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1Université Paris-Saclay, CNRS, CentraleSupélec,
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Abstract

We consider an unknown multivariate function representing a system—
such as a complex numerical simulator—taking both deterministic and un-
certain inputs. Our objective is to estimate the set of deterministic inputs
leading to outputs whose probability (with respect to the distribution of
the uncertain inputs) of belonging to a given set is less than a given thresh-
old. This problem, which we call Quantile Set Inversion (QSI), occurs for
instance in the context of robust (reliability-based) optimization problems,
when looking for the set of solutions that satisfy the constraints with suffi-
ciently large probability. To solve the QSI problem we propose a Bayesian
strategy, based on Gaussian process modeling and the Stepwise Uncertainty
Reduction (SUR) principle, to sequentially choose the points at which the
function should be evaluated to efficiently approximate the set of interest.
We illustrate the performance and interest of the proposed SUR strategy
through several numerical experiments.
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1 Introduction

When dealing with a numerical model of a physical phenomenon or a system, one

is often interested in estimating the set of input parameters leading to outputs

in a given range. Such set inversion problems (Jaulin and Walter, 1993) arise

in various frameworks. In particular, “robust” formulations of the set inversion

problem, in which some inputs are considered uncertain, have appeared recently in

the literature, with applications to nuclear safety (Chevalier, 2013; Marrel et al.,

2022), flood defense optimization (Richet and Bacchi, 2019) and pollution control

systems (El Amri et al., 2023).

Following Richet and Bacchi (2019), we focus on a robust formulation of the

set inversion problem that we call quantile set inversion (QSI). We consider a

system modeled by an unknown continuous function f : X × S → Rq, where X

and S are bounded subsets of RdX and RdS , corresponding to the sets of admis-

sible values for the deterministic and uncertain (or stochastic) input variables of

the system. We model the uncertain inputs by a random vector S with known

distribution PS on S. Then, given a subset C ⊂ Rq of the output space and a

threshold α ∈ (0, 1), our objective is to estimate the set

Γ(f) = {x ∈ X : P(f(x, S) ∈ C) ≤ α}. (1)

Using the language of machine learning, we can also formulate the QSI problem

as that of learning a classifier X → {0, 1} as close as possible to the indicator

function 1Γ(f). The QSI problem occurs for instance in the context of robust

(reliability-based, a.k.a. chance-constrained) optimization problems, when look-

ing for the set of solutions that violate the constraints with sufficiently small

probability—where, with our notations, the constraints are violated when f(x, S)

belongs to the critical region C.

An illustrative two-dimensional example of a QSI problem is shown in Figure 1,

with one deterministic input variable and one uncertain input variable (dX = dS =

1), critical region C = (−∞, 7.5] in the output space, and probability threshold

α = 5%. The input space S = [0, 15] for the uncertain variable is equipped with

a Beta(7.5, 1.9) distribution, rescaled from [0, 1] to S, which concentrates on large

values of S. The set Γ(f) to be estimated is the union of two disjoint intervals

inX = [0, 10]. It appears clearly, on this example, that an accurate approximation

of the boundary of f−1(C), in X × S, is only needed in some specific regions of

the input space—more specifically, for the points (x, s) of the boundary such that

the probability P(f(x, S) ∈ C) is close to the threshold α. (See Section 5.3 for
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numerical results on this example.)
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Figure 1: Representation of a two-dimensional QSI problem. Left: probability

density function of PS. Middle: test function f = f1 (see Section 5.3 for details),

boundary of f−1(C) and quantile set Γ(f) associated to C = (−∞, 7.5] and α =

0.05. Right: indicator function of the quantile set, probability P(f(x, S) ∈ C)

and probability threshold α.

Remark 1 When q = 1 and C is a semi-infinite interval, there is a direct link

between Γ(f) and the quantiles of f . For instance, if C = (−∞, T ], the set (1)

can be rewritten as

Γ(f) = {x ∈ X : Qα(f(x, S)) > T}, (2)

where Qα(f(x, S)) denotes the quantile of order α of f(x, S), with S ∼ PS. More

generally, Γ(f) can be seen as a quantile of the random set {x ∈ X : f(x, S) ∈ C}

in the sense of Molchanov (1991)—hence our choice of terminology.

When the numerical model f is computationally expensive, it is important

to estimate Γ(f) using only a small number of evaluations of f . With this con-

straint in mind, we propose in this article a sequential Bayesian strategy based on

the Stepwise Uncertainty Reduction (SUR) principle (see, e.g., Vazquez and Bect,

2009; Villemonteix et al., 2009; Bect et al., 2012; Chevalier et al., 2014). The

starting point of a SUR strategy is to view f as a sample path of a random

process, in practice a Gaussian process (GP). Then, at each step, an evaluation

point is chosen by minimizing the expected future uncertainty on the quantity or

object of interest—a set in the present case—given the past observations.
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The structure of the article is as follows: Section 2 introduces the framework,

while Section 3 gives a brief overview of the literature on Bayesian set inversion

strategies, with a particular emphasis on SUR approaches. The core contribution

of the article is given in Section 4, which presents the construction of a SUR

sampling criterion for the QSI problem. Section 5 demonstrates the performance

of our approach on various numerical examples, including an application to history

matching. In Section 6, we summarize our conclusions and provide perspectives

for further research.

