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Abstract

We consider an unknown multivariate function representing a system—such as a
complex numerical simulator—taking both deterministic and uncertain inputs. Our
objective is to estimate the set of deterministic inputs leading to outputs whose prob-
ability (with respect to the distribution of the uncertain inputs) to belong to a given
set is controlled by a given threshold. To solve this problem, we propose a Bayesian
strategy based on the Stepwise Uncertainty Reduction (SUR) principle to sequen-
tially choose the points at which the function should be evaluated to approximate
the set of interest. We illustrate its performance and interest in several numerical
experiments.
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Uncertainty Reduction, Set inversion, Uncertainty quantification.
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1 Introduction

When dealing with a numerical model of a physical phenomenon or a system, one is often

interested in estimating the set of input parameters leading to outputs being in a given

range. Such set inversion problems (Jaulin and Walter, 1993) arise in a large variety of

frameworks. In particular, robust versions of this problem in which some inputs are consid-

ered uncertain have appeared recently in the literature, with applications to nuclear safety

(Chevalier, 2013; Marrel et al., 2022), flood defense optimization (Richet and Bacchi, 2019)

and pollution control systems (El Amri et al., 2021), for instance.

Following Richet and Bacchi (2019), we focus on a robust formulation of the set inver-

sion problem that we call reliable set inversion (RSI). We consider a system modeled by an

unknown continuous function f : X×S 7→ Rq, where X and S are bounded subsets of Rdx

and R
ds respectively, representing deterministic and uncertain input variables. We model

uncertain input variables by a random variable S with known distribution PS on S. Then,

given a critical region C ⊂ R
q and a threshold α ∈ (0, 1), our objective is to estimate the

set

Γ(f) = {x ∈ X : P(f(x, S) ∈ C) ≤ α}, (1)

which we call reliable set, and which corresponds to the points in X where the probability

that f(x, S) falls in the critical region C is controlled by α. Using the language of machine

learning, we can also formulate this problem as that of learning a classifier X 7→ {0, 1} as

close as possible to the indicator function 1Γ(f).

At each iteration n, the function f can be evaluated at a unique point (xn, sn). The

result of an evaluation is a possibly noisy observation

Zobs
n = f(xn, sn) + ǫn, (2)

the deterministic case (ǫn = 0) corresponding to the case of deterministic simulators.

When the numerical model f is computationally expensive, it is important to estimate

Γ(f) using a small number of evaluations of f only. With this constraint in mind, we

propose in this article a sequential Bayesian strategy based on the Stepwise Uncertainty

Reduction (SUR) principle (Vazquez and Piera-Martinez, 2006; Villemonteix et al., 2009;

Vazquez and Bect, 2009; Bect et al., 2012, 2019). Given a quantity of interest derived

from f , the starting point of a SUR-based strategy is to view f as a sample path of

a random process, generally a Gaussian process (GP). Then, evaluation points are chosen

sequentially to minimize at each step a measure of uncertainty about the quantity of interest

given past and future evaluation results.

The structure of the article is as follows: in the next two sections, we present our

framework and a brief overview of the literature on Bayesian set inversion strategies, with
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a particular emphasis on SUR-based approaches. The core contribution of this article is

Section 4, which is about the construction of SUR sampling criteria for the RSI problem.

Section 5 demonstrates the performance of our approach on numerical examples.

Acknowledgement. The authors have become aware, at the occasion of the SIAM

Conference on Uncertainty Quantification (UQ22) in Atlanta, of related research work con-

ducted by Charlie Sire (IRSN, France) and co-authors (Sire, 2022). The research presented

in this article has been carried out independently of theirs.

2 Framework

In the following, we consider a function f : D 7→ R, where D = X or D = X×S, depending

on whether there are stochastic input variables, and where X and S are defined as above.

For the RSI problem, we adopt a Bayesian approach to sequentially choose the evaluation

points D1, D2, . . . ∈ D of f and estimate Γ(f) from evaluation results. We assume that

we observe, at each selected point Dn, a response Zobs
n = f(Dn) + ǫn, where the ǫn’s are

independent zero-mean Gaussian random variables—possibly with variance zero, which

corresponds to the case of a deterministic simulator. We consider a GP prior denoted by

ξ ∼ GP(µ, k) about the unknown function f , where µ and k are mean and covariance

functions (see, e.g., Santner et al., 2003; Rasmussen and Williams, 2006).

