
HAL Id: hal-03825404
https://centralesupelec.hal.science/hal-03825404v1

Submitted on 22 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Design of Stable Neural Networks for Fault
Detection in Small UAVs

Kavya Gupta, Fateh Kaakai, Béatrice Pesquet-Popescu, Jean-Christophe
Pesquet

To cite this version:
Kavya Gupta, Fateh Kaakai, Béatrice Pesquet-Popescu, Jean-Christophe Pesquet. Safe Design
of Stable Neural Networks for Fault Detection in Small UAVs. SAFECOMP 2022 - The 41st In-
ternational Conference on Computer Safety, Reliability and Security, Sep 2022, Munich, Germany.
pp.263-275, �10.1007/978-3-031-14862-0_19�. �hal-03825404�

https://centralesupelec.hal.science/hal-03825404v1
https://hal.archives-ouvertes.fr

Safe Design of Stable Neural Networks for Fault
Detection in Small UAVs

Kavya Gupta1,2⋆, Fateh Kaakai2, Béatrice Pesquet-Popescu2, and
Jean-Christophe Pesquet1

1 Université Paris-Saclay, CentraleSupélec, Inria
Centre de Vision Numérique, Gif-sur-Yvette, France

2 Air Mobility Solutions BL, Thales LAS France

Abstract. Stability of a machine learning model is the extent to which
a model can continue to operate correctly despite small perturbations in
its inputs. A formal method to measure stability is the Lipschitz constant
of the model which allows to evaluate how small perturbations in the in-
puts impact the output variations. Variations in the outputs may lead to
high errors for regression tasks or unintended changes in the classes for
classification tasks. Verification of the stability of ML models is crucial in
many industrial domains such as aeronautics, space, automotive etc. It
has been recognized that data-driven models are intrinsically extremely
sensitive to small perturbation of the inputs. Therefore, the need to de-
sign methods for verifying the stability of ML models is of importance
for manufacturers developing safety critical products.
In this work, we focus on Small Unmanned Aerial Vehicles (UAVs) which
are in the frontage of new technology solutions for intelligent systems.
However, real-time fault detection/diagnosis in such UAVs remains a
challenge from data collection to prediction tasks. This work presents
application of neural networks to detect in real-time elevon positioning
faults. We show the efficiency of a formal method based on the Lipschitz
constant for quantifying the stability of neural network models. We also
present how this method can be coupled with spectral normalization
constraints at the design phase to control the internal parameters of the
model and make it more stable while keeping a high level of performance
(accuracy-stability trade-off).

Keywords: safety · stability · Lipschitz constant· verification · machine
learning · neural networks · UAV · tabular data · adversarial attacks.

1 Introduction

Machine Learning (ML) methods and in particular neural networks are rapidly
paving their way in various mission-critical and safety-critical domains such as
aeronautics, aerospace, automotive, railways, and nuclear plants. In particular,
UAVs are currently being used in various applications such as surveillance of crit-
ical infrastructures, delivery of goods in densely populated urban areas, disaster
⋆ Corresponding author : kavya.gupta100@gmail.com

2 K. Gupta et al.

Elevon

Motor + Propeller

Power Supply

GPS

Antenna Receiver

Deflection control

Speed control

Speed measure

Accelorometer

Gyrometer Autopilot

Fault Detection
Component

Flight condition
status

Zoom In

(a)

slope = -L

slope = L

f(x)

xx x+z

f(x)
f(x+z)

f(x)+L||z||p

f(x)-L||z||p

(b)

Fig. 1: (a) Fault Detection in drones/UAVs :The component called "Fault Detec-
tion Component" computes a flight condition status (nominal or faulty) using
the outputs of the inertial sensors and the elevon deflection control variable pro-
duced by the autopilot. (b) Intuition of using Lipschitz constant as a stability
property of neural network [24].