Nota bene. The authors have become aware, at the occasion of the SIAM

Conference on Uncertainty Quantification (UQ22) in Atlanta, of related research

work conducted by Charlie Sire (IRSN, France) and co-authors (Sire, 2022). The

research presented in this article has been carried out independently of theirs.

2 Framework and notations

In the following, we consider a function f : U → R, where U = X or U = X× S,

depending on whether there are stochastic input variables or not. We adopt a

Bayesian approach to sequentially choose the evaluation points U1, U2, . . . ∈ U of

f and estimate Γ(f) from evaluation results. It is assumed that we observe, at

each selected point Un, a response Z
obs
n = f(Un)+ǫn, where the ǫn are independent

zero-mean Gaussian random variables, with a possibly null variance in the case

of a deterministic simulator. As a prior for the unknown function f , we consider

a GP model (see, e.g., Rasmussen and Williams, 2006; Santner et al., 2018)—in

other words, we assume that f is a sample path of a GP. We denote by ξ this

process, and by µ and k its mean and covariance functions.

Denote by In = {(U1, Z
obs
1 ), . . . , (Un, Z

obs
n )} the currently available informa-

tion, and Pn = P( · | In) the conditional probability given In. Bayesian strategies

employ at each step a sampling criterion, also referred to as an acquisition func-

tion, which we will denote by Jn when it is meant to be minimized, or Gn when it

is meant to be maximized. This criterion, based on the distribution of ξ under Pn,

is used to select the next evaluation point from U. More explicitly: we choose

Un+1 as an element in U that minimizes Jn or maximizes Gn:

Un+1 ∈ argmin
u∈U

Jn(u) or Un+1 ∈ argmax
u∈U

Gn(u).

In the following sections, two families of such criteria are reviewed.
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Notations. In the rest of the paper, En = E (· | In) denotes the conditional

expectation associated with Pn, µn(u) and σn(u) stand for the conditional (pos-

terior) mean and standard deviation of ξ(u), and pn(u) = Pn(ξ(u) ∈ C) is the

conditional (posterior) probability that ξ(u) belongs to C.

3 Overview of Bayesian strategies for set inver-

sion

3.1 Maximal uncertainty sampling

We review in this section a first family of sampling criteria, which corresponds to

the general idea ofmaximal uncertainty sampling, i.e., sampling at the location x ∈

X where the uncertainty about 1C(ξ(x)) and/or ξ(x) is maximal. The literature

on such criteria only deals, to the best of our knowledge, with the deterministic

case U = X, when f is a real-valued function (q = 1), and when C = (T,+∞), for

a given T ∈ R. In this setting, the set inversion problem reduces to the estimation

of the set

Λ(f) = {x ∈ X : f(x) ≤ T}. (3)

A natural approach to this problem is to select the point at which the prob-

ability of misclassification is maximal (Bryan et al., 2005), leading to the sam-

pling criterion Gn(x) = min (pn(x), 1− pn(x)). This criterion is maximal for

any point x such that µn(x) = T . Several equivalent criteria lead to the same

choice of sampling point, including the entropy of the indicator 1C(ξ(x)) used

by Cole et al. (2023), its variance, or the sampling criterion used in the AK-MCS

method of Echard et al. (2011).

Other sampling criteria operate a trade-off between the posterior vari-

ance of ξ(x) and its estimated proximity to the threshold T . This is

the case, for instance, for the family of criteria defined by Gn(x) =

En

[
max

(
0, (κσn(x))

δ − |ξ(x)− T |δ
)]

, with κ > 0, introduced separately by

Bichon et al. (2008) with δ = 1, and Ranjan et al. (2008) with δ = 2. Similarly,

Bryan et al. (2005) proposed the straddle heuristic, where Gn(x) = 1.96 σn(x) −

|µn(x)− T |.
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3.2 Stepwise uncertainty reduction

SUR strategies (see Bect et al., 2019, and references therein) are a special case

of the Bayesian approach in which the evaluation points are sequentially chosen

by minimizing the expected future uncertainty about the object of interest. More

precisely, a SUR strategy starts by defining a measure of uncertainty Hn, at each

step, that depends on the currently available information In. Then, a sampling

criterion Jn is built by considering the expectation of Hn+1 conditional on In, for

a given choice of Un+1 = u:

Jn(u) = En [Hn+1 | Un+1 = u] . (4)

Notice that Hn+1 depends on the unknown outcome of the evaluation at u and

that Jn(u) is an expectation over this random outcome. Equivalently, instead

of minimizing the sampling criterion Jn, one can maximize the information gain

Gn(u) = Hn − Jn(u).

We now give more details and first focus on the case of deterministic inversion

(U = X). Several approaches have been developed in the past years. For instance,

Bect et al. (2012) suggest the integrated probability of misclassification

Hn =

∫

X

min(pn(x), 1− pn(x)) dx, (5)

andHn =
∫
X
pn(x)(1−pn(x)) dx, the integrated variance of 1Λ(ξ)(x) as uncertainty

measures. Similarly, Marques et al. (2018) propose to use the integrated entropy

of the random variable 1(−∞;T−ǫ(x)](ξ(x)) − 1[T+ǫ(x);+∞)(ξ(x)), with ǫ(x) > 0, to

estimate Λ(f) in a context where different sources of information can be leveraged.

