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Abstract. In this paper, an adaptation of the k-means algorithm and
related methods to non-Euclidian topology is presented. The paper in-
troduces a rationale for approximating the geodesics of that topology, as
well as a learning rule that is robust to noise. The first results on artifi-
cial but very noisy distributions presented here are promising for further
experimentation on real cases.

1 Introduction

This paper is a contribution to the field of vector quantization. Rather than us-
ing the Euclidian distance in the sample space, our approach builds up a graph
from the dataset that approximates the underlying manifold topology. A similar
idea has been proposed in [1], where a k-nn graph is built, having one vertex per
sample in the dataset. It is used to compute a distance matrix between all pairs
of samples, based on the shortest path length in that graph from one sample to
others. As the algorithm is a c-medoid rather than a k-means, it can rely only
on that matrix, computed once beforehand, to find the medoids. In this paper,
the graph is much smaller, since only a fraction of the samples is used as ver-
tices. It is obtained by Competitive Hebbian Learning [2]. Moreover, we rather
use k-means, which requires moving prototypes along geodesics during learning
(which is the linear interpolation in the default Euclidian case). This enables to
have prototypes that are not some selected samples of the dataset (they can be
inbetween), but above all it opens the method to the adaptation of algorithms
like Self-Organizing Maps [3] to non-Euclidian geodesics, as illustrated in previ-
ous work, since the weight updating rules of these vector quantization algorithms
all consist basically in walking along geodesics.

Last, the originality of this paper is the handling of noise. Indeed, clusters
may not be that formally well-defined when noisy samples can be found in the
space between the components of the manifold. Despite a lack of cluster defini-
tion in that case, in practice, one would like to detect significant groupings of
data samples even if the groups are not well-separated clusters of samples.

2 Graph-induced topology (GIT)

Let us denote by S
def
= {ξ1, . . . , ξn}, ξi ∈ X the set of samples available for

vector quantization. They lie in the input space X where a distance d is avail-
able. The samples are considered as elements taken randomly from an unknown
manifoldM⊂ X. The manifoldM can have a complex topology, it can contain
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holes, parts having different dimensions, curved areas, etc. The distance d does
not reflect the topology of M, but it can be used to infer that topology from
the samples in S. The trick is to compute a graph G def

= (V, E) (V stands for
the set of vertices, E for the edges) that covers the manifold M, such as the
topology induced by its edges reflects the structure of M. This can be easily
achieved thanks to the Competitive Hebbian Learning algorithm (CHL) intro-
duced in [2]. This consists in the following. First, let us select randomly m
samples (ξ1, . . . , ξm) from S, with m ' γ|S|, γ ∈ ]0, 1[. These selected samples
enable to define each vertex v of the graph, such as its position attribute vpos is
one of the selected samples (i.e. V def

=
{
v
∣∣ vpos ∈ {ξ1, . . . , ξm}}). Then consider

each sample ξi in S, and connect in the graph the two vertices whose positions
are the closest to ξi (using d), if they have not been previously connected yet
(see top line in fig. 1). This builds E . Let us call this graph G the auxiliary graph
since it will be used hereafter as a mean to computeM-based geodesics.

Fig. 1: Top line: The dataset S (X = R2), the m selected samples in S (i.e. V),
the edges E of G computed by CHL. Bottom line: A noisy dataset S, |S| = 16046
(the radius of the noisy disk is ρ = 1.2, the density of the noisy areas is 33%
of the density of points in the manifold M), the auxiliary graph G, the edges
densities of G (gray-scaled, black means ed = 1, white would be 0).

The inner topology of the manifold M can be approximated by a topology
induced by G, as previously introduced in [4]. Indeed, the shortest path in G
from one vertex position to another approximates the geodesics of M linking
those two points. For points that are not exactly the vertices of G, the geodesics
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can be approximated as well. Let us detail here an improved version of the
method introduced in [4]. The reader should refer to fig. 2-left while reading the
definitions.

Fig. 2: The shortest path from A? to B? is in plain lines. The ap-
proximated graph-induced geodesics from A to B in the leftmost case is
A, A?pos, A

+
pos, . . . , B

+
pos, B. The two rightmost cases are the specific ones.

