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Supplemental Material

We base our method on a mathematical model, presented in more details in section A. First, in § A.1,
we describe the stochastic model of the clonal expansion from a single mutated hematopoietic stem
cell (HSC), in § A.2 we describe how we model the progenitor and mature cell compartments, then we
explain how we model the acquisition of the driver mutation in § A.3 and eventually which values or
prior distributions we consider for the parameters (§ A.4).
Inferring the initiation and development of Myeloproliferative Neoplasms (MPNs) relies on the esti-
mation of model parameters using observations. We detail the parameter estimation procedure in
section B, where we introduce the ABC-SMC method (§ B.1). We also detail how we derive a deter-
ministic approximation of our stochastic model after some time in (§B.2). To optimize the estimation
process, we use the Hungarian algorithm, it is described in (§ B.3). We end this section by giving some
information on the model implementation (§ B.4).
We further show that we can draw robust conclusions from our parameter estimation procedure in
section C, by inferring parameter values from synthetic data (§ C.1) We explore potential biases in the
estimation of parameters λ (§ C.2) and ∆ (§ C.3).
Then, in section D, we conduct the analysis based on real data (§ D.1), detail our results (§ D.2) and
conduct a leave-one-out analysis (§ D.3) to further assess the quality of the model fits.
We finally compare, in section E, our results to other reports, concerning the mean acquisition time
(§ E.1) or the proliferative advantage (§ E.2) of the mutation JAK2V 617F .

A Model

A.1 Stochastic description of the disease development

The model we propose (main figures 1.B and 1.D) aims to describe the expansion of a malignant clone
from a single mutated HSC. We assume that the number of wild-type (WT) cells NWT is maintained
constant through a tight regulatory mechanism, corresponding to homeostatic conditions. T0 is the
age at which the first mutation to the considered gene (either CALR or JAK2 ) is acquired. We will
study the dynamics of N(t), the number of mutated HSCs, over time t ≥ T0 (with N(T0) = 1).
Mutated HSCs divide at a rate α. Three division mechanisms are widely accepted for HSCs. First,
an HSC can encounter a differentiated division (diff), with a probability p0, and generate two (very
immature) progenitor cells. Progenitor cells will further proliferate and differentiate, resulting in the
production of our blood cells (see § A.2). Secondly, an HSC can divide asymmetrically (asym), with
a probability p1, giving a progenitor cell and a stem cell, this latter being functionally identical to the
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mother cell. And finally, an HSC can divide symmetrically (sym), with a probability p2 = 1− p1− p0,
producing two HSCs (see eq. (1)).
In this article, we focus on HSCs, since they are at the origin of hematopoiesis (that is, the production
of all types of blood cells). We introduce ∆ = p2 − p0. For WT cells, this parameter is equal to zero
in order to maintain homeostatic conditions. We consider that cells with mutations have a proliferate
advantage at the stem cell level, i.e. ∆ > 0 (otherwise the probability of extinction would be equal to
1).
If the time between divisions was constant, the process described above would be a standard multi-type
branching process, widely used to model cell proliferation processes [4]. In that case, we could compute
a probability of extinction for the mutated stem cells equal to q = p0/p2 < 1 (since we assume that
∆ > 0).
In our model, the time between two divisions is not constant but follows an exponential distribution
with rate equal to α. Thus, the number N(t) of mutated cells and its potential expansion over time t
follows a stochastic process that can be described as a Continuous Time Markov Chain (CTMC). It
can also be written using the formalism of chemical reaction networks:

diff : HSC
αp0−→ ∅

asym : HSC
αp1−→ HSC

sym : HSC
αp2−→ 2HSC

(1)

With this process, there is a probability q = p0/p2 that the mutated clone naturally extincts. If it does
not disappear, the mutated clone will expand over time, until the number of mutated HSCs becomes
potentially very high. This type of model describing the expansion of a malignant clone is classical,
and not far from the one used for example by Watson et al. [12].
Throughout all the article, we focus on trajectories without extinction.

A.2 Description of the last hematopoietic stages

The stochastic process introduced in the previous paragraph describes the dynamics of mutated HSCs.
Yet, in practice, it is not possible to obtain information for true HSCs, but rather progenitor cells
(or mature cells in clinical routine). Then, to confront our model with experimental observations (see
§ D.1), we also have to describe the dynamics of the last stages of hematopoiesis. In our model, we
then introduce two additional compartments: one for progenitor cells and one for mature cells (see
Fig. A.1). At the level of stem cells, we consider the dynamics N(t) of the number of mutated HSCs
over time t > T0. But observations associated with progenitor cells or mature cells are not direct
measures of the number of mutated cells but rather proportions.