management, emergency services, etc. UAVs are capable of replacing humans
in potentially dangerous situations, but also reduce the cost of operations in
some businesses. But these kind of systems need to be continuously monitored
to detect in real-time any problem ("fault") that could lead to a failure of the
UAV and with a potential interruption of the mission, a potential collision with
a manned aircraft (air risk), a potential collision with people on ground or with
a critical infrastructure like a nuclear plant (ground risk). The need is to de-
velop fault-tolerant systems. Formally, fault tolerance is the ability of a system
to perform the intended function despite the presence or occurrence of faults,
whether it is a physical damage to the hardware, software defects, or malicious
attacks. In this paper, we deal with a Machine Learning based UAV fault de-
tection (depicted in the red component of Figure 1a) that implements a Deep
Neural Network (DNN) to detect mechanical faults like an elevon stucked or
locked in a given position. This real-time fault detection mechanism allows the
remote pilot to take necessary actions (e.g. remote triggering of the drone emer-
gency parachute) to avoid the loss of control of the UAV which could induce an
air risk or a ground risk.

This Machine Learning based fault detection function should be safe to claim
compliance with the applicable regulations. In particular, it should be stable with
respect to noise perturbations in the input data coming from the inertial sen-
sors and the autopilot i.e. the model continues to operate correctly despite small
perturbations in its inputs within the Operational Design Domain (ODD). In
other words, small perturbations that are considered as part of the real operat-
ing conditions should be considered in the designing phase of the model making
the model ’stable-by-design’. However, the concept of adversarial attacks intro-

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 3

duced in [21] shows that adding a designed imperceptible noise to the sample is
able to fool a neural network even if the model is trained to achieve high accu-
racy and performance. There have been studies that design different attacks [16,
10] on different model architectures and applications. Such design weakness in
DNNs questions the desired stability property of neural networks and hence its
deployment in mission-critical or safety-critical products like UAVs. Many works
providing counter measures to adversarial attacks such as adversarial training [7]
and defensive distillation have appeared in literature. But it is hard to demon-
strate the completeness of these counter measures, i.e. their ability to address
all types of foreseeable perturbations in the given operational context.

An example of formal measure of stability of neural network is the Lipschitz
constant of the model which allows to evaluate how small perturbations in the
inputs impact the output variations as illustrated in Figure 1b. A sensitivity
analysis of inputs using Lipschitz constant for neural networks in presented in
[9]. The contributions of this work is to demonstrate the efficiency of formal
guarantees based on the Lipschitz constant for checking the stability of DNNs.
We present a stability control loop grounded on spectral normalisation con-
straints to achieve an accuracy-stability trade-off. We show the results in various
experimental designs on a small UAV dataset for classification tasks. We start
with presenting generalisation capabilities of neural networks over other machine
learning methods such as SVM and logistic regression, and then give Lipschitz
constant estimates of different neural network configurations. We show that it is
possible to train a neural network satisfying both Lipschitz and accuracy targets
using our stability control loop. We also demonstrate the effectiveness of spectral
normalised models in handling adversarial tasks.

The next section discusses related work in the field of fault detection using
neural networks and stability analysis of these architectures. Following this, a
spectral normalisation based stability control loop is described. Then the real
flight data used to evaluate the fault detection model is presented. In the fol-
lowing section, results and observations for various scenarios related to binary
and multi-class classification tasks are presented. The last section summarizes
the main contributions of this work.

2 Related Works

2.1 Fault Detection and Diagnosis(FDD)

FDD strategies can be primarily divided into two categories model-based and
data-driven. Model-based approaches require an accurate model of the aircraft
for successful diagnosis of the faults. But a small UAV system is susceptible
to various perturbations and lacks an accurate model. Hence, model based ap-
proaches fail in such scenarios and studies are then concentrated on using data-
driven methods.