Denote by Pn the conditional probability given In = {(D1, Z
obs
1 ), . . . , (Dn, Z

obs
n )}.

Bayesian strategies use at each iteration n a sampling criterion (also called acquisition

function) Jn or Gn based on the distribution of ξ under Pn, to choose the evaluation points

sequentially as:

Dn+1 ∈ argmin
d∈D

Jn(d) or Dn+1 ∈ argmax
d∈D

Gn(d) .

We review in the following sections two families of such criteria.

Notations. En = E (· | In) will denote the conditional expectation associated with Pn,

µn(x) and σn(x) the conditional (posterior) mean and standard deviation of ξ(x), and

pn(x) = Pn(ξ(x) ∈ C) the conditional (posterior) probability that ξ(x) belongs to C.

3 Overview of Bayesian strategies for set inversion
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3.1 Maximal uncertainty sampling

We review in this section a first family of sampling criteria, which corresponds to the general

idea of “maximal uncertainty sampling”, i.e., sampling at the location x ∈ X where the

uncertainty about 1C(ξ(x)) and/or ξ(x) is maximal. The literature on such criteria only

deals, to the best of our knowledge, with the deterministic case D = X, when f is a real-

valued function (q = 1), and when C = [T ; +∞), for a given T ∈ R. In this setting, the

set inversion problem reduces to the estimation of the set γ(f) = {x ∈ X : f(x) ≤ T}.

A natural approach to this problem is to select the point at which the probability

of misclassification is maximal (Bryan et al., 2005): this leads to the sampling criterion

Gn(x) = min (pn(x), 1− pn(x)). Maximizing this criterion leads to selecting a point Xn+1

such that pn(Xn+1) is as close as possible—and if possible equal—to 1/2. Several equivalent

criteria lead to the same choice of sampling point, including the variance or the entropy

(Bryan et al., 2005) of the classification indicator 1C(ξ(x)), or the “learning function U”

of Echard et al. (2011).

Some sampling criteria operate a trade-off between the posterior variance of ξ and its

proximity to the threshold T . This is the case, for instance, for the family of criteria

defined by Gn(x) = En

[
max

(
0, (κσn(x))

δ − |ξ(x)− T |δ
)]

, with κ > 0 and δ ∈ {1, 2}.

Those sampling criteria, inspired by the expected improvement criterion for optimization

(Mockus et al., 1978; Jones et al., 1998), were introduced separately by Bichon et al. (2008)

(δ = 1) and Ranjan et al. (2008) (δ = 2). Similarly, Bryan et al. (2005) proposed the

straddle heuristic, in which the sampling criterion is Gn(x) = κσn(x)−|µn(x)−T |, with κ =

Φ−1(0.975) ≈ 1.96, where Φ−1 stands for the quantile function of the normal distribution.

3.2 Stepwise uncertainty reduction

SUR strategies (see, e.g., Bect et al., 2019, and reference therein) are a special case of the

Bayesian approach in which the evaluation points are sequentially chosen by minimizing

the expected future uncertainty about the quantity of interest. More precisely, a SUR

strategy starts by defining a measure of uncertainty Hn at each step n, that depends on

information In. Then, a sampling criterion Jn is built by considering the expectation of

Hn+1 conditional on In and the action of choosing a new evaluation point at d (notice that

Hn+1 depends on the unknown outcome of the evaluation at d):

Jn : d 7→ En [Hn+1 | Dn+1 = d] . (3)

Note that instead of minimizing the criterion Jn, one can also maximize the information

gain Gn : d 7→ Hn − Jn(d). SUR-based strategies have been shown to be particularly

effective on various estimation problems.
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We now give more details and first focus on the case of deterministic inversion. Several

approaches have been developed in the past years.

For instance, Vazquez and Piera-Martinez (2006); Vazquez and Bect (2009) propose to

estimate the volume of an excursion set using the uncertainty measure

Hn =
(∫

X

√
min(pn(x), 1− pn(x)) dx

)2

, (4)

where min(pn(x), 1−pn(x)) is the probability of misclassification using the classifier En[1γ(ξ)(x)].