Picheny et al. (2010) propose a targeted Integrated Mean Square Error

(tIMSE) reduction strategy, based on the uncertainty measure: Hn =∫
X
σ2
n(x)Wn(x) dx, where Wn(x) = En[K(µn(x) − T )], with K a kernel (e.g.,

Gaussian or uniform).

For additional examples of uncertainty measures and corresponding SUR cri-

teria applicable to the deterministic set inversion problem, refer to Chevalier et al.

(2013), Chevalier (2013), Azzimonti et al. (2021), and Duhamel et al. (2023).

To conclude this section, let us mention two formulations of the set inversion

problem with uncertain input variables, which are related to—but distinct from—

the QSI problem. First, Chevalier (2013) considers the task of estimating the set

{x ∈ X : max
s∈S

f(x, s) ≤ T}. In this setting, the proposed uncertainty measure

is Hn =
∫
X
p◦n(x)(1 − p◦n(x))dx, where p◦n(x) = Pn(maxs∈S ξ(x, s) ≤ T ). Second,

in the work of El Amri et al. (2023), the objective instead is to estimate the
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set {x ∈ X : E(f(x, S)) ≤ T}. To this end, the authors propose a hybrid SUR

strategy to choose, sequentially, the deterministic component x and the stochastic

component s of each new evaluation point.

4 Construction of a SUR strategy for QSI

4.1 Sampling criterion

Our objective is now to estimate the set Γ(f) defined by (1) using evaluation

results modeled by Zobs
n = f(Xn, Sn) + ǫn, i.e., we take U = X × S and write

Un = (Xn, Sn) from now on.

In the following, we construct a SUR sampling criterion for the QSI problem.

For the sake of simplicity, we assume that the distribution PS admits a density g

(with respect to the Lebesgue measure). Consider the random process

τ(x) =

∫

S

1C (ξ(x, s)) g(s) ds, (6)

which corresponds, for each x ∈ X, to the stochastic (Bayesian) counterpart of

the unknown probability P (f(x, S) ∈ C), and notice that Γ(ξ) can be written as

Γ(ξ) = {x ∈ X : τ(x) ≤ α} . (7)

Assume that a sequence (Γ̂n)n≥1 of estimators of Γ(ξ) has been chosen. We

propose to use as uncertainty measure the expected volume of the symmetric

difference (see Figure 2) between Γ(ξ) and its estimator:

Hn = En

[
λ(Γ(ξ)∆ Γ̂n)

]
, (8)

where λ is the usual (Lebesgue) volume measure on RdX . The SUR strategy

derived from (8) consists in minimizing, at each step, the criterion

Jn(x, s) = En [Hn+1 | (Xn+1, Sn+1) = (x, s)] . (9)

SUR strategies using the symmetric difference have been used, in other contexts,

by Chevalier (2013) and Azzimonti et al. (2021).

When considering the Bayes-optimal estimator

Γ̂n =

{
x ∈ X : πn(x) >

1

2

}
, (10)
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A B

Figure 2: Symmetric difference A∆B = (A \ B) ∪ (B \ A) between A and B

(shaded area).

where πn(x) = Pn(τ(x) ≤ α), the uncertainty measure Hn can be expressed as

the integrated probability of misclassification associated to the classifier 1Γ̂n
:

Hn =

∫

X

min(πn(x), 1− πn(x)) dx . (11)

The proof of this simple result can be found in (Appendix A). As a consequence,

the SUR strategy derived from (8) consists in minimizing at each step the criterion

Jn(x̆, s̆) = En [Hn+1 | (Xn+1, Sn+1) = (x̆, s̆)]

=

∫

X

En [min(πn+1(x), 1− πn+1(x)) | (Xn+1, Sn+1) = (x̆, s̆)] dx .
(12)

Here, notice that we use the new notations x̆ and s̆ for the components of the

candidate point, since x is now used as an integration variable.

Remark 2 Other choices for the uncertainty measure are possible. Notably, we

could use any increasing transformation of min(πn(x), 1 − πn(x)) in the inte-

gral (11) to define the measure. In particular, we can construct a variance-

based measure Hv
n =

∫
X
πn(x)(1 − πn(x)) dx, and an entropy-based one He

n =

−
∫
X
πn(x) log2(πn(x)) dx −

∫
X
(1 − πn(x)) log2(1 − πn(x)) dx. We focus in the

following on the misclassification-based QSI-SUR strategy (12). A comparative

benchmark provided as Supplementary Material shows that the other variants yield

almost identical results on the four examples of Section 5.

Remark 3 It is instructive to compare the different misclassification-based and

variance-based criteria to those proposed by Bect et al. (2012), and to notice the

formal resemblance, if replacing πn by pn and Γ(ξ) by Λ(ξ).
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4.2 Approximation of the criterion

It appears from the definition of πn(x) that the proposed criterion does not admit

an explicit form, and thus must be approximated. Indeed, it is based on the

conditional distribution of τ(x), which is intractable to the best of our knowledge.