AI based data-driven techniques are gaining more and more interest in the
field of fault detection. Fault detection in UAVs has been studied by using dif-
ferent sensors and/or for detecting faults in different fault prone parts of the

4 K. Gupta et al.

vehicle. Freeman et al.[6] compares model-based and data-driven fault detection
methods by using data from small, low-cost UAVs. Both approaches were shown
to be capable of detecting different elevon faults in real data during maneuvers
and in the presence of environmental variations. Guo et al.[8] proposed a hybrid
feature model and deep learning-based fault diagnosis for UAV sensors. The
model detects different sensor faults, such as GPS, IMU and ADS. The authors
of [25] modelled fault detection using Generalized Regression Neural Network
with a particle swarm optimization algorithm. Eroglu et al.[4] proposed a data-
driven fault estimation method for estimating actuator faults from aircraft state
trajectories. The authors propose to use an architecture with 1-D CNN followed
by LSTM layers for learning state trajectories on simulated data of fault in-
jected aircraft. Sadhu et al. [19] proposed a deep learning based real-time fault
detection and identification on UAV IMU sensor data using CNN and Bi-LSTM.
Iannace et al. [12] presented a single layered neural network for detecting un-
balanced blades in a UAV propeller. Bronz et al.[1] uses an SVM classifier with
RBF kernel to classify the different faults for small fixed-wing UAVs. We use the
same real flight dataset for our analysis and make comparisons with the reported
results for SVM classifier.

2.2 Stability Quantification through Lipschitz Constant

The number of works studying the stability issue of neural networks has increased
in manifolds with those defining and handling the stability of these networks in
various manners. A way of quantifying the stability of a trained neural network
model consists of studying the Lipschitz properties of the neural network. A
Lipschitz constant of a multi-input multi-output function f is an upper bound
on the ratio between the variations in the outputs and the variations in inputs
of f , and thus it constitutes a measure of sensitivity of the function with respect
to input perturbations.

For a feed-forward neural network represented by f where m is the number
of hidden layers, Ni the number of neurons in layer i ∈ {1, . . . ,m}, let x ∈ RN0

be the input and f(x) ∈ RNm be the associated output. If L ∈ [0,+∞[is such
that, for every input x ∈ RN0 and perturbation z ∈ RN0 , we have

∥f(x+ z)− f(x)∥ ≤ L∥z∥, (1)

then L is a Lipschitz constant of the neural network f . The smaller this constant
value, the more stable the neural network.

A trivial upper bound on the Lipschitz constant of a neural network was
defined in [7] as the product of spectral norms (S) of each layer independently.
Mathematically it can be written as

Lm = ∥Wm∥S∥Wm−1∥S · · · ∥W1∥S. (2)

where Wi are the weights/kernels at each layer i ∈ {1, . . . ,m}. This bound was
found to be too loose for some practical applications.

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 5

In [23], it was proved that the problem of computing the exact Lipschitz
constant of a neural network with differentiable activation functions is NP-hard.
In [3], the authors proposed various bounds on the Lipschitz constant of a feed-
forward network under the assumption that the activation operator at each layer
is αi-averaged with αi ∈]0, 1]. This assumption is satisfied by most of the widely
used activation functions, which are 1/2-averaged [2]. If the activation function at
each layer is separable, a general Lipschitz constant estimate, CPLip, is defined
as

Lm = sup
Λ1∈D1,...,Λm−1∈Dm−1

∥WmΛm−1 · · ·Λ1W1∥S, (3)

where, for every i ∈ {1, . . . ,m − 1}, Di is the set of diagonal matrices of size
Ni×Ni with diagonal elements equal to 2αi−1 or 1. This estimate remains true
even with other norms than the Euclidean, applied to the input and output per-
turbation spaces. In [13] authors proposed a polynomial constrained optimization
(LipOpt) based technique for estimating Lipschitz constant. This estimate can
be used for any ℓp norm for input and output perturbations, but it is valid for
neural network with single output. Solving such an optimization problem can be
achieved by solving a hierarchy of convex problems such as Lasserre’s hierarchy.

SDP based Lipschitz Constant estimates were explored in [5]. This work
focuses on neural networks using separable activation operators. It assumes
that the activation functions at all layers are slope-bounded. By using the non-
expansiveness property of the activation function, the optimization problem of
estimating a Lipschitz constant is recast as solving a semi-definite positive pro-
gramming (SDP) problem. This estimation can only be used when the Euclidean
norm is employed at both input and output spaces. Also, the most optimized
technique for estimating the Lipschitz constant in [5] is erroneous, as mentioned
and proved in [18]. Hence, for all our results we use the valid version LipSDP-
neuron for all our Lipschitz constant estimates.