Considering that, on average, over a short time δt, αδtNWT wild-type HSCs generate the same
quantity of progenitor cells (since there is a balance between differentiated and symmetrical divisions
to ensure homeostatic conditions of these healthy cells) and αδtN mutated HSCs will give birth to
α(1−∆)δtN immature progenitor cells, we get for the clonal fraction (CF) of progenitor cells:

η(t) =
(1−∆)N(t)

(1−∆)N(t) +NWT
(2)

Actually, relation (2) is an approximation that would not be totally correct in the early stages of
the disease expansion, when the number of mutated HSCs is too low. When the patients are diagnosed,
however, the malignant clone has already expanded, and our relation becomes valid.

Progenitor cells then give rise to mature cells. In clinical routine, instead of measuring a CF, that
is, a proportion of mutated cells, we measure a variant allele frequency (VAF), that is, a proportion
of mutated alleles. In this study, since we only consider heterozygous mutated cells, the CF is twice
the percentage of the VAF. To note that the term CF is generally associated with progenitor cells
when the term VAF will always refers - in our study - to a VAF measure in peripheral blood. The
VAF measure is not a good proxy for the CF among progenitors since JAK2V 617F but also, to a lesser
extent, CALRm progenitor and precursor cells proliferate more than WT cells during the latest stages
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Figure A.1: Schematic representation of our model. At the apex of the hematopoietic tree, we find
the HSCs that can self-renew. If N(t) represents the number of mutated HSCs and NWT the number

of WT HSCs, the CF among this compartment at time t would be equal to N(t)
N(t)+NWT

. Yet, HSCs can

not be observed. What can be measured is the CF among progenitor cells η(t). Our model parameters,
notably ∆, representing the balance between symmetric and differentiated divisions for mutated HSCs,
can be inferred based on the measure of CF among progenitor cells. Then, progenitor cells expand
and differentiate to become mature cells that ultimately die. Mutated progenitor cells would also have
a proliferative advantage over WT cells, so one mutated progenitor cell will lead to more mature cells
compared to a WT progenitor cell. This proliferative advantage at the level of committed cells is
described by parameter km. In clinical routine, the VAF among mature cells is measured.

of hematopoiesis. Extending eq. (2), the VAF in peripheral blood at time t is equal to:

V AF (t) = 0.5
(1−∆)kmN(t)

(1−∆)kmN(t) +NWT
(3)

where km models the proliferative advantage of mutated cells, from progenitors to mature cells, com-
pared to WT cells. This parameter was introduced and estimated by Mosca et al. [8], and its value
was estimated at around 7.5 for JAK2V 617F cells and 5.0 for CALRm.

A.3 Acquisition of the mutation

The stochastic process presented above starts with one mutated cell at time t = T0. The process
and dynamics of the acquisition of driver mutations are still a matter of debate, with different studies
leading to different conclusions in the case of the mutation JAK2V 617F and no study exists at all for
the mutation to the gene CALR. Williams et al. [14] reported cases in which the mutation JAK2V 617F

was acquired during fetal life. Van Egeren et al. [11] showed by reconstructing the lineage histories of
hematopoietic cells that the mutation might be acquired after birth and decades before disease onset.
Watson et al. [12] obtained similar results using another approach. Currently, there are no results
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available for CALRm patients.
Our inference method is proposed to study any kind of mutation, provided that some data are in
accordance with those presented here for JAK2V 617F and CALRm (see § D.1).

According to state of the art concerning the acquisition timing for the mutation JAK2V 617F , we
choose to consider two hypotheses. Either T0 is constant and equal to zero, or T0 > 0 is a random
acquisition time.
In the first case, we model the fact that the mutation would occur during fetal life. With the second
hypothesis, we study the possibility that the mutation occurs after birth, during the course of life,
assuming that T0 follows an exponential law E(λ−1) of rate 1/λ (i.e. E[T0] = λ > 0 is the mean
acquisition time of the mutation), this latter being an additional parameter to estimate.

A.4 Parameters and prior distributions

Table A.1 lists all model parameters with their associated values or prior distributions. Parameters
are not defined at an individual (patient) level but at the level of a population of patients (either
JAK2V 617F patients or CALRm). Heterogeneity between patients is thus assumed to result from
the stochasticity of the model. The posterior distributions we will estimate for each population also
account for this intra-population heterogeneity.

