φ(µ) = FN ∗ µ, ∀µ ∈ M. (11)

Wrap-around distance For any set of r points τ = {τ1, . . . , τr} ⊂ T, we denote by ∆(τ ) is minimal
wrap-around distance, defined by

∆(τ ) ≜ min
ℓ ̸=ℓ′

inf
p∈Z

|τℓ − τℓ′ + p| . (12)

The rest of this paper is organized as follows. Section 2 starts by defining the preconditioned gradient
methods and two of its designs with provable local convergence guarantees, using a fixed preconditioner
and an adaptive preconditioner in Section 2.2 and Section 2.3, respectively. Section 3 provides the analysis
of the main theorems by controlling the conditioning of the scaled Hessian matrix of the loss function in
a neighborhood of the ground truth. Numerical experiments are provided in Section 4 to corroborate our
findings. Finally, a brief conclusion is drawn in Section 5.

2 How does preconditioning help local convergence?

2.1 Preconditioned gradient descent
Recognizing that the parameters corresponding to the amplitudes and locations may require different
treatments, we consider iterates of preconditioned gradient descent (GD) to recover the ground truth
parameters, where the preconditioner can possibly be iteration-varying. Given an initialization point θ0 ∈ C2r,
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the update sequence of preconditioned GD is obtained by successively moving oppositely along the direction
of a linear transform of the gradient. More specifically, the update rule reads

θk+1 = θk − Pk∇L(θk), (13)

where θk = [a⊤
k , τ

⊤
k ]

⊤ is the k-th iterate, Pk ∈ C2r×2r is a preconditioning matrix (also called preconditioner)
that can vary at each iteration; the choice of Pk will be detailed momentarily. Here, it is worth noticing
that there are no additional learning rates in (13), which can be thought of as already absorbed and set
within the preconditioner Pk. By analogy with the celebrated Newton-Raphson method, which selects
Pk = ∇2L(θk)

−1 (which might however be computationally expensive), the role of the preconditioning matrix
Pk is to balance the local optimization landscape towards a quadratic function to improve the convergence
rate towards a local minimum over the vanilla gradient method. By basic calculation, the gradient ∇L(θ) at
point θ = [a1, . . . , ar, τ1, . . . , τr]

T is given by

dL(θ)
daj

=
〈
Φ(δτj ),Φ(µ(θ)− µ(θ⋆))

〉
=
〈
δτj ,Φ

∗Φ(µ(θ)− µ(θ⋆))
〉

=
〈
δτj , FN ∗ (µ(θ)− µ(θ⋆))

〉
=

r∑
ℓ=1

aℓFN (τj − τℓ)−
r∑

ℓ=1

a⋆ℓFN (τj − τ⋆ℓ ) (14a)

for j = 1, . . . , r, and similarly,

dL(θ)
dτj

=
〈
Φ(ajδ

′
τj ),Φ(µ(θ)− µ(θ⋆))

〉
R

=
〈
ajδ

′
τj ,Φ

∗Φ(µ(θ)− µ(θ⋆))
〉
R

=
〈
ajδ

′
τj , FN ∗ (µ(θ)− µ(θ⋆))

〉
R

= ℜ
(
aj

( r∑
ℓ=1

aℓF
′
N (τj − τℓ)−

r∑
ℓ=1

a⋆ℓF
′
N (τj − τ⋆ℓ )

))
(14b)

for j = 1, . . . , r.
In this paper, we are particularly interested in preconditioning matrices Pk that are diagonally structured,

so they do not add computation overhead compared with vanilla gradient methods. In the sequel, we study
the basin of attraction and the convergence rate of preconditioned GD for two different preconditioning
strategies. The first consists of selecting a time-invariant, diagonal preconditioning matrix P = Pk whose
role is to judiciously renormalize the learning rates between the amplitudes a ∈ Cr and the locations τ ∈ Rr

which are of different units. The second strategy seeks to dynamically update the preconditioning matrix Pk

based on the current iterate to better approximate the inverse of the Hessian matrix around the point θk and
accelerate convergence.

2.2 Invariant preconditioning
In this section, we seek to recover the ground truth parameter θ⋆ from an instance of the preconditioned GD
algorithm (13) where the sequence of preconditioning matrices is constant, i.e. P = Pk for all k ∈ N. We fix

P = diag

([
1r

−F ′′
N (0)

−1
A−21r

])
, (15)

where A > 0 is an input parameter that controls the ratio between the learning rate applied to the amplitudes
ak of the sources and that applied to the locations τk of the sources throughout the iterative process.
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Performance metric To gauge the performance, we define by S ∈ C2r×2r the weighting matrix

S = diag

([
a⋆−1√

−F ′′
N (0)1r,

])
, (16)

where F ′′
N (0) is given in (10), and study the convergence properties of preconditioned GD in terms of the

infinity norm weighted by the matrix S, i.e.

∥S (θk − θ⋆)∥∞ = max
j

{∣∣ak,j − a⋆j
∣∣∣∣a⋆j ∣∣ ,
√

−F ′′
N (0)

∣∣τk,j − τ⋆j
∣∣} . (17)

Intuitively, the role of this scaling is to analyze a unitless metric that decorrelates the error with the dynamic
range of the sources and with the problem dimension, as we have

√
−F ′′

N (0) = O(n) and that the error on the
source locations is expected to be inversely proportional to the number of observation: ∥τk − τ ⋆∥∞ = O

(
n−1

)
.

The following theorem establishes the linear convergence of preconditioned GD with a fixed preconditioning
matrix P whenever the input parameter A is properly set, and the initial point θ0 is close enough to the
ground truth θ⋆, as long as the true spikes are sufficiently separated.

Theorem 1 (Linear convergence with invariant preconditioner). Suppose that n ≥ 2 and that the input
parameter A satisfies ∥a⋆∥∞ ≤ 3

2A. Moreover, assume that

η := 276.21
A2 ∥a⋆∥∞
(a⋆min)

3 ((n+ 1)∆(τ ⋆))
−2

< 1, (18)

then if the initial point θ0 = [a⊤
0 , τ

⊤
0 ]

⊤ satisfies

∥S (θ0 − θ⋆)∥∞ ≤ 1

2
, (19)

the iterates {θk} of preconditioned GD (13) with a fixed preconditioner (15) converge towards θ⋆ according to

∥S (θk − θ⋆)∥∞ ≤

(
1− 1

4

(a⋆min)
2

A2
(1− η)

)k

∥S (θ0 − θ⋆)∥∞ (20)

for all k ∈ N.

Theorem 1 indicates that preconditioned GD admits a linear rate of convergence as long as the separation
condition ∆(τ ⋆) is sufficiently large with respect to the dynamic range, i.e.

(n+ 1)∆(τ ⋆) ≳

(
∥a⋆∥∞
a⋆min

)3/2

. (21)

Additionally, our finding is independent of the number of sources r of the input measure, both in terms of
the size of the basin of attraction (cf. (19)) and the convergence rate. Faster convergence rate are achieved
for smaller values of the parameter 0 < η < 1, when the separation ∆(τ ⋆) of the true spikes is larger or the
dynamic range ∥a⋆∥∞

a⋆
min

of the amplitudes is smaller. However, even for small values of η, the convergence rate
ρ predicted by Theorem 1 is lower bounded by

ρ ≥ 1− 1

4

(
a⋆min

A

)2

≥ 1− 9

16

(
a⋆min

∥a⋆∥∞

)2

. (22)

This suggests that a high dynamic range will lead to a slow convergence rate, independently of the separation
∆(τ ⋆). Additionally, the convergence guarantees established in Theorem 1 demand to adjust the input
parameter A as a function of ∥a⋆∥∞, which can be impractical in scenarios with no postulate on the norm of
the source amplitudes.
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2.3 Adaptive preconditioning
In order to mitigate the limitations of the fixed preconditioning strategy presented in Section 2.2, we propose
to study an instance of preconditioned GD where the preconditioner Pk varies at each iteration and is selected
as a function of the current iterate θk. In particular, we fix

Pk = diag

([
1r

−F ′′
N (0)

−1 |ak|−2

])
. (23)

Similar to Theorem 1, the next theorem guarantees a linear convergence rate of the iterates towards the
ground truth θ⋆, provided a good enough initialization point θ0, as long as the true spikes are sufficiently
separated.

Theorem 2 (Linear convergence with adaptive preconditioner). Suppose that n ≥ 2, and assume that

γ := 11.60
∥a∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

<
1

2
, (24)

then if the initial point θ0 = [a⊤
0 , τ

⊤
0 ]

⊤ satisfies

∥S (θ0 − θ⋆)∥∞ ≤ 1−
√

2

3
, (25)

the iterates {θk} of preconditioned GD (13) with an adaptive preconditioner (23) converge towards θ⋆ according
to

∥S (θk − θ⋆)∥∞ ≤
(
1

2
+ γ

)k

∥S (θ0 − θ⋆)∥∞ (26)

for all k ∈ N.