3 Spectral Normalization Control of the Model Stability

For safety critical tasks, Lipschitz constant and performance targets can be speci-
fied as engineering requirements, prior to network training. A Lipschitz constant
target can be defined by a safety analysis of the acceptable perturbations for
each output knowing the input ranges and it constitutes a current practice in
many industrial processes. The Lipschitz constant of a neural network can be
arbitrarily high when unconstrained, making it sensitive to adversarial attacks.
Imposing this Lipschitz target can be done either by controlling the Lipschitz
constant for each layer or for the whole network, depending on the application at
hand. Such a work for controlling the Lipschitz constant has been presented in
[20] using Hinge regularization. Spectral normalization techniques [15, 17] have
been proved to be very effective in controlling stability properties of DNNs and
counter adversarial attacks. But they require an exact computation of the spec-
tral norm in (3), which is computationally expensive, and therefore it becomes
intractable for deep neural networks. On the other hand, it has been shown

6 K. Gupta et al.

that constraining the Lipschitz constant of DNNs enhances their stability, but it
makes the minimization of the loss function harder. Hence, a trade-off between
stability and prediction performance needs to be reached [26]. We subsequently
propose an iterative procedure allowing us to find the best trade-off.

Given an m-layer fully connected NN architecture (FCN) denoted by T with
a Lipschitz constant Ltarget and an accuracy target acctarget. We can constrain
the spectral norm of each layer to be less than m

√
Ltarget. According to (2),

this ensures that the upper bound on the global Lipschitz constant is less than
Ltarget. This bound is however overpessimistic, which means that, by monitoring
accurately the value of the actual Lipschitz constant of the network, we can relax
the bound on individual linear layers so as to get an improved accuracy. In our
proposed approach, this process is done in a closed loop with two targets : good
performance (acctarget) and desired stability Ltarget.

The approach is summarized in Algorithm 1. Module TrainSN(L, . . .) is spec-
tral normalisation training module which trains the defined neural network
model with the Lipschitz constant constraint, i.e. each weight matrices Wi with
i ∈ {1, . . . ,m} of the neural network is divided by (σi/

m
√
L), where σi is the

largest singular value of Wi. Module LipEst estimates accurately the Lipschitz
constant of the trained neural network using LipSDP-Neuron[5]. Module Predict
checks the performance (here classification performance) of the trained model
on the validation dataset. If L is small, training will be over-constrained and the
accuracy of the model will suffer. To relax this constraint we iteratively increase
the value of L through small α factor to find the best value of Lopt which would
be less than Ltarget and ensure an increase in the performance on the validation
dataset to achieve accopt greater than acctarget. We stop the iterations when both
conditions are met i.e. accuracy of the trained model is greater than acctarget
and Lipschitz constant is less than Ltarget.

4 Validation on Drone Flights Data

4.1 Dataset Description

For our fault detection and stability analysis, we use the real-flight dataset pro-
vided in [1]. The authors use Paparazzi Autopilot system [11] for possible flight
trajectories. The flight test data is captured in outdoor setting on different days
with varying environments especially wind speeds and also imperfections in the
geometry due to manufacturing of the UAV.