Parameter Value Prior Reference

NWT 105 - Lee-Six et al. [6]

α To estimate ∼


Gamma law

with mean value = 1/30 [days
−1

]
with coefficient of variation = 0.1

Mosca et al. [8]

(p0, p2) To estimate ∼

 U([0, 1]2)
0 ≤ p0 ≤ p2
p0 + p2 ≤ 1

-

p1 p1 = 1− p2 − p0 ∈ [0, 1] -

∆ ∆ = p2 − p0 ∆ ≥ 0 -

q q = p0/p2 q ≤ 1 -

λ To estimate λ ∼
{

0 w.p 0.5
U([0, 100]) [years] w.p 0.5

[14, 11]

km

{
7.5 for JAK2V 617F

5.0 for CALRm - Mosca et al. [8]

Table A.1: List of the model parameters. For each of them, we indicate their value, or how they are
related to each other, or ”To estimate”. In this latter case, we indicate the prior distribution they
follow. U indicates a uniform distribution. ”w.p” means ”with probability”.

In our model implementation, we consider p0 and p2 that can vary between 0 and 1, according to
some constraints. Yet, we prefer considering ∆ and q as our model parameters since they convey more
biological meaning.
For parameter α - which models the rate at which mutated HSCs are recruited to divide - we choose
a strong prior, so that α takes values around 1/30 [days−1] in a consistent manner with our previous
results (Mosca et al. [8]). Actually, we could also have set this parameter constant. We choose a
probability distribution defined on R∗+, here a gamma law (but other choices could have been possible),
with a coefficient of variation (COV) small enough only to study how slight variations of this parameter
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(around its mean) could potentially influence our results. Note that we also tested different COV and
ended up with similar results.
For parameter λ, we consider a priori a zero-inflated prior distribution, where the prior probability
that λ = 0 is set equal to 0.5, and otherwise λ is uniformly distributed over [0,100] [years]. λ = 0 might
be considered an abusive notation. Actually, if λ = 0, then we do not sample - for each patient of the
considered population - T0 ∼ E(λ−1), but rather consider that T0 = 0. That is, λ = 0 corresponds
to the hypothesis of mutation acquisition in the fetus while λ > 0 corresponds to the hypothesis of
a mutation acquisition over life. This problematic of parameter estimation with a prior zero-inflated
distribution is equivalent to a problematic of model selection, where our two models would be defined
as {T0 = 0} (acquisition in fetal life) and {T0 > 0} (acquisition over life). More details about the
actual implementation are given in § B.4.
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B Parameter Estimation

B.1 ABC-SMC Procedure

For the estimation of the model parameters, we consider a Bayesian framework.
Let D = (t̂i, η̂i)i∈{1,··· ,Np} be our Np observations (CF η̂i among progenitor cells at time t̂i for individual

i from one of the two considered patient populations: either JAK2V 617F or CALRm) and θ the random
parameter vector to estimate. Our goal is to estimate the posterior distribution of θ given the data D:

p[θ|D] ∝ p[D|θ] p[θ] (4)

Since it is infeasible to obtain an analytical expression of the likelihood with our model, we have to
use a likelihood-free estimation method. We will then approximate our posterior distribution using
an Approximate Bayesian Computation based on Sequential Monte Carlo (ABC-SMC) in which the
posterior distribution is obtained by iterative rejection sampling, with a decreasing sequence of toler-
ances [10, 1, 7]. This method is based on the simulation of the stochastic process and its comparison
to the data.
Our model was implemented using the programming language Julia (and available on GitLab1). The
ABC-SMC framework used to calibrate the model is available on GitLab at the following link:
https://gitlab-research.centralesupelec.fr/2017bentrioum/markovprocesses.jl.

All our estimations were computed using 2 000 particles. For each particle, we simulate as many
trajectories (that do not drive to extinction) as observations. Each trajectory j gives us the number of
mutated HSCs Nj(t) over time. Using equation (2), we get the trajectories ηj(t) of the clonal fractions
among immature progenitor cells. We assign each trajectory to one and only one observation (t̂i, η̂i)
using an optimal affectation procedure based on the Hungarian algorithm [9, 5], minimizing a quadratic
error between the trajectories and our observations (see § B.3). The final distance we compute is the
averaged L2-norm between all our trajectories and the observations.
We progress from one step to another by choosing as next tolerance the median computed over the
previous step.
Note that these computations are very heavy and were run on 250 processors in parallel on an HPC
cluster.
We stop the algorithm when the procedure does not progress to the next step in less than 6 hours, with
250 processors (see Fig. B.1). We then look at the evolution of the L2 distance (Fig. B.2) and verify
the algorithm’s convergence by looking at the evolution of the posterior distribution of our parameters
over the last steps (Fig. B.3). Finally, we also run the ABC-SMC procedure a second time with another
random seed to ensure that we get the same results in both calculations. Both for the JAK2V 617F and
the CALRm datasets, 17 steps allows a proper convergence to the posterior distribution, as presented
in Fig. B.3. That is, in the CALRm case, we run our computations until we reach a final tolerance
equal to 0.0021, and in the JAK2V 617F case equal to 0.0038.
As we can see in figures B.1 and B.2, the computational cost to reach steps 16 and 17 is high when
the gain of the approximation error is low. As shown in Fig. B.3, the procedure could reasonably be
stopped at step 16 (both for CALRm and JAK2V 617F ).