In particular, two major issues arise in the numerical evaluation of Jn(x̆, s̆) at

a given point (x̆, s̆) ∈ X × S—namely, the evaluation of the integral over X and

the lack of closed-form formula for the integrand

En [min(πn+1(x), 1− πn+1(x)) | (Xn+1, Sn+1) = (x̆, s̆)] . (13)

To tackle these issues, we propose an approximation of the criterion based on

two ingredients. First, using a suitable auxiliary sampling density, the integral

over X is estimated using importance sampling. Second, at a given point x, the

integrand (13) is approached using Monte Carlo simulations of conditional sample

paths of the process ξ.

The interested reader can refer to Appendix B for details on this approximation

scheme.

5 Numerical experiments

5.1 Implementation of the QSI-SUR strategy

Bayesian model: The underlying function is modeled using a GP prior with a

constant mean function and an anisotropic Matérn covariance function. The pa-

rameters of the GP prior are estimated, at each step, using the restricted maxi-

mum likelihood (ReML) method (see, e.g., Stein, 1999), with the constraint that

the regularity parameter υ of the kernel should belong to
{

1
2
, 3
2
, 5
2
,+∞

}
. Note

that the limit case υ → +∞ corresponds to the Gaussian kernel. For numerical

purposes, in order to limit the occurrence of ill-conditioned covariance matrices,

a nugget of value 10−6 is added. Regarding the initial training points, we use a

pseudo1-maximin LHS, following the rule of thumb which consists in taking an

initial design of size n0 = 10d (see, e.g., Loeppky et al., 2009), where d = dX + dS

is the dimension of the input space.

Construction of approximation grid: At each step, we first sample 100 points

according to PS as a discretization grid S̃n of S. Then, a set of nX = 500 dX

1We call “pseudo-maximin” the best LHS, in the sense of the minimal distance between

points, in a collection of 1000 independent LHSs.

10



x

s

0

0 2 4 6 8

5

10

10

15

x

s

00

0

0.005

0.01

0.015

0.02

2 4 6 8

5

10

10

15

Figure 3: Examples of approximation grid X̃n × S̃n (left) and QSI-SUR criterion

values on Ũn ⊂ X̃n × S̃n (right), for the acquisition of the first evaluation point

on f1. Black dots represent the initial design, the red and black curves respectively

the estimated and true boundary of Λ(f). On the x-axis, the segments represent

the currently estimated quantile set (red), and the true Γ(f) (green).

points is uniformly sampled in X. For each of these points, we approximate the

misclassification probability min(πn(x), 1− πn(x)) using Monte Carlo simulations

of ξ(x, ·) on S̃ (with respect to Pn). Finally, a subset X̃n of n
X̃

= 40 points is

constructed, composed of the point with the highest misclassification probability,

and n
X̃
− 1 = 39 points drawn (without replacement) according to the discrete

probability distribution pX(x) ∝ min(πn(x), 1 − πn(x)). Note that this distribu-

tion is chosen to ensure that the elements of X̃n are concentrated in the areas

of X where the probability of misclassification is high. This procedure gives us a

product set X̃n × S̃n, used to approximate the integrals involved in the QSI-SUR

sampling criterion. The integrand (13) arising in the criterion is approximated us-

ing a Gauss-Hermite quadrature of 10 points coupled with 100 conditioned sample

paths. (See Appendix B for more details on the procedure used to approximate

the criterion).

Optimization of the criterion: The approximated sampling criterion is then

optimized using an exhaustive search over a subset Ũn ⊂ X̃n×S̃n of 250 candidate

points. To construct this subset of candidate points, we follow the same idea that

for the construction of X̃, using this time sampling probabilities proportional to

the probability of misclassification min(pn(x, s), 1− pn(x, s)) of ξ(x, s) ∈ C.

The main ingredients of this implementation are illustrated in Figure 3.
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Remark 4 Due to the expensive nature of the simulation of conditional GPs, the

simulation parameters described in this section must be calibrated according to the

computational budget at hand. In particular X̃n and S̃n must be constructed such

that card(X̃n × S̃n) is sufficiently low to accommodate a given computation time.

5.2 Comparative methods and performance metric

Due to the absence in the literature of strategies tailored specifically to the QSI

problem, we propose to compare the performance of the QSI-SUR criterion against

methods that aim at approximating the set Λ(f) in the joint space X× S.

Using the same Bayesian modeling as for the QSI-SUR criterion, the results

are first compared to the SUR criterion of Bect et al. (2012), hereafter denoted as

“Joint-SUR”, using the closed-form expression of Chevalier et al. (2014). We draw

5dX × 104 points according to the uniform distribution on X × S. The criterion

is approximated using a subset of 4000 points constructed from the points with

the highest misclassification probability min(pn(x, s), 1 − pn(x, s)) and a sample

(without replacement) according to this probability. It is then optimized using an

exhaustive search on 250 of those points.

We also compare against the criterion of Ranjan et al. (2008) with κ = 1.96

and the misclassification probability criterion of Bryan et al. (2005), both evalu-

ated on 5dX × 104 points sampled uniformly on X× S.