Theorem 2 guarantees that preconditioned GD with an adaptive preconditioner achieves a constant linear
rate of convergence in a similar basin of attraction, provided that the separation condition ∆(τ ⋆) is sufficiently
large with respect to the dynamic range, i.e.

(n+ 1)∆(τ ⋆) ≳

(
∥a⋆∥∞
a⋆min

)1/2

, (27)

which is much weaker than the requirement for the case using a fixed preconditioner, as indicated in Theorem 1.
Consequently, this highlights the benefit of adaptive preconditioning in accelerating the convergence in the
presence of high dynamic ranges for nonconvex spike deconvolution.

Remark. We have not attempted to fully optimize the constants in the above theorems. Therefore, their
values are set in a quite pessimistic fashion; see Section 4 for numerical experiments.

3 Analysis
This section is devoted to proving the two main results of this paper comprised in Theorem 1 and Theorem 2.
Before entering the core of the proofs, we first provide some warm-up analysis that will be required in the
latter proofs.

3.1 Preliminaries
3.1.1 Contraction of entrywise errors

The convergence analysis of the preconditioned gradient method presented in Theorem 1 and Theorem 2 calls
for understanding of the contraction properties of the sequence {∥S (θk − θ⋆)∥∞}. Starting from the update
rule (13), leveraging ∇L(θ⋆) = 0, and applying the fundamental theorem of calculus, we have

S(θk+1 − θ⋆) = S (θk − Pk∇L(θk)− θ⋆)
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= S(θk − θ⋆)− SPk (∇L(θk)−∇L(θ⋆))

= S(θk − θ⋆)− SPk

(∫ 1

0

∇2L (θ⋆ + u (θk − θ⋆)) du

)
(θk − θ⋆)

=

[
I − SPk

(∫ 1

0

∇2L (θ⋆ + u (θk − θ⋆)) du

)
S−1

]
S (θk − θ⋆) . (28)

Let Sk = {θ⋆ + u (θk − θ⋆) |u ∈ [0, 1]} be the line segment that connects θ⋆ and θk in C2r, and denote by ρk
the quantity

ρk ≜ max
θ∈Sk

∥∥I − SPkH(θ)S−1
∥∥
∞ , (29)

where H(θ) = ∇2L(θ) is the Hessian of the loss function L at point θ. Continuing to bound (28) yields

∥S (θk+1 − θ⋆)∥∞ ≤
∥∥∥∥I − SPk

(∫ 1

0

H (θ⋆ + u (θk − θ⋆)) du

)
S−1

∥∥∥∥
∞

∥S (θk − θ⋆)∥∞

=

∥∥∥∥∫ 1

0

(
I − SPkH (θ⋆ + u (θk − θ⋆))S−1

)
du

∥∥∥∥
∞

∥S (θk − θ⋆)∥∞

≤
(∫ 1

0

∥∥I − SPkH (θ⋆ + u (θk − θ⋆))S−1
∥∥
∞ du

)
∥S (θk − θ⋆)∥∞

≤ max
θ∈Sk

{∥∥I − SPkH(θ)S−1
∥∥
∞

}
∥S (θk − θ⋆)∥∞

= ρk ∥S (θk − θ⋆)∥∞ . (30)

Hence, the crux of the convergence analysis is to show that ρk < 1 (and control the size of ρk) uniformly over
the segment Sk whenever the point θk lies in an appropriate region centered around the ground truth θ⋆.
Further analysis towards that goal requires an explicit derivation of the Hessian matrix H(θ), which is done
next.

3.1.2 Hessian decomposition

Recall that H(θ) = ∇2L(θ) ∈ C2r×2r is the Hessian matrix of the loss function L in (5) at the point
θ = [a⊤, τ⊤]⊤. We decompose H(θ) as

H(θ) =

[
Ha,a(θ) Ha,τ (θ)
HH

a,τ (θ) Hτ,τ (θ)

]
, (31)

where each block is of size r × r, with generic terms

[Ha,a(θ)](i,j) =
d2f(θ)

daidaj
, [Ha,τ (θ)](i,j) =

d2f(θ)

daidτj
, [Hτ,τ (θ)](i,j) =

d2f(θ)

dτidτj

for i, j = 1 . . . , r. A direct calculation of the Hessian matrix H(θ) (see, e.g. [32]) yields a decomposition of
the form

H(θ) = G(θ) +E(θ), (32)

where the terms G(θ) ∈ C2r×2r and E(θ) ∈ C2r×2r are described in the sequel.

Structure of G(θ) The matrix G(θ) can be written as

G(θ) = diag

([
1r√

−F ′′
N (0)a

])H

D(τ ) diag

([
1r√

−F ′′
N (0)a

])
, (33)

with D(τ ) ∈ C2r×2r given with a block structure

D(τ ) =

[
D0(τ ) D1(τ )
D1(τ )

H D2(τ )

]
. (34)

9



The entries of the blocks D0(τ ), D1(τ ), D2(τ ) ∈ Cr×r are composed of

[D0(τ )](i,j) = FN (τi − τj), (35a)

[D1(τ )](i,j) = −F ′
N (τi − τj)/

√
−F ′′

N (0), (35b)

[D2(τ )](i,j) = F ′′
N (τi − τj)/F

′′
N (0) (35c)

for all i, j = 1, . . . , r. As shall be seen, the matrix G(θ) is a relatively well-conditioned matrix whose spectrum
can be controlled as a function of the separation parameter between the spikes (n+ 1)∆(τ ⋆), the dynamic
range of the amplitudes ∥a∥∞

a⋆
min

, and the distance of θ to the ground truth parameter θ⋆.

Structure of E(θ) The matrix E(θ) is given by the block structure decomposition

E(θ) =

[
0r×r E1(θ)

E1(θ)
H

E2(θ)

]
, (36)

where the entries of E1(θ), E2(θ) ∈ Cr×r are given as

[E1(θ)](i,j) =

{〈
δ′τj , FN ∗ (µ(θ)− µ(θ⋆))

〉
i = j;

0 i ̸= j;
(37a)

[E2(θ)](i,j) =

{
aj

〈
δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))

〉
i = j;

0 i ̸= j.
(37b)

It is worth noting that E(θ⋆) = 0, hence E can be interpreted as a perturbation term that grows as θ
deviates from θ⋆.

With the above preliminaries, we are now ready to prove the main results of this paper. The following
two sections present our convergence analyses for preconditioned GD using a fixed preconditioner and an
adaptive preconditioner, respectively.

3.2 Proof of Theorem 1

We recall that Pk = P = diag

([
1r

−F ′′
N (0)

−1
A−21r

])
for all k ∈ N when the preconditioner is fixed. The

contraction analysis (30) presented in Section 3.1.1 suggests that the contraction rate in Theorem 1 is
controlled by the quantity

∥∥SPH(θ)S−1 − I
∥∥
∞ in neighborhood around the ground truth θ⋆. The next

theorem, whose proof is deferred to Appendix B, provides a uniform bound on this quantity on a neighborhood
of the ground truth.

Theorem 3 (Uniform bound of the Hessian). Suppose that n ≥ 2, (n+ 1)∆(τ ⋆) ≥ 16.5 and ∥τ − τ ⋆∥∞ ≤
1
4∆(τ ⋆). Let θk = [a⊤

k , τ
⊤
k ]⊤ and assume that A ≥ max

{
3
2 ∥a

⋆∥∞ , ∥ak∥∞
}

then the exist two positive
constants

K∆ = 2.13, (38a)
Kθ = 44.42, (38b)

such that for all θ = [a⊤, τ⊤]⊤ ∈ Sk with ∥S (θk − θ⋆)∥∞ < 1, we have that

∥∥SPH(θ)S−1 − I
∥∥
∞ ≤ 1−

(
a⋆min

A

)2

(1− ∥S(θk − θ⋆)∥∞)
2

+ (4K∆ +Kθ ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

(1 + ∥S (θk − θ⋆)∥∞)
2
. (39)
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Theorem 3 provides a bound on
∥∥SPH(θ)S−1 − I

∥∥
∞ depending on the quantity ∥a⋆∥∞

a⋆
min

((n+ 1)∆(τ ⋆))
−2,

which can be made small enough under the hypothesis of Theorem 1. We proceed with the rest of the proof
by induction.

For the base case, it is trivial that (20) holds for k = 0. We start the induction by assuming that

∥S (θk − θ⋆)∥∞ ≤

(
1− 1

4

(
a⋆min

A

)2

(1− η)

)k

∥S (θ0 − θ⋆)∥∞ (40)

holds for some k ∈ N. We begin by verifying the assumptions of Theorem 3.