1https://gitlab-research.centralesupelec.fr/2012hermangeg/mpn-development
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Figure B.1: Cumulated time (in hours) required for the ABC-SMC procedure to progress over the
steps (with 250 processors used in parallel) in the JAK2V 617F (blue) and CALRm (orange) cases.

Figure B.2: L2-norm (distance) over the number of steps used for calibrating the model in the
JAK2V 617F (blue) and CALRm (orange) cases. Points are the mean distances computed over the
2 000 particles. Error bars represent a 90% confidence interval. For clarity, we truncated the y-axis.
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Figure B.3: Posterior distributions of parameters ∆ (top) and λ (bottom) for the JAK2V 617F (left)
and CALRm (right) patient populations over the steps. x-axis begins at step 7 for clarity. Horizontal
lines indicate mean posterior values.

B.2 Deterministic approximation

Our stochastic model is well suited to describe the expansion of a malignant clone from a single mutated
cell. Indeed, when the number of mutated cells is low, stochastic effects play a crucial role (Fig. B.4).

When the number of cells becomes high, the stochastic formalism remains valid, but its simulation
becomes more challenging. Our model is described by a CTMC. With our framework, basically, a
trajectory is simulated by successively computing the time at which the next division of a mutated
HSC occurs (what we call one iteration). The more mutated cells we have, the shorter is the time
between two consecutive divisions. Then, when the malignant clone size becomes too important, it
takes a huge number of iterations for the simulation to progress. This numerical difficulty is illustrated
in figure B.5. We simulated two trajectories, setting for the parameter values α = 1/30, ∆ = 0.02
and p2 = 0.03, until they reach the number of 5 · 105 mutated HSCs. Knowing that we consider the
expansion of a malignant clone in a stem cell pool of 105 wild-type HSCs, 5 · 105 mutated HSCs would
be consistent with observations for CALRm patients where many measures of clonal fractions among
progenitor cells exceed 80%. The dynamics of the malignant clone expansion for these two trajectories
is shown on the left of Fig. B.5. Within the 30 first years, the expansion of the malignant clone is
barely perceptible and then the number of cells quickly increases within a short period of time.

On the right of Fig. B.5, we look at the number of iterations required to simulate these two
trajectories. A reasonable number of iterations is needed to simulate the expansion within the first
decades, when the number of mutated HSCs is not too high, but then it becomes almost impossible
to simulate the process until 58 years old, which is the median age in our cohort of CALRm patients
(Tab. D.2).
Thus, it would be impossible to base our model calibration (that requires the simulation of many
trajectories) purely on this stochastic process.
As observed in figure B.5 (left), when considering a huge number of cells, the stochastic effects are
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Figure B.4: Comparison between 3 simulations and the deterministic approximation when the process
starts with one mutated HSC (Nc = 1). The parameter values used for the simulations are α = 1/30,
∆ = 0.02 and p2 = 0.03.

Figure B.5: Simulation of two trajectories with α = 1/30, ∆ = 0.02 and p2 = 0.03. On the left,
increase of the number of mutated HSCs over time. On the right, number of iterations required so
that the trajectories progress over time. The black dash horizontal line represents the median age
among CALRm patients.

not visible and the clonal expansion looks exponential. Indeed, when a high number of cells Nc is
reached at time tc, then the dynamics of the clonal expansion at time t > tc will be very close to the
conditional mean of the stochastic process:

E[N(t)|N(tc) = Nc] = Nc exp (α∆(t− tc)) (5)

Of course, this deterministic approximation cannot replace our stochastic model, as illustrated in
Fig. B.4 and is actually not valid when Nc is too low.

Our objective is to determine a value for Nc such that the previous deterministic law (5) could be
used without making a too large approximation error and that would not depend on the parameter
values that are chosen. Such criterion is hard to obtain theoretically. Some authors have explored the
question [2], but, in practice, the choice of a relevant value for Nc would be a compromise between
an approximation error and a gain of computation time. That is why we choose to determine it
empirically.