The Entropy Contour Locator (ECL) criterion of Cole et al. (2023) is also

considered, with 4000 candidate points, using the Python implementation2 pro-

vided by the authors, with minor modifications to fit our Bayesian modeling. As

explained in Section 3.1, ECL and the misclassification probability criterion are

equivalent in principle: the main difference lies in the use, in ECL, of a local

optimizer from the best candidate point (hence the use of a smaller number of

candidate points).

Finally, as a baseline, we include the results obtained by uniform random

sampling on the space X× S.

Except for the ECL criterion, all the experiments are carried out using Matlab

R2022a and the STK toolbox v2.8.1 (Bect et al., 2023). The implementation of

the methods3 (except ECL) and the scripts used to run the numerical experiments4

are available online.

2https://bitbucket.org/gramacylab/nasa/src/master/
3https://github.com/stk-kriging/contrib-qsi
4https://github.com/stk-kriging/qsi-paper-experiments
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To assess the performances of the methods, we compare at each step the pro-

portions of misclassified points obtained on a prediction grid composed of the prod-

uct of a Sobol’ sequence of 212 points in X and the inversion (with respect to the

cumulative distribution function of PS) of a Sobol sequence of 2
10 points in [0, 1]dS .

Considering that the Bayes-optimal estimator (10) is expensive to approximate

on such a large grid, we use instead the estimator Γ̂n = {x ∈ X : En(τ̃(x)) ≤ α},

where τ̃(x) is the approximation of τ(x) defined by averaging over the 210 selected

points of S.

Each method is run 100 times on each test case, using different initial designs,

to study performances variability.

5.3 Synthetic examples

We propose first three synthetic examples, with scalar output values (q = 1) and

noise-free observations.

The first test function (see Figure 1), defined onX = [0; 10] and S = [0; 15], is a

modified Branin-Hoo function f1(x, s) =
1
12
b(x, s)+3 sin

(
x

5

4

)
+sin

(
s

5

4

)
, where b

is the Branin-Hoo function b(x, s) =
(
s− 5.1x2

4π2 + 5x
π
− 6

)2

+10
(
1− 1

8π

)
cos(x)+10

(Branin and Hoo, 1972). We take C = (−∞;T ] with T = 7.5, α = 0.05 and

PS the Beta distribution with parameters (7.5, 1.9), rescaled from [0, 1] to S. The

associated set Γ(f1) is represented in Figure 1.

The test function f2 is defined by f2 (x, s) =
1
2
c(x1, s1) +

1
2
c(x2, s2), on X =

[−2; 2]2 and S = [−1; 1]2, with c the “six-hump camel” function c(x, s) =(
4− 2.1x2 + x4

3

)
x2 + xs + (4s2 − 4)s2 (Dixon and Szegö, 1978). We take C =

(−∞;T ] with T = 1.2, α = 0.15 and PS the uniform distribution on S.

As a third test function f3, we consider the Hartman4 function (Picheny et al.,

2013), defined on X = [0; 1]2 and S = [0; 1]2 equipped with the uniform distribu-

tion. For this example we set α = 0.6 and C = [T,+∞), with T = −1.1.

From the median performance results in Figure 4, it can be observed that

the new sampling criteria tends to perform better on the QSI problem than the

state-of-the-art methods focusing on the set Λ(f) in the joint space X× S. More

specifically, it performs much better on the first two cases, and has similar per-

formance on the third one. This remains true when looking at the 75th and 95th

percentiles, as illustrated in Figure 5 for f1 (and in the Supplementary Material

for the other cases).

These differences in performance can be explained, from a heuristic viewpoint,

by the fact that, in the joint space X×S, the new criterion tend to concentrate the
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Figure 4: Median of the proportion of misclassified points vs. number of steps, for

100 repetitions of the algorithms on the test functions f1 (top left), f2 (top right)

and f3 (bottom).
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Figure 6: Examples of sequential designs (red dots) obtained after 30 steps on

the function f1, with the QSI-SUR and three others sampling criteria. Black dots

represent the initial design points, black curve the boundary of Λ(f), and red

curve the boundary of Λ(µn).

evaluations around specific zones of Λ(f) which are particularly relevant for the

approximation of Γ(f). This phenomenon, related to both the geometry of Λ(f)

and the distribution PS, can be visualized in Figure 6 for f1. In relation to the

sequential designs displayed in Figure 6, it can be observed in Figure 7 that the

competitor method (here, maximum misclassification probability criterion) tends

to select points that are close to the estimated boundary of Λ(f), or/and have

high variance. In comparison, the QSI-SUR strategy focuses mainly on areas of

the joint space X × S that are susceptible—given the current data—to provide

information about Γ(f). It is important to notice, however, that in some cases

(illustrated here by the function f3), the performances of the two kinds of methods

are similar.
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Figure 7: Examples of values of the QSI-SUR (top) and maximum misclassification

probability (bottom) criteria, for step 1 to 3 (left to right), for the function f1.

The black curve represents the boundary of Λ(f), and the red curve its estimation.