• First, as the dynamic range ∥a⋆∥∞
a⋆
min

≥ 1, it is easy to see that the hypothesis (18) immediately implies
that (n+ 1)∆(τ ⋆) ≥ 16.6.

• By the definition (17) and the induction hypothesis (40), it follows that

∥τk − τ ⋆∥∞ ≤ 1√
−F ′′

N (0)
∥S (θk − θ⋆)∥∞

≤ 1√
−F ′′

N (0)
∥S (θ0 − θ⋆)∥∞

≤
√
3

2π

1

n+ 1
≤ 1

n+ 1
≤ ∆(τ ⋆)

4
. (41)

• Furthermore, we have that

∥ak∥∞ ≤ ∥a⋆∥∞ + ∥ak − a⋆∥∞
≤ ∥a⋆∥∞ (1 + ∥S (θk − θ⋆)∥∞)

< ∥a⋆∥∞ (1 + ∥S (θ0 − θ⋆)∥∞)

≤ 3

2
∥a⋆∥∞ ≤ A. (42)

Hence, the assumptions of Theorem 3 hold, which yields

ρk = max
θ∈Sk

∥∥SPH(θ)S−1 − I
∥∥
∞

≤ 1− (a⋆min)
2

4A2
+

9

4

(
4K∆ +

1

2
Kθ

)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

≤ 1− (a⋆min)
2

4A2

(
1− 9

(
4K∆ +

1

2
Kθ

)
A2∥a⋆∥∞
a⋆min

3 ((n+ 1)∆(τ ⋆))
−2

)
≤ 1− (a⋆min)

2

4A2

(
1− 276.21

A2∥a⋆∥∞
a⋆min

3 ((n+ 1)∆(τ ⋆))
−2

)
≤ 1− (a⋆min)

2

4A2
(1− η) , (43)

where we substituted the definition (18) of η in the last line. It results from the iterative analysis (30) that
the next update θk+1 obeys

∥S (θk+1 − θ⋆)∥∞ ≤ ρk ∥S (θk − θ⋆)∥∞

≤

(
1− (a⋆min)

2

4A2
(1− η)

)
∥S (θk − θ⋆)∥∞

≤

(
1− (a⋆min)

2

4A2
(1− η)

)k+1

∥S (θ0 − θ⋆)∥∞ , (44)

which concludes the proof of Theorem 1.
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3.3 Proof of Theorem 2
We proceed with the proof of Theorem 2 analogously to the proof of Theorem 1 presented in Section 3.2.
First, we establish the following intermediate theorem that controls the conditioning of the scaled Hessian
matrix SPk(θ)HS−1 uniformly over the segment Sk as a function of the weighted infinity-norm distance
∥S (θk − θ⋆)∥∞. The proof of Theorem 4 is deferred to Appendix B.3.

Theorem 4 (Uniform bound of the Hessian). Suppose that n ≥ 2, (n+ 1)∆(τ ⋆) ≥ 4.7 and ∥τ − τ ⋆∥∞ ≤
1
4∆(τ ⋆) then the exists two positive constants

K∆ ≤ 2.32, (45a)
Kθ ≤ 75.80, (45b)

such that for all θ = [a⊤, τ⊤]⊤ ∈ Sk satisfying ∥S (θk − θ⋆)∥∞ < 1 we have that

∥∥SPkH(θ)S−1 − I
∥∥
∞ ≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1

+ (4K∆ +Kθ ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

(1− ∥S (θk − θ⋆)∥∞)
2 . (46)

The rest of the proof follows similarly by induction. For the base case, it is trivial that the initial point θ0
verifies (26). We now assume that θk satisfies

∥S (θk − θ⋆)∥∞ ≤
(
1

2
+ γ

)k

∥S (θ0 − θ⋆)∥∞ (47)

for some k ∈ N. Let’s verify the assumptions of Theorem 4.

• First, as the dynamic range ∥a⋆∥∞
a⋆
min

≥ 1, the assumption (24) easily implies that (n+ 1)∆(τ ⋆) ≥ 4.7.

• By the definition (17) and the induction hypothesis (47), it follows that

∥τk − τ ⋆∥∞ ≤ 1√
−F ′′

N (0)
∥S (θk − θ⋆)∥∞

≤ 1√
−F ′′

N (0)
∥S (θ0 − θ⋆)∥∞

≤
√
3

π

(
1−

√
2

3

)
1

n+ 1

≤ 1

n+ 1
≤ ∆(τ ⋆)

4
. (48)

Hence, the assumptions of Theorem 4 hold. Noticing that the function f(u) := 1
(1−u)2

is increasing over [0, 1),
we have that 1

(1−∥S(θk−θ⋆)2∥∞)
≤ 1

2 . Together with Theorem 4, this yields the bound

ρk = max
θ∈Sk

∥∥SPkH(θ)S−1 − I
∥∥
∞

≤ 1

2
+

(
4K∆ +Kθ

(
1−

√
2

3

))
∥a⋆∥∞
2a⋆min

((n+ 1)∆(τ ))
−2

≤ 1

2
+ 11.60

∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

≤ 1

2
+ γ < 1, (49)
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where we substituted the definition (24) of γ in the third inequality. It results from the iterative analysis (30)
that the next update θk+1 satisfies

∥S (θk+1 − θ⋆)∥∞ ≤ρk ∥S (θk − θ⋆)∥∞

≤
(
1

2
+ γ

)
∥S (θk − θ⋆)∥∞

≤
(
1

2
+ γ

)k+1

∥S (θ0 − θ⋆)∥∞ , (50)

which concludes the proof of Theorem 2.

4 Numerical experiments
This section provides a numerical validation of Theorem 1 and Theorem 2. In the following experiments, the
signal length is set to N = 65 (i.e. n = 32). The ground truth signal is composed of r = 6 sources placed in
the interval [− 1

2 ,
1
2 ) while ensuring that (n+ 1)∆(τ ⋆) ≥ 2, which is a more optimistic separation condition

than what the theorems’ statements suggest. Additionally, the dynamic range is denoted by κ =
∥a⋆∥∞
a⋆
min

. The
complex amplitudes a⋆ ∈ Cr are selected independently and uniformly at random in a complex annulus with
bounds 1 ≤ |a⋆ℓ | ≤ κ. The input parameter of the invariant preconditioning scheme is set at A = 3

2 ∥a
⋆∥∞.

Size of the basin of attraction Of critical importance in the analysis of Theorem 1 and Theorem 2 is
the distance between the initial parameter θ0 and the ground truth θ⋆. We start by comparing the success
rates of both preconditioning schemes on reconstructing the ground truth as a function of the initialization
distance ∥S (θ0 − θ⋆)∥∞. In each experiment, the starting point θ0 is drawn uniformly over the set of points
equidistant to θ⋆. An experiment is labeled as a success if ∥S (θ200 − θ⋆)∥∞ ≤ 10−2 after 200 iterations.
Figure 1 suggests that, for both schemes, the size of the basin of attraction is independent of the dynamic
range κ, and is around the order of magnitude ∥S (θ0 − θ⋆)∥∞ ≃ 1. This suggests that the numerical
constants (1/2 and 1−

√
2/3 ∼ 0.184, respectively) set forth in Theorem 1 and Theorem 2, respectively, are

pessimistic and nonconvex spike deconvolution performs in a much more benign manner than predicted by
our theory, indicating room for further refinements.
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Figure 1: Success rate of the invariant and adaptive preconditioning schemes on reconstructing the ground
truth θ⋆ as a function of the initialization distance ∥S (θ0 − θ⋆)∥∞ for different dynamic ranges κ. The
results are averaged over 1000 randomized trials.

Linear convergence using a spectral initialization In practice, several ad hoc initialization methods
could be envisaged to produce an initial point θ0 that falls in the basin of attraction of the preconditioned
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gradient descent methods. Herein, we proceed by uniformly discretizing the spectral domain over N elements.
Given the knowledge of the ground truth model order r, the initial locations τ0 are selected as the r elements
of the discrete grid whose weighted Fourier transform best describes the observation x. Mathematically,
consider the following optimization problem

u0 = argmin
u

1

2
∥x− diag(g)FNu∥22 s.t. ∥u∥0 ≤ r, (51)

where FN ∈ CN×N is a discrete Fourier transform matrix, and the ℓ0-norm denotes the cardinality of the
support. Writing I0 = supp (u0) ⊂ [−n, . . . , n] the support of the solution u0 of (51), the parameter θ0 is
constructed in a second stage by selecting τ0 = [k1

N , . . . , kr

N ]
⊤

where kℓ ∈ I0, ℓ = 1, . . . , r and a0 = u|I0
as the

restriction of u to the elements in I0. The program (51) is itself a non-convex sparse reconstruction problem,
which we approximate the solution using the orthogonal matching pursuit algorithm [48]. The proposed
initialization procedure offers several benefits over more classical methods: It is highly scalable, robust to
high dynamic range, and does not involve any polynomial root finding subroutine.