The actuator fault model (F) as proposed in [22] is given by

uapp = Fucom + E (4)

where ucom is the commanded control deflection from the autopilot to the actua-
tors and uapp is the applied control deflection (i.e. final movement of the elevon)
and E is the offset. In vector form, it can be expressed as[

uappr

uappl

]
=

[
fr 0
0 fl

] [
ucomr

ucoml

]
+

[
er
el

]
, (5)

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 7

Algorithm 1 Spectral Normalisation-based Stability Control Loop
1: Inputs : training dataset (Xtrain, Ytrain), validation dataset (Xvalid, Yvalid), target

Lipschitz constant Ltarget, target accurcay acctarget, neural network T , multiplica-
tive factor α > 1, maximum iteration number nmax

2: Output : optimal neural network Topt, Lipschitz constant Lopt, and accuracy accopt
3: Algo :
4: L← Ltarget, n← 0
5: T ← TrainSN(L,Xtrain, Ytrain)
6: Lest ← LipEst(T)
7: acc← Predict(T,Xvalid, Yvalid)
8: while (n < nmax) and (Lest < Ltarget) and (acc < acctarget) do
9: L← αL

10: T ← TrainSN(L,Xtrain, Ytrain)
11: Lest ← LipEst(T)
12: acc← Predict(T,Xvalid, Yvalid)
13: n← n+ 1
14: end while
15: Topt ← T
16: Lopt ← Lest

17: accopt ← acc
18: if n = n,max then
19: Notification: No trade-off found between Stability and Accuracy
20: else
21: Notification: Trade-off found between Stability and Accuracy
22: end if

where ()r and and ()l stands for the right and left elevon respectively. The
feature set is a vector of length 8 consisting of linear accelerations at three
coordinates (ax, ay, az), angular rates (ωx, ωy, ωz), and auto-pilot commanded
controls (ucomr , ucoml

) for the two aerodynamic actuators. Depending on the
values of fr and fl, the fault detection problem can be translated into two
kinds of classification problems: 1) Binary Class Classification and 2) Multi-class
Classification.

We use three performance measures: classification accuracy (%), F1 score,
and Matthews Correlation coefficient (MCC). For stability measure we use Lip-
schitz constant estimate as calculated using LipSDP-Neuron [5]. We recall that
we do not use LipSDP most tight bound LipSDP-Network since it is erroneous
as mentioned in the section 2.2.

4.2 Binary Classification Results

We train the data on 12th July and test the trained model on 12th july unseen
and 13th July data. It is interesting to use 12th July flight data for training and
predict fault for the next day, i.e 13th July since 12th and 13th July had different
atmospheric conditions at the time of data collection. For further checking the
efficacy and generalization capabilities of the methods, we checked the trained

8 K. Gupta et al.

models on flight data for 21st July. The faults were injected in the right elevon
fr = 0.3. Fault code 0 implies ’Nominal fault’ and fault code 1 implies fault in
the right elevon.

Model 12th July 13th July 21st July
Acc. (%) F1 MCC Acc. (%) F1 MCC Acc. (%) F1 MCC

SVM 98.7 0.99 0.98 60.5 0.59 0.38 85.3 0.85 0.72
LogReg 89.8 0.90 0.79 58.0 0.59 0.31 56.6 0.45 0.18
Baseline 98.6 0.99 0.97 73.3 0.74 0.52 93.1 0.93 0.86

Table 1: Binary Classification : Comparison between SVM, logistic regression,
and best NN trained with baseline training on 12th July.

Model 12th July 13th July
LAcc. (%) F1 MCC Acc. (%) F1 MCC

(10) 98.3 0.983 0.967 66.4 0.67 0.41 12.26
(10,6) 98.4 0.985 0.969 71.0 0.71 0.47 27.56

(50,10,6) 98.7 0.987 0.974 73.3 0.74 0.52 37.76

Table 2: Binary Classification : Results on 12th and 13th July using NN trained
with baseline training on 12th July for various configurations of FCN.

Implementation details: We propose to use fully connected feed-forward
networks (FCN) for solving the problem. We train such neural networks of vary-
ing depth and width. We use ReLU as the activation function except for the last
layer where it is employed with sigmoid for binary and softmax for multi-class
classification. We use the cross entropy losses as the loss function for training
the model. The feature set is standardized by removing the mean and scaling
to unit variance. While training, the dataset is split into 4:1 ratio for train
and validation sets. The models are trained using Keras with Tensorflow back-
end. The initializers are set to Glorot uniform and we use Adam as the opti-
mizer. To capture the temporal dynamics of the system, feature set of length
8 (ax, ay, az, ωx, ωy, ωz, ucomr

, ucoml
) is concatenated T times. Therefore, the in-

put feature vector to the model is of length 8T . We observe a general increasing
trend in the testing performance as we increase the value of T , which suggests
that concatenating more feature lists from the time history of the flight data
improves the performance of the real-time prediction. Hence, we found the value
T = 20 as optimal for our experiments, adding time history beyond this level
did not contribute to the learning and the neural network starts to overfit.