Red dots are the points evaluated at the previous steps. The segments on the x-

axis represent Γ(f) (green) and its estimation (red). Evaluated on a grid of 50×50

points.
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This gain in performance has to be put in perspective with the higher compu-

tation time of the proposed method, which is, depending on the test case, between

5 and 25 times slower than the simplest methods (e.g., the method of Ranjan et al.

(2008), see Appendix C). It is only slightly more expensive, however, than the

“Joint-SUR” method (approximately twice slower in our benchmark). This higher

computation time remains quite acceptable for expensive computer models, but

simpler methods remain relevant for moderately expensive ones (taking, e.g., a

few minutes per run).

5.4 Application to history matching

The objective of this application is to retrieve the set of plausible deterministic

input variables of a numerical simulator, given real-life measurements. Such a

problem can be seen as a particular case of a “history matching” problem (see, e.g.,

Williamson et al., 2013). More precisely, we consider an uncertain Mogi model

(Mogi, 1958), which simulates the displacement at the surface of a volcano caused

by an underground magma reservoir, while taking into account the mechanical

property of the soil (Durrande and Le Riche, 2017).

Formally, the model can be seen as a function v : X × S → R220, with in-

puts (x1, . . . , x5) ∈ X = [0, 1]5 representing the normalized latitude, longitude,

elevation, radius and overpressure of the magma source, and (s1, s2) ∈ S = [0, 1]2

representing uncertain perturbations of the shear modulus G and Poisson ratio ν

of the material, which are written as

G(s1) = 2000 + 100(2s1 − 1) and ν(s2) = 0.25 + 0.3(2s2 − 1).

The uncertain variables are assumed independent and identically distributed, fol-

lowing a Beta distribution with parameters (2, 2).

Given the real measurements (yi)i∈{1, ... ,220} of the displacement at the surface of

the volcano (illustrated in Figure 8) and considering the mean absolute error of the

simulated displacement against the real measures V (x, s) = 1
220

∑220
i=1 |vi(x, s)−yi|,

our objective is to retrieve the set of plausible parameters for the Mogi model.

More specifically, a vector of parameters x ∈ X is considered to be “plausible” if it

yields an error V (x, S) strictly less than 0.015 with a probability larger than 10%.

To exhibit the direct link between this history matching problem and the QSI

framework, notice that it can be equivalently reformulated as the problem of

estimating the set Γ(V ), with critical region C = [0.015,+∞) and α = 90%.
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to the normalized latitude and longitude.

We observe in Figure 9 that the median proportion of misclassified points

decreases similarly to the top competitors (namely, ECL, probability of misclassi-

fication and “Joint-SUR”), with approximately equal median performances after

150 steps. However, our strategy proposes the best “worst case” results, as indi-

cated by the quantile of order 0.95 of the proportion of misclassified points.
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Figure 9: Median (left) and quantile of order 0.95 (right) of the proportion of

misclassified points vs. number of steps, for 100 repetitions of the algorithms on

“volcano” test case.
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6 Conclusion

This article presents a SUR strategy for a particular set inversion problem, in a

framework where a function admits deterministic and uncertain input variables,

that we called Quantile Set Inversion (QSI). The practical interest of the proposed

method is illustrated on several problems, on which methods that do not take ad-

vantage of the specificity of the QSI problem tend to be outperformed. However,

this gain in performance comes at the cost of a high numerical complexity, in rela-

tion to the heavy use of conditioned Gaussian trajectory simulations. Future work

will concentrate on reducing this numerical complexity and making the method

applicable to harder test problems, notably in the case of high-dimensional inputs

and small quantile sets Γ(f). In an other direction, the proposed method could

benefit from some adaptations to make it more applicable to real-life problem—in

particular, its adaptation to batch design in order to tackle cases where several

instances of the simulator can be run in parallel.

Acknowledgments. The authors are grateful to Rodolphe Le Riche and Valérie

Cayol for sharing their R implementation of the Mogi model used in Section 5.

References

Azzimonti, D., D. Ginsbourger, C. Chevalier, J. Bect, and Y. Richet (2021).

Adaptive design of experiments for conservative estimation of excursion sets.

Technometrics 63 (1), 13–26.

Bect, J., F. Bachoc, and D. Ginsbourger (2019). A supermartingale approach to

Gaussian process based sequential design of experiments. Bernoulli 25 (4A),

2883–2919.

Bect, J., D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez (2012). Sequential

design of computer experiments for the estimation of a probability of failure.

Statistics and Computing 22, 773–793.

Bect, J., E. Vazquez, et al. (2023). STK: a Small (Matlab/Octave) Toolbox for

Kriging. Release 2.8.1.

Bichon, B. J., M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland

(2008). Efficient global reliability analysis for nonlinear implicit performance

functions. AIAA Journal 46 (10), 2459–2468.

19



Branin, F. H. and S. K. Hoo (1972). A method for finding multiple extrema

of a function of n variables. In F. A. Lootsma (Ed.), Numerical methods of

Nonlinear Optimization, pp. 231–237. Academic Press.

Bryan, B., R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller, and L. Wasser-

man (2005). Active learning for identifying function threshold boundaries. In

Y. Weiss, B. Schölkopf, and J. Platt (Eds.), Advances in Neural Information

Processing Systems, Volume 18. MIT Press.