Figure 2 pictures the convergence rate of preconditioned GD under the invariant and adaptive precon-
ditioning schemes, respectively. For both schemes, θ0 is selected according to the previously described
initialization procedure. It can be seen that, although both preconditioning schemes ensure a linear converge
of the iterate sequence, the convergence rate with a fixed preconditioner degrades as the dynamic range of
the sources increases. In contrast, the one with an adaptive preconditioner remains unchanged. Additionally,
the adaptive preconditioning scheme benefits from faster convergence rates for a given dynamic range. These
experimental results corroborate the theoretical findings presented in Section 2.
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(a) Invariant preconditioning (b) Adaptive preconditioning

Figure 2: Convergence rates of the iterate sequence of preconditioned GD towards the ground truth as
the dynamic range κ varies for: (a) the invariant preconditioning scheme; (b) the adaptive preconditioning
scheme.

Noisy recovery We next examine the performance of preconditioned GD in the presence of noise. We
assume observations of the form x = Φ(µ⋆) + w, where w is white Gaussian noise, and estimate µ⋆ by
minimizing (5) starting from an initial point θ0 obtained by the spectral initialization procedure described
above. Figure 3 draws the statistical error ∥S (θ200 − θ⋆)∥∞ of both preconditioning schemes after 200
iterations — when convergence is reached — as a function of the signal-to-noise ratio (SNR), defined as
SNR = ∥Φ(µ⋆)∥22 / ∥w∥22. The results are benchmarked against the Cramér-Rao bound (CRB) [49]. Both
statistical errors remain close to the CRB under a sufficiently large SNR, providing an empirical validation of
the robustness of the proposed algorithms.
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Figure 3: Statistical error ∥S (θ200 − θ⋆)∥∞ of both preconditioned GD schemes as a function of the SNR.
The dynamic range is set to κ = 3, and the results are averaged over 1000 randomized trials.

5 Conclusion
This work proposed and analyzed preconditioned gradient methods for nonconvex spike deconvolution using
both fixed and adaptive preconditioners, and demonstrated that for ground truth with sufficiently separated
spikes, the proposed methods achieve a linear rate of convergence that is independent of the number of spikes,
as long as a close enough initialization is provided near the ground truth. In particular, by designing the
preconditioner to compensate adaptively for the amplitude profile of the spikes, it is possible to accelerate the
convergence rate to be dimension-free and independent of the dynamic range, while the convergence using a
fixed preconditioner slows down when the dynamic range is large. Our work thus highlights the importance
of preconditioning in accelerating convergence in nonconvex spike deconvolution.

As a first step towards understanding the efficacy of first-order methods for spike deconvolution, this
works opens up several interesting directions for further investigation.

• Initialization schemes. One immediate direction is to analyze initialization schemes that produce initial
estimates that fall into the basin of attraction, which we suspect the procedure described in Section 4 is
a good candidate.

• Model order. For simplicity, it is assumed that the model order r is known perfectly, which might
not hold in practice. It is of great interest to develop modified algorithms when the model order is
overspecified, which has recently been examined comprehensively in [50] for low-rank estimation from
small random initializations.

• General observations. Another direction is to extend the analysis to more general observation operators,
possibly including random sampling, missing data, as well as corruptions. This may necessarily require
a reformulation of the loss function, such as a nonsmooth and nonconvex formulation using the least
absolute deviation [47] to improve robustness.

• Separation condition. Last but not least, it is of great importance to study to what extent it is possible
to relax the success condition in terms of the separation condition, possibly with additional positive
constraints of the source amplitudes.
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A Summation bounds of the Fejér kernel
The purpose of this section is to present Lemma 5, which delivers fundamental bounds on the absolute sum
of the Fejér kernel and its derivatives at sampled points of interest. Although specific to the Fejér kernel,
Lemma 5 could be adapted to any other absolutely integrable point spread function without a significant
change in the proof structure.

Lemma 5 (Uniform bounds on the Fejér kernel). Suppose that n ≥ 2. Let τ = {τ1, . . . , τr} ⊂ T, and let
α > 0 be such that (n+1)∆(τ ) ≥ α. Let u = {ui,j}i ̸=j ⊂ R be a set of r(r−1)

2 real numbers that are absolutely
bounded by β such that

(n+ 1)max
i ̸=j

{|ui,j |} ≜ β <
α

2
. (52)

Then the inequalities

max
i

∑
j ̸=i

∣∣∣F (ℓ)
N (τj − τi + ui,j)

∣∣∣ ≤ Cℓ(n+ 1)
ℓ
((n+ 1)∆(τ ))

−2 (53)

hold for ℓ = 0, 1, 2, 3, where the constants Cℓ only depend on α and β and are given by

C0 =
4

π2
(α− 2β)

−1
α, (54a)

C1 =

(
4

π
(α− 2β)

−1
+

8

π2
(α− 2β)

−2

)
α, (54b)

C2 =

(
80

9
(α− 2β)

−1
+

16

π
(α− 2β)

−2
+

64

3π2
(α− 2β)

−3

)
α, (54c)

C3 =

(
16

3
(α− 2β)

−1
π +

1488

27
(α− 2β)

−2
+

192

π
(α− 2β)

−3
+

192

π2
(α− 2β)

−4

)
α. (54d)
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Proof. First, the function FN is a trigonometric polynomial, hence infinitely differentiable. Let us begin by
examining the general expression of FN (t) and its derivatives up to the third order. Assuming t /∈ Z, by basic
calculation, we have that

FN (t) =
sin2 (π(n+ 1)t)

(n+ 1)2 sin2(πt)
, (55a)

F ′
N (t) =

2π

n+ 1
cos((n+ 1)πt) sin((n+ 1)πt) csc2(πt)

− 2π

(n+ 1)2
sin((n+ 1)πt) cot(πt) csc2(πt), (55b)

F ′′
N (t) = 2π2

(
cos2((n+ 1)πt)− sin2 ((n+ 1)πt)

)
csc2(πt)

− 8π2

n+ 1
cos((n+ 1)πt) sin((n+ 1)πt) cot(πt) csc2(πt)

+
2π2

(n+ 1)2
sin2(π(n+ 1)t)

(
2 cot2(πt) + 1

)
csc2(πt) (55c)

F ′′′
N (t) = −(n+ 1)8π3cos ((n+ 1)πt)sin ((n+ 1)πt) csc2(πt)

− 12π3
(
cos2 ((n+ 1)πt)− sin2 ((n+ 1)πt)

)
cot(πt) csc2(πt)

+
12π3

n+ 1
cos ((n+ 1)πt)sin ((n+ 1)πt)

(
3 cot2(πt) + 1

)
csc2(πt)

− 8π3

(n+ 1)
2 sin

2 ((n+ 1)πt)
(
3 cot3(πt) + 2 cot(πt)

)
csc2(πt). (55d)

Using the four trigonometric bounds |sin(a)| ≤ 1, |cos(a)| ≤ 1, |cos(a) sin(a)| ≤ 1
2 , and

∣∣cos2(a)− sin2(a)
∣∣ ≤ 1

for a ∈ R, and the triangle inequality, (55) can be further absolutely bounded as

|FN (t)| ≤ 1

(n+ 1)2
csc2(πt), (56a)

|F ′
N (t)| ≤ π

n+ 1
csc2(πt) +

2π

(n+ 1)2
|cot(πt)| csc2(πt), (56b)

|F ′′
N (t)| ≤ 2π2 csc2(πt) +

4π2

n+ 1
|cot(πt)| csc2(πt) + 2π2

(n+ 1)2
(
2 cot2(πt) + 1

)
csc2(πt) (56c)

|F ′′′
N (t)| ≤ (n+ 1)4π3 csc2(πt) + 12π3 |cot(t)| csc2(t) + 12π3

n+ 1

(
3 cot2(πt) + 1

)
csc2(πt)

+
8π3

(n+ 1)
2

(
3
∣∣cot3(πt)∣∣+ 2 |cot(πt)|

)
csc2(πt). (56d)

To continue, observe that a basic building block in the bound (56) takes the following function form, which is
denoted by

hℓ(t) = cotℓ(πt) csc2(πt), ℓ = 0, 1, 2. (57)

The functions hℓ, ℓ = 0, 1, 2 are even, 1-periodic, and continuous, non-negative, decreasing and convex over
the interval (0, 1

2 ]. Define the three sums Sℓ(n, τ ,u, i), ℓ = 0, 1, 2 by

Sℓ(n, τ ,u, i) =
∑
j ̸=i

hℓ (τj − τi + ui,j) . (58)

It is straightforward to see that the terms of interest can be bounded in terms of Sℓ(n, τ ,u, i) in view of (56).
We shall claim the following bound of Sℓ(n, τ ,u, i) holds, which will be proven at the end of proof:

Sℓ(n, τ ,u, i) ≤
(

2

π∆(τ )

)ℓ+2
1

(ℓ+ 1) (1− 2α−1β)
ℓ+1

, ℓ = 0, 1, 2. (59)
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Interestingly, the above bound on Sℓ (n, τ ,u, i) does not depend on n or i. We are now ready to establish the
bound (53) of interest. First, we have

max
i

∑
j ̸=i

|FN (τj − τi + ui,j)| ≤
∑
j ̸=i

1

(n+ 1)2
h0(τj − τi + ui,j)

=
1

(n+ 1)2
S0(n, τ ,u, i)

≤ 4

π2

∆(τ )
−2

(n+ 1)2 (1− 2α−1β)

=
4

π2
(α− 2β)

−1
α ((n+ 1)∆(τ ))

−2
. (60)

Similarly, for the case of the first derivative, we have

max
i

∑
j ̸=i

|F ′
N (τj − τi + ui,j)| ≤

∑
j ̸=i

(
π

n+ 1
h0(τj − τi + ui,j) +

2π

(n+ 1)
2h1(τj − τi + ui,j)

)

=
π

n+ 1
S0(n, τ ,u, i) +

2π

(n+ 1)2
S1(n, τ ,u, i)

≤ 4∆(τ )
−2

π(n+ 1) (1− 2α−1β)
+

8∆(τ )
−3

π2(n+ 1)
2
(1− 2α−1β)

2

≤
(
4

π
(α− 2β)

−1
+

8

π2
(α− 2β)

−2

)
α(n+ 1) ((n+ 1)∆(τ ))

−2
, (61)

where the last line uses (n+ 1)∆(τ ) ≥ α. Moving onto the second derivative, it follows

max
i

∑
j ̸=i

|F ′′
N (τj − τi + ui,j)|

≤
∑
j ̸=i

(
2π2h0(τj − τi + ui,j) +

4π2

n+ 1
h1(τj − τi + ui,j) +

2π2

(n+ 1)
2 (2h2(τj − τi + ui,j) + h0(τj − τi + ui,j))

)

= 2π2S0(n, τ ,u, i) +
4π2

n+ 1
S1(n, τ ,u, i) +

2π2

(n+ 1)
2 (2S2(n, τ ,u, i) + S0(n, τ ,u, i))

≤ 2π2

(
1 +

1

(n+ 1)
2

)
S0(n, τ ,u, i) +

4π2

n+ 1
S1(n, τ ,u, i) +

4π2

(n+ 1)
2S2(n, τ ,u, i)

≤ 20π2

9
S0(n, τ ,u, i) +

4π2

n+ 1
S1(n, τ ,u, i) +

4π2

(n+ 1)
2S2(n, τ ,u, i)

≤ 80∆(τ )
−2

9 (1− 2α−1β)
+

16∆(τ )
−3

π(n+ 1) (1− 2α−1β)
2 +

64∆(τ )
−4

3π2(n+ 1)
2
(1− 2α−1β)

3

≤
(
80

9
(α− 2β)

−1
+

16

π
(α− 2β)

−2
+

64

3π2
(α− 2β)

−3

)
α(n+ 1)

2
((n+ 1)∆(τ ))

−2
. (62)

Finally, for the third derivative, it holds

max
i

∑
j ̸=i

|F ′′′
N (τj − τi + ui,j)|

≤
∑
j ̸=i

(
(n+ 1)4π3h0(τj − τi + ui,j) + 12π3h1(τj − τi + ui,j)

+
12π3

n+ 1
(3h2(τj − τi + ui,j) + h0(τj − τi + ui,j)) +

8π3

(n+ 1)
2 (3h3(τj − τi + ui,j) + 2h1(τj − τi + ui,j))

)
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= (n+ 1)4π3S0(n, τ ,u, i) + 12π3S1(n, τ ,u, i) +
12π3

n+ 1
(3S2(n, τ ,u, i) + S0(n, τ ,u, i))

+
8π3

(n+ 1)
2 (3S3(n, τ ,u, i) + 2S1(n, τ ,u, i))

≤ (n+ 1)4π3

(
1 +

3

(n+ 1)
2

)
S0(n, τ ,u, i) + 12π3

(
1 +

4

3 (n+ 1)
2

)
S1(n, τ ,u, i)

+
36π3

n+ 1
S2(n, τ ,u, i) +

24π3

(n+ 1)
2S3(n, τ ,u, i)

≤ (n+ 1)
64

3
π

∆(τ )
−2

1− 2α−1β
+

2488

27

∆(τ )
−3

(1− 2α−1β)
2 +

192

π(n+ 1)

∆(τ )
−4

(1− 2α−1β)
3 +

192

π2(n+ 1)
2

∆(τ )
−5

(1− 2α−1β)
4

≤
(
16

3
(α− 2β)

−1
π +

1488

27
(α− 2β)

−2
+

192

π
(α− 2β)

−3
+

192

π2
(α− 2β)

−4

)
α(n+ 1)

3
((n+ 1)∆(τ ))

−2
.

(63)

The proof is thus completed if we can prove (59), which is the focus of the rest of the proof.

Proof of (59) We fix the index i and take the convention ui,i = 0. As the functions {hℓ} are 1-periodic, the
quantity Sℓ(n, τ , β, i) is invariant by integer translations of {τj}’s. Therefore, one can make the assumption,
up to a modulo considerations and a reordering of the indices that the sequence {τj − τi + ui,j}j is within the
range [− 1

2 ,
1
2 ) and in an ascending order, so that

−1

2
≤ τ1 − τi + ui,1 < τ2 − τi + ui,2 < · · · < τr − τi + ui,r <

1

2
.

Denote by r+ and r− the number of positive and negative elements in the set {τj − τi + ui,j}j , respectively.
As τj − τi + ui,j = 0 if and only if i = j, we have that r+ + r− = r − 1. Using the separation condition, and
as hℓ is decreasing over (0, 1

2 ] and even, we have that

0 ≤ hℓ (τi+j − τi + ui,j) ≤ hℓ

(
j∆(τ )− β

n+ 1

)
, j = 1, . . . , r+;

0 ≤ hℓ (τi−j − τi + ui,j) ≤ hℓ

(
−j∆(τ ) +

β

n+ 1

)
= hℓ

(
j∆(τ )− β

n+ 1

)
, j = 1, . . . , r−.

We can subsequently bound the sum (58) as

Sℓ(n, τ ,u, i) =

r+∑
j=1

hℓ

(
τi+j − τi + ui,(i+j)

)
+

r−∑
j=1

hℓ

(
τi−j − τi + ui,(i−j)

)
≤

r+∑
j=1

hℓ

(
j∆(τ )− β

n+ 1

)
+

r−∑
j=1

hℓ

(
j∆(τ )− β

n+ 1

)

≤ 2

⌈ r−1
2 ⌉∑

j=1

hℓ

(
j∆(τ )− β

n+ 1

)
. (64)

Identifying and associating the right-hand side of (64) to a Riemann sum with a mid-point rule and recalling
that hℓ is decreasing and convex over (0, 1

2 ] leads to the majorant

Sℓ(n, τ ,u, i) ≤ 2

∫ (⌈ r−1
2 ⌉+ 1

2 )∆(τ )− β
n+1

∆(τ)
2 − β

n+1

hℓ(u)du

≤ 2

∫ 1
2

∆(τ)
2 − β

n+1

hℓ(u)du
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= 2

(
Hℓ

(
1

2

)
−Hℓ

(
∆(τ )

2
− β

n+ 1

))
, (65)

where we used the non-negativity of hℓ and the inequality
(⌈

r−1
2

⌉
+ 1

2

)
∆(τ ) − β

n+1 ≤ 1
2 in the second

inequality. Here, {Hℓ}’s are primitives of the functions {hℓ} over the interval (0, 1
2 ]. Moreover, we have

Hℓ(t) = − 1

π (ℓ+ 1)
cotℓ+1(πt) + c (66)

for ℓ = 0, 1, 2, where c is an arbitrary constant. This yields, with the inequality 0 ≤ cot(πu) ≤ 1
πu for all

0 < u < 1
2 , a further simplification of (65):

∆(τ )Sℓ(n, τ ,u, i) ≤
2

π(ℓ+ 1)
cotℓ+1

(
π

(
∆(τ )

2
− β

n+ 1

))
≤
(
2

π

)ℓ+2

∆(τ )−ℓ−1 1(
1− 2β∆(τ )−1

n+1

)ℓ+1

≤
(
2

π

)ℓ+2

∆(τ )−ℓ−1 1

(1− 2α−1β)
ℓ+1

, (67)

which immediately leads to the claimed bound (59).

B Proof of the uniform Hessian bounds
This section is dedicated to establish Theorem 3 and Theorem 4.