In the first set of experiments for binary classification, we train on 12th July
flight data and test on of 12th July, 13th, and 21st July and directly compare
our NN best models to SVM and logistic regression. SVM classifier is trained
with a RBF kernel and is optimized using grid-search. The results are given in
Table 1. The results obtained using SVM classifier are satisfactory, better than

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 9

for logistic regression, but they fail to generalize on the unseen data from 13th

and 21st July. We remark it is possible to train neural networks with much better
generalization performance on different days with varying weather conditions.

Model Baseline Spectral
Acc. (%) L Acc. (%) L

(10) 66.4 12.26 75.1 3.7
(10,6) 71.0 27.56 75.3 3.8

(50,10,6) 73.3 37.76 76.7 3.7

(a) Binary Classification: Results on
13th July trained on 12th July data.

Model Baseline Spectral
Acc. (%) L Acc. (%) L

(50,10) 69.7 31.44 72.65 3.8
(100,10) 69.54 34.17 71.07 3.6

(100,75,10) 68.9 69.06 71.93 3.7

(b) Multi-class Classification: Results
on 23rd July trained on 21st July data.

Table 3: Comparison between models trained with baseline and spectral normal-
ization constraint (Ltarget = 4).

Model Training No attack FGSM (ϵ = 0.2) PGD(ϵ = 0.2)
Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

(50,10,6) Baseline 98.6 0.97 77.6 0.62 76.0 0.59
Spectral 98.7 0.97 81.0 0.66 79.2 0.62

Table 4: Binary Classification: Results on 12th July clean data, FGSM and PGD
attacks using model trained on 12th July.

In second set of experiments we discuss the stability performance of neural
networks which is our primary concern pertaining to stable model design. The
comparison of the classification task accuracy as well as the stability performance
in terms of Lipschitz constant for a varying number of hidden layers and hidden
neurons is shown in Table 2. Notation (10,6) in Table 2 implies that the FCN
has two hidden layers with 10 and 6 hidden neurons and so on. In the baseline
training, no constraints are employed while training the NN. Lipschitz constant
(L) is computed using LipSDP-neuron [5] on the trained network.

Third, we show the performance and stability effect of constraining the train-
ing of the neural network by spectral normalization, as introduced in section 3
with Algorithm 1. We chose the same configuration for the neural networks as
baseline and introduced constraints, by setting Ltarget = 4 and acctarget = 75%.
Table 3a shows a comparison of the classification accuracy and Lipschitz con-
stant value for baseline training and the new training procedure described in
Algorithm 1. We remark that the proposed approach improves both accuracy
and stability of neural network models.

We also test and compare the results of the trained neural networks when
they are attacked with widely known adversarial attacks such as FGSM [7] and
PGD [14]. The attacks are generated using ART toolbox 3. An adversarial attack
is a special case of addition of noise to the input samples. It is useful to test

3 https://github.com/Trusted-AI/adversarial-robustness-toolbox

10 K. Gupta et al.

robustness of the neural network since the adversarial noise is crafted in a manner
to generate misclassification errors. We show the results on 12th July test dataset
in Table 4 4. We remark that spectral normalised training is better in handling
the adversarial attacks, leading to more stable models.

4.3 Multi-class Classification Results

We use the flight data captured on the days of 21st and 23rd July for detecting
the faults in right and left elevon. For injecting the faults, efficiency of the
right elevon is reduced (fr = 0.3) and similarly for the left control elevon (fl =
0.9/0.3). Fault codes: ’0’ - nominal , ’1’ - fr = 0.3 , ’2’ - fl = 0.9 and ’3’ -
fl = 0.3, making a 4-class classification problem. The emphasis has been put
on detecting faults on the left elevon which has the effect of a geometric twist.
Identical faults are injected in the flight data for both days. For capturing the
temporal dynamics in the prediction performance, the optimal value of T is taken
to be 20 as in the previous section.