Chevalier, C. (2013). Fast uncertainty reduction strategies relying on Gaussian

process models. Ph. D. thesis, University of Bern.

Chevalier, C., J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet

(2014). Fast parallel kriging-based stepwise uncertainty reduction with appli-

cation to the identification of an excursion set. Technometrics 56 (4), 455–465.

Chevalier, C., D. Ginsbourger, J. Bect, and I. Molchanov (2013). Estimating

and quantifying uncertainties on level sets using the Vorob’ev expectation and

deviation with Gaussian process models. In D. Uciński, A. C. Atkinson, and
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SUPPLEMENTARY MATERIAL

A Proof of the expression of Hn

Let us remark that

Γ(ξ)∆Γ̂n =
{
x ∈ Γ(ξ) : x /∈ Γ̂n

}⋃{
x ∈ Γ̂n : x /∈ Γ(ξ)

}
.

As a consequence, by defining the classifier cn(x) = 1Γ̂n
(x) and by Fubini’s theo-

rem:

En

[
λ
(
Γ(ξ)∆Γ̂n

)]
=

∫

X

En

[
1Γ(ξ)∆Γ̂n

(x)
]
dx

=

∫

X

En

[
1{cn=0}(x)1Γ(ξ)(x)

]

+

∫

X

En

[
1{cn=1}(x) (1− 1Γ(ξ)(x))

]
dx

=

∫

X

1{cn=0}(x) πn(x) dx

+

∫

X

1{cn=1}(x) (1− πn(x)) dx.

It suffices to observe that, if Γ̂n =
{
x ∈ X : πn(x) >

1
2

}
, then cn(x) =

1{πn(x)>
1

2
}(x), and for all x ∈ X:

1{cn=0}(x)πn(x) + 1{cn=1}(x) (1− πn(x))

= 1{πn≤
1

2
}(x)πn(x) + 1{πn>

1

2
}(x) (1− πn(x))

= min (πn(x), 1− πn(x))

to obtain the simplified expression of Hn.

B Approximation of the criterion

We give here the details about the approximation of the criterion Jn(x̆, s̆). The

same procedure can be adapted for the variations of the criterion based on the
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variance or the entropy.

The integral on X (with respect to the uniform distribution) is estimated

using an importance sampling scheme. This allows to non-uniformly sample an

approximation grid X̃ for our integral in order, for instance, to concentrate the

sampled points in uncertain areas of Γ(ξ). Given a random finite collection X̃

of elements of X sampled from a density pX, we use the following importance

sampling approximation:

Jn(x̆, s̆) ≈
∑

x∈X̃

1

pX(x)
En [min(πn+1(x), 1− πn+1(x)) | (Xn+1, Sn+1) = (x̆, s̆)] .

(SM1)

We propose to estimate the integrand (13) using quantization of the distri-

bution PS together with Monte Carlo simulations of the process ξ, in the spirit

of Villemonteix et al. (2009).

Consider a finite subset S̃ of S, and a family (wS(s))s∈S̃ of positive real numbers

such that PS̃ =
∑

s∈S̃ wS(s)δs is a “good” approximation of PS, where δs denotes

the Dirac measure at s. This can be achieved, for instance (as done in Section 5),

by defining S̃ as a collection of nS i.i.d. samples from PS and fixing wS(s) =
1
nS

for all s ∈ S̃. For more information about quantization, the reader can refer

to Graf and Luschgy (2000).

Moreover, let {z1, . . . , zN} and (wξ(zi))i∈{1, ... ,N} be such that
∑

i=1, ... ,N wξ(zi)δzi is a quantization of the distribution of ξ(x̆, s̆) given In

(for example a Gauss-Hermite quadrature), and recall that X̃ ⊂ X is the finite

subset used for the approximation of the integral over X arising in Jn(x̆, s̆).

ξ being Gaussian, assuming that X̃ × S̃ is not too large we can easily simu-

late M sample paths {ξi,1, . . . , ξi,M} of ξ over X̃ × S̃, under the distribution

Pn( · | ξ(x̆, s̆) = zi). Given a point x ∈ X̃, set

π̃i
n+1(x) =

1

M

M∑

m=1

1[0,α]


∑

s∈S̃

wS(s)1C(ξi,m(x, s))


 . (SM2)

For a sufficiently large M and a “good” quantization PS̃, we have

π̃i
n+1(x) ≈ P (τ(x) ≤ α | In , ξ(x̆, s̆) = zi) . (SM3)

As a consequence, it is possible to use

jxn(x̆, s̆) =
N∑

i=1

wξ(zi) min(π̃i
n+1(x), 1− π̃i

n+1(x)) (SM4)
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as an approximation of (13).

Combining (SM1) and (SM4), the criterion Jn(x̆, s̆) is then approximated by

J̃n(x̆, s̆) =
∑

x∈X̃

1

pX(x)
jxn(x̆, s̆). (SM5)

Remark SM1 For a better numerical efficiency, the simulations of the sample

paths of ξ under Pn(· | ξ(x̆, s̆) = Zi) are preferably carried out using reconditioning

of sample paths. A description of this procedure is given by Villemonteix et al.

(2009), Section 5.1.