B.1 Technical lemmas
Lemma 6 and Lemma 7 provide bounds on core quantities that are involved in the decomposition of the Hessian
matrix H(θ) characterized in Section 3.1.2. Their proofs are presented in Appendix B.4 and Appendix B.5,
respectively.

Lemma 6. Suppose that n ≥ 2 and let τ ⊂ T be such that (n+1)∆(τ ) ≥ α for some α > 0, then there exists
a constant K∆ with

K∆ := max

{
C0 +

3
√
3

4π
C1,

3
√
3

4π
C1 +

27

16π2
C2

}
(68)

where the constants C0, C1, C2 > 0 are defined in in (54) with parameters α and β = 0 such that

∥D(τ )− I∥∞ ≤ K∆((n+ 1)∆(τ ))−2. (69)

Lemma 7. Suppose that n ≥ 2 and let τ⋆ = [τ⋆1 , . . . , τ
⋆
r ]

⊤ and τ = [τ1, . . . , τr]
⊤ be two vectors of points

around the torus. Assume that (n+ 1)∆(τ ⋆) ≥ α. As long as (n+ 1) ∥τ − τ ⋆∥∞ ≤ β < α
2 , we have∣∣∣〈Φ(δ′τj ),Φ (µ(θ))− µ(θ⋆))

〉∣∣∣ ≤ (C1 ∥a− a⋆∥∞ + C2 ∥a⋆∥∞ (n+ 1) ∥τ − τ ⋆∥∞) (n+ 1) ((n+ 1)∆(τ ))
−2

,

(70a)∣∣∣〈Φ(δ′′τj ),Φ (µ(θ))− µ(θ⋆))
〉∣∣∣ ≤ (C2 ∥a− a⋆∥∞ + C3 ∥a⋆∥∞ (n+ 1) ∥τ − τ ⋆∥∞) (n+ 1)

2
((n+ 1)∆(τ ))

−2

(70b)

for all j = 1, . . . , r, where the constants C1, C2, C3 > 0 are defined in (54) with parameters (α, β).
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B.2 Proof of Theorem 3
Recalling the expression of the Hessian in (32), it follows that

SPH(θ)S−1 − I = SPG(θ)S−1 − I + SPE(θ)S−1. (71)

We proceed to bound
∥∥SPG(θ)S−1 − I

∥∥
∞ and

∥∥SPE(θ)S−1
∥∥
∞ separately, and then combine them via

the triangle inequality.

Step 1: bound
∥∥SPG(θ)S−1 − I

∥∥
∞ From (16) and (33), we have that

SPG(θ)S−1 − I = SP diag

([
1r√

−F ′′
N (0)a

])H

D(τ ) diag

([
1r√

−F ′′
N (0)a

])
S−1 − I

= diag

([
a⋆−1

A−2a

])H

D(τ ) diag

([
a⋆

a

])
− I

= diag

([
a⋆−1

A−2a

])H

(D(τ )− I) diag

([
a⋆

a

])
+ diag

([
1r

A−2 |a|2
])

− I. (72)

This immediately yields from the triangle inequality that∥∥SPG(θ)S−1 − I
∥∥
∞

≤

∥∥∥∥∥diag
([

a⋆−1

A−2 ⊙ a

])H

(D(τ )− I) diag

([
a⋆

a

])∥∥∥∥∥
∞

+

∥∥∥∥diag([ 1r

A−2 ⊙ |a|2
])

− I

∥∥∥∥
∞

≤

∥∥∥∥∥diag
([

a⋆−1

A−2 ⊙ a

])H
∥∥∥∥∥
∞

∥D(τ )− I∥∞

∥∥∥∥diag([a⋆

a

])∥∥∥∥
∞

+

∥∥∥∥diag([ 1r

A−2 ⊙ |a|2
])

− I

∥∥∥∥
∞

≤ max
j

{
1∣∣a⋆j ∣∣ , |aj |A2

}
max

j

{∣∣a⋆j ∣∣ , |aj |} ∥D(τ )− I∥∞ +max
j

{∣∣∣∣∣1− |aj |2

A2

∣∣∣∣∣
}
. (73)

The three maxima in (73) can be controlled using the basic relation

1− ∥S(θk − θ⋆)∥∞ ≤
∣∣a⋆j ∣∣− ∣∣ak,j − a⋆j

∣∣∣∣a⋆j ∣∣ ≤ |aj |∣∣a⋆j ∣∣ ≤
∣∣a⋆j ∣∣+ ∣∣ak,j − a⋆j

∣∣∣∣a⋆j ∣∣ ≤ 1 + ∥S(θk − θ⋆)∥∞ , (74)

for j = 1, . . . , r and by exploiting the assumption ∥a⋆∥∞ ≤ A as follows

max
j

{
1∣∣a⋆j ∣∣ , |aj |A2

}
≤ max

j

{
1∣∣a⋆j ∣∣ ,

∣∣a⋆j ∣∣
A2

(1 + ∥S(θk − θ⋆)∥∞)

}
≤ 1

a⋆min

(1 + ∥S(θk − θ⋆)∥∞) , (75a)

max
j

{∣∣a⋆j ∣∣ , |aj |} ≤ max
j

{∣∣a⋆j ∣∣ , ∣∣a⋆j ∣∣ (1 + ∥S(θk − θ⋆)∥∞)
}
≤ ∥a⋆∥∞ (1 + ∥S(θk − θ⋆)∥∞) , (75b)

max
j

{∣∣∣∣∣1− |aj |2

A2

∣∣∣∣∣
}

≤ 1−min
j

{
|aj |2

A2

}
≤ 1− (a⋆min)

2

A2
(1− ∥S(θk − θ⋆)∥∞) . (75c)

The bounds (75) and Lemma 6 imply with (73) that∥∥SPG(θ)S−1 − I
∥∥
∞

≤
∥a⋆∥∞
a⋆min

(1 + ∥S (θk − θ⋆)∥∞)
2 ∥D(τ )− I∥∞ + 1−

(a⋆min)
2 (1− ∥S (θk − θ⋆)∥∞)

2

A2

≤
∥a⋆∥∞
a⋆min

(1 + ∥S (θk − θ⋆)∥∞)
2
K∆ ((n+ 1)∆(τ ))

−2
+ 1−

(a⋆min)
2 (1− ∥S (θk − θ⋆)∥∞)

2

A2
, (76)

where the constant K∆ defined in Lemma 6 is numerically evaluated to K∆ ≤ 2.32 by setting the parameter
α = 16.5.
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Step 2: bound
∥∥SPE(θ)S−1

∥∥
∞ Using the block diagonal structure of the matrix E(θ) defined in (36),

we have that

SPE(θ)S−1 =

 0 1√
−F ′′

N (0)
diag

(
a⋆−1

)
E1(θ)

1√
−F ′′

N (0)
diag

(
A−2a⋆

)H
E1(θ) − 1

F ′′
N (0)A

−2E2(θ)

 . (77)

Therefore, it follows

∥∥SPE(θ)S−1
∥∥
∞ ≤ 1√

−F ′′
N (0)

max
j

{
max

{
1∣∣a⋆j ∣∣ ,

∣∣a⋆j ∣∣
A2

}∣∣∣〈δ′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣}

− 1

F ′′
N (0)

max
j

{
|aj |
A2

∣∣∣〈δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣}

≤ (a⋆min)
−1 (1 + ∥S(θk − θ⋆)∥∞)

(
1√

−F ′′
N (0)

max
j

{∣∣∣〈δ′τj , FN ∗ (µ(θ)− µ (θ⋆))
〉∣∣∣}

− 1

F ′′
N (0)

max
j

{∣∣∣〈δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣}), (78)

where we used the bounds (75) in the second line. From (78), it can be seen that bounding the quantity of
interest amounts to controlling

∣∣∣〈δ′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣ and

∣∣∣〈δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣, which can be

achieved by applying Lemma 7. Substituting the expression provided by Lemma 7 into (78) leads to

∥∥SPE(θ)S−1
∥∥
∞ ≤

((
C1

(n+ 1)√
−F ′′

N (0)
+ C2

(n+ 1)
2

−F ′′
N (0)

)
∥a− a⋆∥∞
∥a⋆∥∞

+

(
C2

(n+ 1)
2

−F ′′
N (0)

+ C3
(n+ 1)

3

(−F ′′
N (0))

3/2

)√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)

·
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1 + ∥S(θk − θ⋆)∥∞) . (79)