Bect et al. (2012) suggest other uncertainty measures, such as, for instance,

Hn =

∫

X

min(pn(x), 1− pn(x)) dx, (5)

and

Hn =

∫

X

pn(x)(1− pn(x)) dx, (6)

which corresponds to the integrated posterior variance of the indicator function 1γ(ξ)(x).

(Note that the problem of estimating the volume of an excursion set is directly linked to

that of set inversion.) Picheny et al. (2010) propose a targeted Integrated Mean Square

Error (tIMSE) based on the uncertainty metric

Hn =

∫

X

σ2
n(x)Pn (|ξ(x)− T | ≤ β) dx , (7)

for some β > 0. For the sake of brevity, we refer the reader to Chevalier et al. (2013),

Chevalier (2013), Marques et al. (2018), Azzimonti et al. (2021), and Duhamel et al. (2022)

for other examples of uncertainty metrics and corresponding SUR criteria applicable to the

deterministic set inversion problem.

We now turn to the case of reliable set inversion. Chevalier (2013) considers the task

of estimating the set {x ∈ X : max
s∈S

f(x, s) ≤ T}. In this setting, the proposed uncertainty

measure is

Hn =

∫

X

p∨n(x)(1 − p∨n(x))dx, (8)

where p∨n(x) = Pn(maxs∈S ξ(x, s) ≤ T ). In the work of El Amri et al. (2021), the objective

instead is to estimate the set {x ∈ X : E(f(x, S)) ≤ T}. To this end, the authors propose a

hybrid SUR strategy to choose, sequentially, the deterministic component x and stochastic

component s of each new evaluation point.

Remark 1 SUR methods have been applied to other problems beyond the scope of set in-

version, notably for optimization (see, e.g., Villemonteix et al., 2009).
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4 Construction of SUR strategies for RSI

4.1 Sampling criteria

Our objective is to estimate the reliable set Γ(f) defined by (1) using evaluation results

modeled by (2). Consider the random process

τ(x) =

∫

S

1C (ξ(x, s)) dPS(s) = PS

(
{s ∈ S : ξ(x, s) ∈ C}

)
, (9)

which corresponds to the volume with respect to PS of the excursion of the process ξ(x, · )

in C. Using τ , notice that Γ(ξ) can be written as

Γ(ξ) = {x ∈ X : τ(x) ≤ α} . (10)

In the following, we propose two sampling criteria for the RSI problem.

First approach. Given a sequence of estimators Γ̂n of Γ(ξ), we propose to use as uncer-

tainty measure the volume of the difference between Γ(ξ) and its estimators:

H(m)
n = λ(Γ(ξ)∆ Γ̂n) , n ≥ 1. (11)

where λ is the Lebesgue measure on Rdx .

The SUR strategy derived from (11) consists in minimizing at each step the criterion

J (m)
n (x, s) = En

[
λ(Γ(ξ)∆Γ̂n+1) | (Xn+1, Sn+1) = (x, s)

]
. (12)

Approaches using the symmetric difference have been used in different contexts (see, e.g.,

Chevalier, 2013; Azzimonti et al., 2021).

It is straightforward to see thatH
(m)
n correspond to the integrated probability of misclas-

sification associated to the classifier 1Γ̂n

. When considering the Bayes-optimal estimator

Γ̂n = {x ∈ X : πn(x) >
1

2
}, (13)

where πn(x) = Pn(τ(x) ≤ α), the uncertainty metric H
(m)
n can be expressed as follows.