Model 21st July 23rd July
Acc. (%) F1 MCC Acc. (%) F1 MCC

SVM 94.1 0.94 0.91 60.3 0.60 0.51
LogReg 89.0 0.88 0.84 57.8 0.55 0.43
Baseline 95.2 0.95 0.93 69.7 0.68 0.58

Table 5: Multi-class Classification: Comparison between SVM, logistic regression
and best NN trained with baseline training on 21st July and tested on 21st and
23rd July .

Model 21st July 23rd July
LAcc. (%) F1 MCC Acc. (%) F1 MCC

(50,10) 95.2 0.95 0.93 69.7 0.68 0.58 31.44
(100,10) 95.3 0.95 0.93 69.5 0.68 0.57 34.17

(100,75,10) 95.4 0.95 0.93 68.9 0.67 0.57 69.06

Table 6: Multi-class Classification : Results on 21st July and 23rd July using NN
trained with baseline training on 21st July for various configurations of FCN.

For the experiments, we train a FCN with ReLU activation function for all
layers, except the last one for which softmax is used. We train the neural net-
work on the flight data of 21st July and test on data of 21st July not seen by
the model at the time of training, and also on the flight data of 23rd July. We
show the prediction and generalization capabilities of the neural networks over
4 In case of SVM model, classification metric MCC had negative values for FGSM

and PGD attacks implying model performs very poorly against adversarial attacks,
hence we discard them from comparison.

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 11

state-of-the-art SVM and logistic regression. We tabulate the classification met-
rics in Table 5.Varying configurations of model layers and neurons classification
metrics along with the stability metric (L) have been considered in Table 6. We
consider acctarget = 70% and Ltarget = 4 as the model performance and stability
requirements. The results are shown in Table 3b.

Observations of the performance and stability analysis:

• Neural networks perform better than SVM classifier and logistic regression in
terms of prediction performance indicating better generalization capabilities
of neural network models, when trained and tested on different days.

• We observe the trend of increased Lipschitz constant as the number of layers
and neurons in the neural network increases.

• There is a steep decrease in the Lipschitz constant value when the models
are trained with a Lipschitz target which satisfies the performance target as
well Table 3. We also observe an increase of classification performance with
spectral normalization constraint.

• Spectral normalised trained models are better against adversarial attacks
implying since they are designed to be more stable.

5 Conclusion

Our work provides a formal method by means of estimating Lipschitz constant
to evaluate and control the stability of a neural network, which is necessary for
many mission-critical and safety-critical systems. This work analyses a real flight
data collected on a small fixed-wing UAV in varying flight conditions to design a
fully connected feed-forward neural networks that implements a fault detection
function embedded in the UAV. The task is to detect mechanical faults like an
elevon stucked or locked in a given position even in the presence of noise in the
input data coming from the inertial sensors and the autopilot and to allow the
remote pilot to take necessary actions to ensure the safety. The main contri-
butions of this work are the following: Through the evaluation of classification
performance we have shown that our approach based on DNN compares favor-
ably with SVM and logistic regression techniques. Unlike many works related
to the use of neural networks in industrial applications, we address the stability
of our trained neural networks using a formal verification method based on the
quantification of the Lipschitz constant of the model. We show the effective-
ness of spectral normalization techniques in controlling the Lipschitz constant
of the network to reach a Lipschitz safety target which can be defined at system
level. Following the insights presented in the paper, we show that it is possi-
ble to build neural networks which are "Stable-by-Design" and verified through
Lipschitz certificates. Such designed models are more robust to adversarial at-
tacks and present a good accuracy. These results regarding stability are strong
developments toward learning assurance artefacts in ML models.