Evaluating the constants C1 ≤ 2.75, C2 ≤ 19.08 and C3 ≤ 48.74 defined in (54) with parameters α = 16.5

and β = α
4 = 4.125, altogether with the inequality (n+1)2

−F ′′
N (0) ≤

27
16π2 under the assumption n ≥ 2 yields

∥∥SPE(θ)S−1
∥∥
∞ ≤

(
Ka

∥a− a⋆∥∞
∥a⋆∥∞

+Kτ

√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)
·
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1 + ∥S(θk − θ⋆)∥∞) , (80)

where the constants Ka and Kτ are given by

Ka = C1

√
27

16π2
+ C2

27

16π2
≤ 4.40, (81a)

Kτ = C2
27

16π2
+ C3

(
27

16π2

)3/2

≤ 6.71. (81b)

Step 3: combine the bounds The scaled Hessian matrix SPH(θ)S−1 can be controlled over Sk by the
triangle inequality as follows∥∥SPH(θ)S−1 − I

∥∥
∞ ≤

∥∥SP (G(θ) +E(θ))S−1 − I
∥∥
∞

≤
∥∥SPG(θ)S−1 − I

∥∥
∞ +

∥∥SPE(θ)S−1
∥∥
∞ . (82)
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Furthermore, we note that the inequality |∆(τ )−∆(τ ⋆)| ≤ 2 ∥τ − τ ⋆∥∞ holds for every τ , τ ⋆ ⊂ R. This
implies, with the assumption ∥τ − τ ⋆∥∞ ≤ 1

4∆(τ ⋆), that ∆(τ ) ≥ 1
2∆(τ ⋆). Substituting the bounds given

in (76) and (80) yields∥∥SPH(θ)S−1 − I
∥∥
∞

≤ 1− a⋆min
2

A2
(1− ∥S(θk − θ⋆)∥∞)

2

+

(
K∆ +Ka

∥a− a⋆∥∞
∥a⋆∥∞

+Kτ

√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1 + ∥S (θk − θ⋆)∥∞)
2

≤ 1− a⋆min
2

A2
(1− ∥S(θk − θ⋆)∥∞)

2

+ (K∆ + (Ka +Kτ ) ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1 + ∥S (θk − θ⋆)∥∞)
2

≤ 1− a⋆min
2

A2
(1− ∥S(θk − θ⋆)∥∞)

2

+ (K∆ + (Ka +Kτ ) ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

4 ((n+ 1)∆(τ ⋆))
−2

(1 + ∥S (θk − θ⋆)∥∞)
2

≤ 1− a⋆min
2

A2
(1− ∥S(θk − θ⋆)∥∞)

2

+ (4K∆ +Kθ ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

(1 + ∥S (θk − θ⋆)∥∞)
2
, (83)

where we defined in the last line the constant Kθ as

Kθ = 4 (Ka +Kτ ) ≤ 44.42. (84)

This concludes the proof of the theorem.

B.3 Proof of Theorem 4
We proceed analogously to the proof of Theorem 3 presented in Appendix B.2. We start from the expansion (32)
of the Hessian matrix to get

SPkH(θ)S−1 − I = SPkG(θ)S−1 − I + SPkE(θ)S−1, (85)

and proceed to bound
∥∥SPkG(θ)S−1 − I

∥∥
∞ and

∥∥SPkE(θ)S−1
∥∥
∞ individually before recombining them

via the triangle inequality.

Step 1: bound
∥∥SPkG(θ)S−1 − I

∥∥
∞ From (16) and (33), we have that

SPkG(θ)S−1 − I = SPk diag

([
1r√

−F ′′
N (0)a

])H

D(τ ) diag

([
1r√

−F ′′
N (0)aH

])
S−1 − I

= diag

([
a⋆−1

|ak|−2 ⊙ a

])H

D(τ ) diag

([
a⋆

a

])
− I

= diag

([
a⋆−1

|ak|−2 ⊙ a

])H

(D(τ )− I) diag

([
a⋆

a

])
+ diag

([
1r

|ak|−2 ⊙ |a|2
])

− I. (86)

This immediately yields from the triangle inequality∥∥SPkG(θ)S−1 − I
∥∥
∞

≤

∥∥∥∥∥diag
([

a⋆−1

|ak|−2 ⊙ a

])H

(D(τ )− I) diag

([
a⋆

a

])∥∥∥∥∥
∞

+

∥∥∥∥diag([ 1r

|ak|−2 ⊙ |a|2
])

− I

∥∥∥∥
∞
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≤

∥∥∥∥∥diag
([

a⋆−1

|ak|−2 ⊙ a

])H
∥∥∥∥∥
∞

∥D(τ )− I∥∞

∥∥∥∥diag([a⋆

a

])∥∥∥∥
∞

+

∥∥∥∥diag([ 1r

|ak|−2 ⊙ |a|2
])

− I

∥∥∥∥
∞

≤ max
j

{
1∣∣a⋆j ∣∣ ,

∣∣a⋆j ∣∣
|ak,j |2

}
max

j

{∣∣a⋆j ∣∣ , |aj |} ∥D(τ )− I∥∞ +max
j

{∣∣∣∣∣
∣∣a⋆j ∣∣2
|ak,j |2

− 1

∣∣∣∣∣
}

(87)

The three maxima in (87) can be controlled using the basic relation∣∣a⋆j ∣∣
|ak,j |

≤
∣∣a⋆j ∣∣∣∣a⋆j ∣∣− ∣∣ak,j − a⋆j

∣∣ ≤ 1

1− ∥S(θk − θ⋆)∥∞
, (88)

as follows

max
j

{
1∣∣a⋆j ∣∣ ,

∣∣a⋆j ∣∣
|ak,j |2

}
≤ max

j

{
1∣∣a⋆j ∣∣ , 1∣∣a⋆j ∣∣ 1

(1− ∥S(θk − θ⋆)∥∞)
2

}
≤ 1

a⋆min

1

(1− ∥S(θk − θ⋆)∥∞)
2 (89a)

max
j

{∣∣a⋆j ∣∣ , |aj |} ≤ max
j

{∣∣a⋆j ∣∣ , ∣∣a⋆j ∣∣ (1 + ∥S(θk − θ⋆)∥∞)
}
≤ ∥a⋆∥∞ (1 + ∥S(θk − θ⋆)∥∞) (89b)

max
j

{∣∣∣∣∣
∣∣a⋆j ∣∣2
|ak,j |2

− 1

∣∣∣∣∣
}

≤ max
j

{
1−

∣∣a⋆j ∣∣2
|ak,j |2

,

∣∣a⋆j ∣∣2
|ak,j |2

− 1

}

≤ max
j

{
1,

∣∣a⋆j ∣∣2
|ak,j |2

− 1

}
≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1. (89c)

The bounds (89) and Lemma 6 conclude with (87) on∥∥SPkG(θ)S−1 − I
∥∥
∞

≤
∥a⋆∥∞
a⋆min

1 + ∥S (θk − θ⋆)∥∞
(1− ∥S(θk − θ⋆)∥∞)

2 ∥D(τ )− I∥∞ +
1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1

≤
∥a⋆∥∞
a⋆min

1 + ∥S (θk − θ⋆)∥∞
(1− ∥S(θk − θ⋆)∥∞)

2K∆ ((n+ 1)∆(τ ))
−2

+
1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1, (90)

where the constant K∆ defined in Lemma 6 is numerically evaluated to K∆ ≤ 2.32 by setting the parameter
α = 4.7.

Step 2: bound
∥∥SPkE(θ)S−1

∥∥
∞ Again, using the block diagonal structure of the matrix E(θ) defined

in (36), we similarly have that

SPkE(θ)S−1 =

 0 1√
−F ′′

N (0)
diag

(
a⋆−1

)
E1(θ)

1√
−F ′′

N (0)
diag

(
|ak|−2 ⊙ a⋆

)H
E1(θ) − 1

F ′′
N (0) |ak|−2

E2(θ)

 . (91)

Therefore, the quantity of interest can be bounded as follows

∥∥SPkE(θ)S−1
∥∥
∞ ≤ 1√

−F ′′
N (0)

max
j

{
max

{
1∣∣a⋆j ∣∣ ,

∣∣a⋆j ∣∣
|aj,k|2

}∣∣∣〈δ′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣}

− 1

F ′′
N (0)

max
j

{
|aj |

|aj,k|2
∣∣∣〈δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))

〉∣∣∣}

≤ (a⋆min)
−1

(1− ∥S(θk − θ⋆)∥∞)
2

(
1√

−F ′′
N (0)

max
j

{∣∣∣〈δ′τj , FN ∗ (µ(θ)− µ (θ⋆))
〉∣∣∣}

− 1

F ′′
N (0)

max
j

{∣∣∣〈δ′′τj , FN ∗ (µ(θ)− µ(θ⋆))
〉∣∣∣}), (92)
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where we used the inequalities (89) on the second line. Substituting the expression provided by Lemma 7
into (92) leads to

∥∥SPkE(θ)S−1
∥∥
∞ ≤

((
C1

n+ 1√
−F ′′

N (0)
+ C2

(n+ 1)
2

−F ′′
N (0)