Proposition 1 For Γ̂n = {x ∈ X : πn(x) >
1
2
}, we have

H(m)
n =

∫

X

min(πn(x), 1− πn(x)) dx . (14)
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Second approach. A second possibility is to focus instead on the IMSE of the soft

classifiers πn and to define the uncertainty measure

H(v)
n = En

[∫

X

(
1Γ(ξ)(x)− πn(x)

)2
dx

]
. (15)

Proposition 2 We have

H(v)
n =

∫

X

Varn
(
1Γ(ξ)(x)

)
dx =

∫

X

πn(x)(1− πn(x)) dx . (16)

The SUR strategy derived from (15) consists in minimizing at each step the criterion

J (v)
n (x, s) = En

[
H

(v)
n+1 | (Xn+1, Sn+1) = (x, s)

]
. (17)

Remark 2 It is instructive to compare the sampling criteria J
(m)
n and J

(v)
n to those pro-

posed by Bect et al. (2012), and to notice the formal resemblance, if replacing pn by πn and

γ(ξ) by Γ(ξ).

4.2 Approximation of the criteria

In this section, we discuss the numerical approximation of

J (m)
n (x⋆, s⋆) =

∫

X

En [min(πn+1(x), 1− πn+1(x)) | (Xn+1, Sn+1) = (x⋆, s⋆)] dx

at a given point (x⋆, s⋆) ∈ X× S. (The same methodology can be applied to J
(v)
n .)

Two difficulties arise for the numerical evaluation of J
(m)
n (and J

(v)
n ). First, the integrand

En [min(πn+1(x), 1− πn+1(x)) | (Xn+1, Sn+1) = (x⋆, s⋆)] (18)

does not admit—to the best of the authors knowledge—an analytic expression as in Chevalier et al.

(2014) because τ is not a Gaussian process.

In order to propose a practical algorithm, we propose to estimate (18) using quantization

of the distribution PS together with Monte Carlo simulations of the process ξ, in the spirit

of Villemonteix et al. (2009) and Bect et al. (2012).

Let us consider S̃ a finite subset of S, and (w(s))s∈S̃ a family of real numbers such that

PS̃ =
∑

s∈S̃ w(s)δs is a “good” approximation of PS, where δs denotes the Dirac measure

at s. This can be achieved, naively, by defining S̃ as a collection of i.i.d samples from PS

and fixing w ∝ 1. In the case of a distribution PS with a density g with respect to the

Lebesgue measure, another solution is to use a sufficiently large space-filling design S̃ of S

and set w(s) ∝ g(s). The reader can refer to Graf and Luschgy (2000) for more information

about quantization.
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Let {Z1, . . . , ZN} be a collection of independent samples drawn from the distribu-

tion of ξ(x⋆, s⋆) given In. It is well known that we can easily simulate M sample paths

{ξi,1, . . . , ξi,M} of ξ(x, ·) over S̃, under Pn(· | ξ(x
⋆, s⋆) = Zi), using the conditioning formula

for Gaussian processes. Given a point x ∈ X, set

π̃i
n+1(x) =

1

M

M∑

m=1


∑

s∈S̃

w(s)1C(ξi,m(x, s))


 . (19)

Then it is easy to show, using the law of large numbers, that

π̃i
n+1(x)

a.s.
−−−−→
M→∞

P

(
ξ(x, S̃) ∈ C | In , ξ(x

⋆, s⋆) = Zi

)
, (20)

with S̃ ∼ PS̃. As a consequence, for a sufficiently large M , it is possible to use

jxn(x
⋆, s⋆) =

1

N

N∑

i=1

min(π̃i
n+1(x), 1− π̃i

n+1(x)) (21)

as an approximation of (18).

The second issue is the approximation of the integral over X arising in J
(m)
n (x⋆, s⋆).

As simple solution (to be improved in future work) is to estimate the integral using a

finite subset X̃ of X (for instance, a Latin Hypercube design or the first terms of a Sobol

sequence). The criterion J
(m)
n (x⋆, s⋆) is then approximated, up to a multiplicative constant,

by

J̃ (m)
n (x⋆, s⋆) =

∑

x∈X̃

jxn(x
⋆, s⋆). (22)

Algorithm 1 summarizes the numerical procedure.