Let us consider any two points (A,B) ∈ X2. Let A? def
= argmin

v∈V
d
(
A, vpos

)
be the closest vertex to A and B? the closest vertex to B. Let us consider the
cost ecost, e ∈ E of an edge as its length |e|, i.e the distance d between the two
positions of its extremities. This cost will be reconsidered later in section 3.
Using that cost, the shortest path from A? to B? can be computed in G (we use
A-star, the shortest path is represented in plain lines in fig. 2 examples). Let us
denote by A+ the vertex in that path following A? and B+ the vertex preceding
B?. The graph-induced geodesics from A to B connects A and B to respective
vertices on the path, either A? or A+ for A, either B? or B+ for B. We detail
hereafter how to make that decision. The selected vertex is materialized by a
gray arrow in fig. 2, one for A and another for B. The approximated geodesics
is then the multiline starting from A, joining the shortest path by a segment to
the selected vertex for A, following the path until the selected vertex for B and
finally joining B with a segment (see fig. 2-left). Let us denote by dM(A, B)
the length of that geodesics. It is the sum of the lengths (computed with d)
of the segments composing the multiline. dM(A, B) approximates the distance
separating A from B in the topology ofM.

In previous work [4], A and B were systematically connected to the path via
A? and B?, but in fig. 2-left, it can be seen that this is not a suitable choice for B.
The improvement presented here consists in computing A′ def= mv

(
A?pos, A

+
pos, λ

)
for a small positive λ. The basic interpolation is mv(x, y, λ)

def
= (1− λ)x+ λy.

If d(A, A′) < d
(
A, A?pos

)
, we can estimate that a point moving from A?pos to

A+
pos starts by approaching A before moving away from it. Otherwise, it starts

directly by moving away from it. So in the first case, A+ should be chosen
instead of A?. The same is done for B. On fig. 2-left, this is why A joins the
path at A? (since d(A, A′) > d

(
A, A?pos

)
) while B joins the path at B+ (since

d(B, B′) < d
(
B, B?pos

)
).

Last, let us mention two specific cases (on the right in fig. 2). First, if
A? = B?, then the graph-induced geodesics goes directly from A to B. The
same stands if both A+ and B+ are chosen in a path made of two vertices.

A majority of vector quantization algorithms rely on the same learning rule,
making a weight ω get closer to a sample ξ with the learning rate α. This
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weight updating rule is expressed as ω ← (1− α)ω + αξ. This corresponds to
an interpolation, i.e. a walk, along the Euclidian geodesics from ω to ξ over a
distance of αd(ω, ξ). Having G at our disposal for approximated geodesics in
M, we replace the learning rule by moving ω toward ξ along the approximated
G-induced geodesics defined previously. The final position of ω is obtained by
moving ω along the geodesics over a distance of αdM(ω, ξ).

Self-organizing maps (SOMs) can be adapted with a graph-induced learning
rule, as was done in [4], extending the capabilities of 1D-SOMs to approximate
solutions of the Euclidian Travelling Salesperson Problem (TSP) to the non-
Euclidian case. The present adaptation of the algorithm reduces by a factor 5
the number of vertices and edges for the same result (not shown here).

3 Graph-induced k-means

In this paper, let us focus on the online version of k-means [5]. Indeed, as
opposed to the reference Linde-Buzo-Gray algorithm [6], it does not require
the computation of a barycenter, which cannot be directly graph-induced as we
did so far. The online version of k-means is recalled here (see algorithm 1).
Here, beforehand, we have to set up G. The winner-take-all selection (line 5)
in algorithm 1) is made with the dM distance, and the learning step (line 6) is
replaced by the walk along the graph-induced geodesics presented previously in
section 2.

Algorithm 1 k-means online
1: // A dataset S is provided, α ∈ ]0, 1].
2: Sample k prototypes {ω1, . . . , ωk} from S
3: while true do
4: Sample ξ from S.
5: κ? ← argmin

κ∈{1, ..., k}
dM(ωκ, ξ) // We use d for dM in the Euclidian case.