C Details on computational cost

Due to the major implementation differences between the Entropy Contour Lo-

cator (ECL) method of Cole et al. (2023) and the others competitors, we exclude

it of this benchmark. We focus here on the strategies implemented in Matlab us-

ing the STK toolbox v2.8.1 (Bect et al., 2023). These experiments are conducted

using Matlab R2022a and the same parameters as described in Section 5, on a

computer equipped with a CPU AMD Ryzen 7 3700x with 32GB of RAM.

Ranjan misclass. Joint-SUR QSI-SUR

f1 0.15 0.14 3.74 3.77

f2 0.29 0.23 7.01 5.91

f3 0.30 0.23 6.57 5.35

Volcano 1.24 0.76 12.77 11.30

Table SM1: Runtime (in seconds) to complete the first step. Average over 10 runs.

Ranjan misclass. Joint-SUR QSI-SUR

f1 1 0.81 19.26 21.94

f2 1 0.84 4.96 9.45

f3 1 0.83 10.02 11.05

Volcano 1 0.53 4.26 7.19

Table SM2: Normalize total runtime (in seconds). Average over 10 runs.
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D Comparison between variants of the QSI-

SUR criterion

Following Remark 2, we display here a brief comparison of several variants of

the QSI-SUR criterion—namely, the misclassification probability-based, variance-

based, and entropy-based sampling criteria.
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Figure SM1: Median of the proportion of misclassified points vs. number of steps,

for 100 repetitions of the algorithms on the test functions f1 (top left), f2 (top

right), f3 (bottom left) and the volcano case (bottom right).

E Complementary results for the examples in

the article

In this section, some complementary details on the numerical experiments of

Section 5 are given. This include, for all the competitors, the 100 sample paths

and the quantiles of order 75% and 95% of the error (proportion of misclassified

points) as a function of the number of steps.
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E.1 Synthetic example f1

See Figures SM2–SM4.

E.2 Synthetic example f2

See Figures SM5–SM7.

E.3 Synthetic example f3

See Figures SM8–SM10.

E.4 Volcano test case

See Figures SM11–SM13.
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Figure SM2: Quantiles of level 0.75 and 0.95 for the proportion of misclassified

points vs. number of steps, for 100 repetitions of the algorithms on the test func-

tion f1.
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Figure SM3: Median and several quantiles of the proportion of misclassified points

vs. number of steps, for 100 repetitions of the algorithms on the test function f1.
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Figure SM4: Different sample paths of the proportion of misclassified points vs.

number of steps, for 100 repetitions of the algorithms on the test function f1.

30



steps

p
ro
p
.
m
is
cl
as
s.

0.1

0.15

0.2

150 200 250 300
steps

p
ro
p
.
m
is
cl
as
s.

random
Ranjan
misclass.
ECL
Joint-SUR
QSI-SUR

0.1

0.15

0.2

0.25

150 200 250 300

Figure SM5: Quantiles of level 0.75 and 0.95 for the proportion of misclassified

points vs. number of steps, for 100 repetitions of the algorithms on the test func-

tion f2.
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Figure SM6: Median and several quantiles of the proportion of misclassified points

vs. number of steps, for 100 repetitions of the algorithms on the test function f2.
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Figure SM7: Different sample paths of the proportion of misclassified points vs.

number of steps, for 100 repetitions of the algorithms on the test function f2.
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Figure SM8: Quantiles of level 0.75 and 0.95 for the proportion of misclassified

points vs. number of steps, for 100 repetitions of the algorithms on the test func-

tion f3.
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Figure SM9: Median and several quantiles of the proportion of misclassified points

vs. number of steps, for 100 repetitions of the algorithms on the test function f3.
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Figure SM10: Different sample paths of the proportion of misclassified points vs.

number of steps, for 100 repetitions of the algorithms on the test function f3.
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Figure SM11: Quantiles of level 0.75 and 0.95 for the proportion of misclassified

points vs. number of steps, for 100 repetitions of the algorithms on the test case

volcano.
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Figure SM12: Median and several quantiles of the proportion of misclassified

points vs. number of steps, for 100 repetitions of the algorithms on the test case

volcano.
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Figure SM13: Different sample paths of the proportion of misclassified points vs.

number of steps, for 100 repetitions of the algorithms on the test case volcano.

39


	Title page
	Table of contents
	1 Introduction
	2 Framework and notations
	3 Overview of Bayesian strategies for set inversion
	3.1 Maximal uncertainty sampling
	3.2 Stepwise uncertainty reduction

	4 Construction of a SUR strategy for QSI
	4.1 Sampling criterion
	4.2 Approximation of the criterion

	5 Numerical experiments
	5.1 Implementation of the QSI-SUR strategy
	5.2 Comparative methods and performance metric
	5.3 Synthetic examples
	5.4 Application to history matching

	6 Conclusion
	References
	SUPPLEMENTARY MATERIAL
	A Proof of the expression of Hn
	B Approximation of the criterion
	C Details on computational cost
	D Comparison between variants of the QSI-SUR criterion
	E Complementary results for the examples in the article
	E.1 Synthetic example f1
	E.2 Synthetic example f2
	E.3 Synthetic example f3
	E.4 Volcano test case