Algorithm 1 Procedure to choose a new point of evaluation according to J
(m)
n

For each candidate point (x⋆, s⋆):

1. Generate N samples {Z1, ..., ZN} of ξ(x⋆, s⋆) with respect to Pn

2. For i = 1, ..., N

2.1 Generate M samples paths of ξ on X̃× S̃ according to Pn(· | ξ(x
⋆, s⋆) = Zi)

2.2 Compute π̃i
n+1(x) using (19), for all x ∈ X̃

3. Calculate the approximation J̃
(m)
n (x⋆, s⋆) of the criterion according to (22)

Remark 3 For better numerical efficiency, the simulations of the sample paths of ξ under

Pn(· | ξ(x
⋆, s⋆) = Zi) is preferably carried out using successive reconditioning of sample

paths. A description of this procedure is given by Villemonteix et al. (2009), Section 5.1.
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Figure 1: Representation of f1 (left) and the associated reliable set (right).

5 Numerical applications

5.1 Test functions and benchmark methods

To evaluate the performances of the sampling criteria in Section 4, we focus on two artificial

examples, with scalar output values (q = 1) and noise-free observations.

The first test function (see Figure 1) is a modified Branin-Hoo function f1 defined

on X = [0; 10] and S = [0; 15] by

f1(x, s) =
1

12
b(x, s) + 3 sin

(
x

5

4

)
+ 3 sin

(
s

5

4

)
, (23)

where b is the Branin function b(x, s) =
(
s− 5.1x2

4π2 + 5x
π
− 6

)2

+10
(
1− 1

8π

)
cos(x)+10. We

take C = (−∞;T ] with T = 7.5, α = 0.6 and PS the uniform distribution on S.

The second test function is defined on X = [−2; 2]2 and S = [−1; 1]2 by

f2 ((x1, x2), (s1, s2)) = c(x1, s1) + c(x2, s2), (24)

with c the two-hump Camel function c(x, s) =
(
4− 2.1x2 + x4

3

)
x2 + xs+ (4s2 − 4)s2. We

take C = (−∞;T ] with T = 2.15, α = 0.65 and PS the uniform distribution on S. The

corresponding reliable set Γ(f2) is shown in Figure 2.

We compare the results obtained with our sampling criteria J
(m)
n and J

(v)
n to several

other Bayesian methods. Due to the absence in the literature of strategies dealing with

the precise problem exposed in this work, we focus on methods aiming at approximating

the set γ(f) = {(x, s) ∈ X× S : f(x, s) ∈ C}. It is clear indeed that perfect knowledge of

γ(f) implies perfect knowledge of Γ(f).
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Figure 2: Representation of the probability of excursion and Γ(f2).

More precisely, we compare our results to those obtained with the misclassification and

straddle criteria (see Section 3.1) and with the SUR-based criteria J
(m), joint
n and J

(v), joint
n ,

corresponding respectively to the uncertainty metrics (5) and (6) for the random set γ(ξ).

As a baseline method, we also include the results obtained with random sampling of the

evaluation points.

5.2 Implementation details

For every strategy and test function considered, we use a GP prior with an unknown

constant mean and an anisotropic Matérn covariance function. At each iteration of the al-

gorithm, the parameters of the Gaussian prior are estimated using the restricted maximum

likelihood (ReML) method (see, e.g., Stein, 1999).

The new sampling criteria are numerically approximated as described in Section 4.2. At

each iteration, X̃ and S̃ are (pseudo-)maximin random Latin hypercubes (LHC), obtained

by selecting the best maximin design among a collection of 1000 random LHC. For f1, we

take card(X̃) = card(S̃) = 30 and for f2, we take card(X̃) = card(S̃) = 40. Also, for each

candidate point (x⋆, s⋆), we use 50 sample values Zi of ξ(x
⋆, s⋆) given In, and 500 sample

paths over X̃× S̃ of ξ under Pn( · | ξ(x
⋆, s⋆) = Zi).

For all methods (except random sampling), the sampling criterion is optimized using an

exhaustive search over the finite subset D̃ = X̃× S̃. The SUR criteria J
(m), joint
n and J

(v), joint
n

are discretized over D̃ as well.

All the experiments are carried using out Matlab and the STK toolbox (Bect et al.,

2022).
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Figure 3: Median of the proportion of misclassified points vs. number of iterations, for 50

repetitions of the algorithms on the test function f1.

5.3 Results

The different algorithms are repeated 50 times on the test function f1 and 25 times on

f2, using different random LHC as initial designs. Following the rule of thumb consisting

of taking an initial design of size ten times the dimension of the problem (Loeppky et al.,

2009), we use respectively initial designs of size 20 and 40 for f1 and f2.