6: mv(ωκ? , ξ, α) // mv is ωκ? ← (1− α)ωκ? + αξ for Euclidian geodesics.
7: end while

Let us consider a noisy distribution, for the sake of handling robustness (see
fig. 1-bottom-left). The computation of G leads to the graph depicted in fig. 1-
bottom-middle. Indeed, as the vertices of G are randomly chosen, they can be
samples at the noisy areas, even if the probability to be chosen in these areas is
lower. Thus the edges of G cover the whole noise support, which is here the region
of X that enclosesM. The consequence is that the graph-induced topology will
represent that enclosing region, rather than M (see fig. 1-bottom-middle). To
cope with noise and handle that drawback, we propose to weight the edges E
of G (see fig. 1-bottom-right) and to consider these weights for the cost of the
shortest path computations involved by the graph-induced learning rule.

The cost ecost of an edge e is redefined as follows. First, we count the number
of samples e# in a region surrounding the edge: e#

def
= |{ξ ∈ S | d(ξ, e) < ε}|
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(d(ξ, e) is the distance from the sample to the segment represented by the edge).
Let us normalize this count to get the edge density ed

def
= µe#/|e|. The µ factor

is such as a 1-length edge in an area with dense sample distribution as a density
of 1.

The trick is then to compute the shortest paths from edges costs that depend
on the edges’ densities. Low-density edges have a very expensive cost, so the
shortest paths consist in reaching the higher density areas as fast as possible,
i.e. escaping from noisy areas to reach the closest area in M, and then walk
inside M according to the geodesics of its inner topology (see the blue line
linking the two blue dots in fig. 1-bottom-right). We define for shortest path
computation ecost

def
= σ(ed)|e|, where σ is a piecewise linear function. We use

here σ(0) = 1000, σ(0.4) = 900, σ(0.6) = 2, σ(1) = 1.
For each learning rule application, once shortest paths are found with this

cost, the interpolation is computed as detailed in section 2, i.e. considering
strictly the edges’ lengths defined by d.

The result of GIT k-means is depicted in fig. 3. Despite the high noise level,
the weighting of the edges enables to place the k = 6 prototypes so that they
clusterize the manifoldM. In fig. 3-left, two prototypes clusterize the noise, this
is not an issue. What is relevant is that the prototypes placed insideM enable
to clusterize its elements, according to the spiral topology. The Voronoï cells
can be represented by coloring each position in X with the color of the closest
prototype according to dM. Both examples in fig. 3 show how the Voronoï
tessellation is coherent with the topology of M: frontiers separating Voronoï
regions are not segments as with Euclidian Voronoï tessellation.

Fig. 3: Here, k = 6 prototypes are used for GIT k-means. The value of the
learning rate α is successively taken in {0.2, 0.1, 0.05, 0.01}, 500 samples are
presented for each value of α. Left is the result for the dataset introduced in fig. 1.
The prototypes are the big circled color dots. In the background, each point is
colored according to the color of its closest prototype, considering dM. This
reveals the Voronoï cells of that topology. Middle is another distribution, and
right it the result obtained with the same parameters (which are γ = 0.1, λ =
0.01, µ = 1.43× 10−3, ε = 0.05).
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The implementation of GIT k-means needs to be efficient since it massively
invokes shortest path computations. Moreover, once G is set and once edges
are weighted, from a mathematical point of view, learning rules are the same
as the classical update, so all the vector quantization algorithms can be “GIT
adapted” effortlessly. This requires a programming language that offers such
generic programming features while preserving computational efficiency. To cope
with both of these requirements, we propose an opensource C++ library based on
templates to implement this algorithm, and many others [7].

4 Discussion

In this paper, a method based on an auxiliary graph is presented, enabling to
apply algorithms like SOMs and online k-means to non-Euclidian topologies.
The geodesics corresponding to the inner topology of the manifold the data is
taken from is approximated by the shortest paths in the auxiliary graph. The
Euclidian learning rules are naturally adapted to follow these geodesics rather
than the usual straight lines. The implementation only requires a distance d in
the input space X, as well as an interpolation function between two elements of
X, enabling to consider a variety of cases.

A specific edge weighting has also been introduced to handle noise. Edges
of the auxiliary graph covering noisy regions are considered as much longer
than others so that geodesics implicitly reach the closest region of the manifold
before walking into it. Experiments on artificial data in a 2D space, for the
sake of illustration, show promising results. As the mathematical rules used in
this work are not restricted to 2D spaces, future work will address real data,
as handwritten digits, represented as vectors. Indeed, for these image data, the
Euclidian distance is not suitable, and walking along the manifold of digits could
lead to improvement in clustering or mapping with self-organizing maps.
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