12 K. Gupta et al.

References

1. Bronz, M., Baskaya, E., Delahaye, D., Puechmore, S.: Real-time fault detection on
small fixed-wing uavs using machine learning. In: DASC. pp. 1–10 (2020)

2. Combettes, P.L., Pesquet, J.C.: Deep neural network structures solving variational
inequalities. Set-Valued and Variational Analysis pp. 1–28 (2020)

3. Combettes, P.L., Pesquet, J.C.: Lipschitz certificates for neural network structures
driven by averaged activation operators. SIAM Journal on Mathematics of Data
Science 2, 529–557 (2020)

4. Eroglu, B., Sahin, M.C., Ure, N.K.: Autolanding control system design with deep
learning based fault estimation. Aerospace Science and Technology 102, 105855
(2020)

5. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. In: NeurIPS (2019)

6. Freeman, P., Pandita, R., Srivastava, N., Balas, G.J.: Model-based and data-driven
fault detection performance for a small uav. IEEE/ASME Transactions on mecha-
tronics 18(4), 1300–1309 (2013)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

8. Guo, D., Zhong, M., Ji, H., Liu, Y., Yang, R.: A hybrid feature model and deep
learning based fault diagnosis for unmanned aerial vehicle sensors. Neurocomputing
319, 155–163 (2018)

9. Gupta, K., Kaakai, F., Pesquet-Popescu, B., Pesquet, J.C., Malliaros, F.: Multi-
variate lipschitz analysis of the stability of neural networks. Frontiers in Signal
Processing (2022)

10. Gupta, K., Pesquet, J.C., Pesquet-Popescu, B., Kaakai, F., Malliaros, F.: An ad-
versarial attacker for neural networks in regression problems. In: IJCAI AI Safety
Workshop (2021)

11. Hattenberger, G., Bronz, M., Gorraz, M.: Using the Paparazzi UAV System for
Scientific Research. In: IMAV. pp. pp 247–252 (Aug 2014)

12. Iannace, G., Ciaburro, G., Trematerra, A.: Fault diagnosis for uav blades using
artificial neural network. Robotics 8(3), 59 (2019)

13. Latorre, F., Rolland, P., Cevher, V.: Lipschitz constant estimation of neural net-
works via sparse polynomial optimization. arXiv preprint arXiv:2004.08688 (2020)

14. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

15. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

16. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: CVPR. pp. 2574–2582 (2016)

17. Pan, Z., Mishra, P.: Fast approximate spectral normalization for robust deep neural
networks. arXiv preprint arXiv:2103.13815 (2021)

18. Pauli, P., Koch, A., Berberich, J., Allgöwer, F.: Training robust neural networks
using lipschitz bounds. arXiv preprint arXiv:2005.02929 (2020)

19. Sadhu, V., Zonouz, S., Pompili, D.: On-board deep-learning-based unmanned aerial
vehicle fault cause detection and identification. In: ICRA. pp. 5255–5261. IEEE
(2020)

20. Serrurier, M., Mamalet, F., González-Sanz, A., Boissin, T., Loubes, J.M., del Bar-
rio, E.: Achieving robustness in classification using optimal transport with hinge
regularization. In: CVPR. pp. 505–514 (2021)

Safe Design of Stable Neural Networks for Fault Detection in Small UAVs 13

21. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

22. Tandale, M.D., Valasek, J.: Fault-tolerant structured adaptive model inversion con-
trol. Journal of Guidance, Control, and Dynamics 29(3), 635–642 (2006)

23. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In: NeurIPS. pp. 3835–3844 (2018)

24. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel, L.:
Evaluating the robustness of neural networks: An extreme value theory approach.
arXiv preprint arXiv:1801.10578 (2018)

25. Xie, X.h., Xu, L., Zhou, L., Tan, Y.: Grnn model for fault diagnosis of unmanned
helicopter rotor’s unbalance. In: ICEECA. pp. 539–547. Springer (2016)

26. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically
principled trade-off between robustness and accuracy. In: ICML. pp. 7472–7482.
PMLR (2019)