)
∥a− a⋆∥∞
∥a⋆∥∞

+

(
C2

(n+ 1)
2

−F ′′
N (0)

+ C3
(n+ 1)

3

(−F ′′
N (0))

3/2

)√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)

·
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1− ∥S(θk − θ⋆)∥∞)
2 . (93)

Evaluating the constants C1 ≤ 3.24, C2 ≤ 22.90 and C3 ≤ 105.55 defined in (54) with parameters α = 4.7

and β = α
4 = 1.2, altogether with the inequality (n+1)2

−F ′′
N (0) ≤

27
16π2 under the assumption n ≥ 2 yields

∥∥SPkE(θ)S−1
∥∥
∞ ≤

(
Ka

∥a− a⋆∥∞
∥a⋆∥∞

+Kτ

√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1− ∥S(θk − θ⋆)∥∞)
2 , (94)

where the constants Ka and Kτ are given by

Ka = C1

√
27

16π2
+ C2

27

16π2
≤ 5.26, (95a)

Kτ = C2
27

16π2
+ C3

(
27

16π2

)3/2

≤ 11.38. (95b)

Step 3: combine the bounds The scaled Hessian matrix SPkH(θ)S−1 can be controlled over Sk by the
triangle inequality as follows∥∥SPkH(θ)S−1 − I

∥∥
∞ ≤

∥∥SPk (G(θ) +E(θ))S−1 − I
∥∥
∞

≤
∥∥SPkG(θ)S−1 − I

∥∥
∞ +

∥∥SPkE(θ)S−1
∥∥
∞ . (96)

Finally, the inequality |∆(τ )−∆(τ ⋆)| ≤ 2 ∥τ − τ ⋆∥∞ holds for every τ , τ ⋆ ⊂ R. This implies, with the
assumption ∥τ − τ ⋆∥∞ ≤ 1

4∆(τ ⋆), that ∆(τ ) ≥ 1
2∆(τ ⋆). Substituting the bounds given in (90) and (94)

yields∥∥SPkH(θ)S−1 − I
∥∥
∞

≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1

+

(
K∆ (1 + ∥S (θk − θ⋆)∥∞) +Ka

∥a− a⋆∥∞
∥a⋆∥∞

+Kτ

√
−F ′′

N (0) ∥τk − τ ⋆∥∞

)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1− ∥S (θk − θ⋆)∥∞)
2

≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1

+ (K∆ (1 + ∥S (θk − θ⋆)∥∞) + (Ka +Kτ ) ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1− ∥S (θk − θ⋆)∥∞)
2

≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1

+ (K∆ + (K∆ +Ka +Kτ ) ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ))
−2

(1− ∥S (θk − θ⋆)∥∞)
2

≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1
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+ (K∆ + (K∆ +Ka +Kτ ) ∥S (θk − θ⋆)∥∞)
∥a⋆∥∞
a⋆min

4 ((n+ 1)∆(τ ⋆))
−2

(1− ∥S (θk − θ⋆)∥∞)
2

≤ 1

(1− ∥S(θk − θ⋆)∥∞)
2 − 1 + (4K∆ +Kθ ∥S (θk − θ⋆)∥∞)

∥a⋆∥∞
a⋆min

((n+ 1)∆(τ ⋆))
−2

(1− ∥S(θk − θ⋆)∥∞)
2 , (97)

where defined the constant Kθ as

Kθ = 4 (K∆ +Ka +Kτ ) ≤ 75.80. (98)

This concludes the proof of the theorem.

B.4 Proof of Lemma 6
Leveraging the block structure (34) of the matrix D(τ ), it boils down to controlling

∥D(τ )− I∥∞ ≤ max {∥D0(τ )− I∥∞ + ∥D1(τ )∥∞ , ∥D2(τ )− I∥∞ + ∥D1(τ )∥∞} , (99)

which can be accomplished with the aid of Lemma 5. Specifically, recalling the expressions in (35), applying
Lemma 5 with parameters α and β = 0, and noticing that the inequality (n+1)2

−F ′′
N (0) ≤ 27

16π2 holds whenever
n ≥ 2, the quantities of interest in (99) can be controlled as follows

∥D0(τ )− I∥∞ = max
i

∑
j ̸=i

|FN (τj − τi)| ≤ C0 ((n+ 1)∆(τ ))
−2

, (100a)

∥D1(τ )∥∞ =
1√

−F ′′
N (0)

max
i

∑
j

|F ′
N (τj − τi)| ≤ C1

n+ 1√
−F ′′

N (0)
((n+ 1)∆(τ ))

−2

≤ 3
√
3

4π
C1 ((n+ 1)∆(τ ))

−2
, (100b)

∥D2(τ )− I∥∞ =
1

−F ′′
N (0)

max
i

∑
j ̸=i

|F ′′
N (τj − τi)| ≤ C2

(n+ 1)
2

−F ′′
N (0)

((n+ 1)∆(τ ))
−2

≤ 27

16π2
C2 ((n+ 1)∆(τ ))

−2
. (100c)

Further substituting (100) into (99) leads to

∥D(τ )− I∥∞ ≤ max

{
C0 +

3
√
3

4π
C1,

3
√
3

4π
C1 +

27

16π2
C2

}
((n+ 1)∆(τ ))

−2 (101)

which leads to the desired statement.

B.5 Proof of Lemma 7
For the first inequality, following the definition, we have that∣∣∣〈Φ(δ′τj ),Φ (µ(θ)− µ(θ⋆))

〉∣∣∣ = ∣∣∣〈δ′τj ,Φ∗ (Φ (µ(θ)− µ(θ⋆)))
〉∣∣∣

=

∣∣∣∣∣
r∑

ℓ=1

aℓF
′
N (τj − τℓ)−

r⋆∑
ℓ=1

a⋆ℓF
′
N (τj − τ⋆ℓ )

∣∣∣∣∣
=

∣∣∣∣∣
r∑

ℓ=1

(aℓ − a⋆ℓ )F
′
N (τj − τℓ) +

r∑
ℓ=1

a⋆ℓ (F
′
N (τj − τℓ)− F ′

N (τj − τ⋆ℓ ))

∣∣∣∣∣
≤

∣∣∣∣∣
r∑

ℓ=1

(aℓ − a⋆ℓ )F
′
N (τj − τℓ)

∣∣∣∣∣+
∣∣∣∣∣

r∑
ℓ=1

a⋆ℓ (F
′
N (τj − τℓ)− F ′

N (τj − τ⋆ℓ ))

∣∣∣∣∣ , (102)
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where the last line used the triangle inequality. To proceed, we control the two terms separately. Using
Hölder’s inequality and Lemma 5, we obtain∣∣∣∣∣

r∑
ℓ=1

(aℓ − a⋆ℓ )F
′
N (τj − τℓ)

∣∣∣∣∣ ≤ ∥a− a⋆∥∞
r∑

ℓ=1

|F ′
N (τj − τℓ)|

≤ C1(n+ 1) ∥a− a⋆∥∞ ((n+ 1)∆(τ ))
−2

. (103)

Next, the second term can be bounded by applying Hölder’s inequality, the mean-value theorem and Lemma 5
with parameter β ≥ (n+ 1) ∥τ − τ ⋆∥∞ as follows∣∣∣∣∣

r∑
ℓ=1

a⋆ℓ (F
′
N (τj − τℓ)− F ′

N (τj − τ⋆ℓ ))

∣∣∣∣∣ ≤ ∥a⋆∥∞
r∑

ℓ=1

|F ′
N (τj − τℓ)− F ′

N (τj − τ⋆ℓ )|

≤ ∥a⋆∥∞ ∥τ − τ ⋆∥∞
r∑

ℓ=1

sup
|uℓ|≤∥τ−τ⋆∥∞

|F ′′
N (τj − τℓ + uℓ)|

≤ ∥a⋆∥∞ ∥τ − τ ⋆∥∞ C2(n+ 1)
2
((n+ 1)∆(τ ))

−2
. (104)

Plugging the previous two bounds into the inequality (102) reduces to∣∣∣〈Φ(δ′τj ),Φ (µ(θ)− µ(θ⋆))
〉∣∣∣

≤ (C1 ∥a− a⋆∥∞ + C2 ∥a⋆∥∞ (n+ 1) ∥τ − τ ⋆∥∞) (n+ 1) ((n+ 1)∆(τ ))
−2

. (105)

Moreover, we may show that through analogous reasoning that∣∣∣〈Φ(δ′′τj ),Φ (µ(θ)− µ(θ⋆))
〉∣∣∣

≤ (C2 ∥a− a⋆∥∞ + C3 ∥a⋆∥∞ (n+ 1) ∥τ − τ ⋆∥∞) (n+ 1)
2
((n+ 1)∆(τ ))

−2
, (106)

which concludes the proof.
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