We compare the proportions of wrongly classified points obtained on a prediction grid

composed of the product of two Sobol sequences, each composed of 1000 points respectively

from X and S. Considering that the Bayes-optimal estimator (13) is too expensive to

compute (using heavy Gaussian sample paths simulations on the prediction grid), we use

instead the estimator

Γ̂n = {x ∈ X : En(τ(x)) ≤ α}. (25)

From the results in Figure 3 and Figure 4, observe that the new sampling criteria per-

form better on the RSI problem than the state-of-the-art methods focusing on the excursion

set γ(f) in the joint space of deterministic and uncertain inputs. These differences in per-

formance can be explained, from a heuristic viewpoint, by the fact that in the joint space,

the new criteria tend to concentrate the evaluations around specific zones of γ(f) which

are particularly relevant for the approximation of Γ(f). This phenomenon, linked to the

geometry of the excursion set γ(f), can be visualized on Figure 5.
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Figure 4: Median of the proportion of misclassified points vs. number of iterations, for 25

repetitions of the algorithms on the test function f2.

Figure 5: Examples of sequential design obtained after n = 30 iterations on the function

f1, with the criteria J
(m), joint
n (left) and J

(m)
n (right) and an initial design of 20 points (black

dots). Black curve represents the boundary of γ(f), red curve the boundary of γ(µn).
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6 Conclusion

This article presents SUR-based strategies for the reliable set inversion problem. The

practical interest of the proposed method is illustrated on two artificial test problems,

on which methods that do not take advantage of the specificity of the RSI problem are

outperformed. However, this gain in performance comes at the cost of a high numerical

complexity, in relation with the heavy use of conditioned Gaussian processes simulations.

Future work will concentrate on making the method applicable to harder test problems

(higher input dimensions, smaller probabilities, etc.) and on demonstrating its practical

relevance to real-life examples.
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Mockus, J. B., V. Tiesis, and A. Žilinskas (1978). The application of Bayesian methods for

seeking the extremum, Volume 2, pp. 117–129.

Picheny, V., D. Ginsbourger, O. Roustant, R. T. Haftka, and N.-H. Kim (2010). Adap-

tive designs of experiments for accurate approximation of a target region. Journal of

Mechanical Design 132 (7).

Ranjan, P., D. Bingham, and G. Michailidis (2008). Sequential experiment design for

contour estimation from complex computer codes. Technometrics 50 (4), 527–541.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian processes for machine learning.

Adaptive computation and machine learning. MIT Press.

Richet, Y. and V. Bacchi (2019). Inversion algorithm for civil flood defense optimization:

Application to two-dimensional numerical model of the Garonne river in france. Frontiers

in Environmental Science 7 (160), 1–16.

Santner, T. J., B. J. Williams, and W. I. Notz (2003). The Design and Analysis of Computer

Experiments. Springer Series in Statistics. Springer.

Sire, C. (2022). Robust inversion under uncertainty for flooding risk analysis. Talk given

at SIAM Conference on Uncertainty Quantification (UQ22), MS10, April 12, Atlanta.

Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer.

Vazquez, E. and J. Bect (2009). A sequential Bayesian algorithm to estimate a probability

of failure. Volume 42, pp. 546–550.

Vazquez, E. and M. Piera-Martinez (2006). Estimation of the volume of an excursion set

of a gaussian process using intrinsic kriging. arXiv preprint math/0611273 .

Villemonteix, J., E. Vazquez, and E. Walter (2009). An informational approach to the global

optimization of expensive-to-evaluate functions. Journal of Global Optimization 44, 509–

534.

15


	1 Introduction
	2 Framework
	3 Overview of Bayesian strategies for set inversion
	3.1 Maximal uncertainty sampling
	3.2 Stepwise uncertainty reduction

	4 Construction of SUR strategies for RSI
	4.1 Sampling criteria
	4.2 Approximation of the criteria

	5 Numerical applications
	5.1 Test functions and benchmark methods
	5.2 Implementation details
	5.3 Results

	6 Conclusion