First, we consider the same parameter values as used previously. We simulate several trajectories
starting with Nc mutated cells. We test 20 different values for Nc:

Nc ∈ {1, 2, 5, 10, 20, 30, · · · , 3 000, 4 000, 5 000}
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Figure B.6: Relative error between the deterministic approximation and realizations of our stochastic
process. The errors are computed based on the time required to reach Nup = 5 ·105 mutated HSCs. On
the left, the error is a function of the initial number of mutated HSCs Nc for a given set of parameter
values. The error bars represent standard deviations. The horizontal line represents a relative error
of 0.5%. On the right, Nc is set equal to 2 000 and we represent the distribution of the relative errors
for 175 trajectories whose parameters are randomly sampled from our prior distribution

and for each of them compute 100 simulations until Nup = 5 · 105 cells are reached (restarting the
simulations in case of extinction). Each trajectory will represent the clonal expansion from Nc to Nup
mutated HSCs over a period of time of many years. The time needed to reach this upper bound Nup
is a random variable. It can be compared to the deterministic time that it would take to reach this
level with the deterministic approach:

Tdet =
1

α∆
log

(
Nup
Nc

)
(6)

If Nc is chosen high enough, then the error (relative to the deterministic value) would be low. In
figure B.6 (left) we show that this error is decreasing with Nc. For Nc = 2 000, the mean relative error
goes below 0.005 and then decreases only slowly with higher values of Nc. Consequently, Nc = 2 000
seems a valid criterion: above this number of cells the deterministic law is a good approximation of
our process for the set of parameter values that we have chosen.
But the parameter values are not known in advance since our aim is to estimate them. We therefore
have to check if this criterion remains valid for other parameter values. For that purpose, we sample
parameter values according to our prior distribution and simulate trajectories from Nc = 2 000 to
Nup = 5 · 105 mutated cells and evaluate the relative error as previously. As presented on the right of
Fig. B.6, this criterion remains valid for different parameter values.
This choice is on the cautious side and might be sub-optimal, but it is sufficient to allow efficient
enough simulation of trajectories so that we could run our ABC-SMC procedure within a reasonable
time.

B.3 Optimal assignment

In the ABC-SMC procedure described in B.1, one simulation consists of sampling a parameter vector
and computing as many trajectories (without extinction) as observations. Then, we assign one trajec-
tory to one and only one observation and compute the quadratic error. Our distance is then the mean
quadratic error. If this error is below the tolerance threshold, the parameter vector is rejected.
If Np is our number of observations (and thus of trajectories), there would be Np! different possibilities
for assigning one trajectory to one observation. Choosing the assignment randomly would not be a
relevant choice. While theoretically convergent, it would highly depreciate the convergence speed of
the procedure since it will result in a high rate of rejections. To circumvent this difficulty, we choose
the optimal assignment such that the final mean quadratic error (computed over the Np observations)
is the lowest. Since computing all Np! possibilities would not be feasible, we use the Hungarian optimal
affectation algorithm [5, 9] whose time complexity is O

(
n3
)
.
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B.4 Model selection or zero-inflated distribution for parameter λ

The age at which the mutation to the gene JAK2 appears is subject to controversy, and there is a
lack of study concerning the mutation to the gene CALR. This lack of knowledge justifies the use of
mathematical models to test both hypotheses: either the mutation occurred during fetal life or was
acquired after birth. In our model, both scenarios differ only by the way T0 is modeled, either constant
and equal to zero for all patients in the first case or a random variable following an exponential law
with the additional parameter λ > 0 in the second case (see § A.3). The scenario of occurrence in fetal
life can thus be considered as the limiting case of acquisition following an exponential law E(λ−1) when
λ = 0. Then, discriminating between both hypotheses would be equivalent to evaluating when λ = 0
vs λ > 0. This implies allowing λ to be equal to zero with a non-zero probability, that is, choosing a
zero-inflated law as prior distribution. In practice, this is implemented by using a binary parameter
β ∈ {0, 1}, with prior probabilities P[β = 0] = P[β = 1] = 0.5, and a parameter l beeing a priori
uniformly distributed over [0, 100] (years). In our ABC-SMC procedure, when parameter β is equal
to zero, the mutation acquisition time T0 is set to zero for all patients. On the other hand, if β = 1,
we randomly sample as many acquisition times as there are individuals in the cohort, sampling them
according to an exponential law E(l−1) of parameter l > 0. Finally, the posterior distribution of λ is
retrieved from the samples of λ = β l.
This procedure is equivalent to considering two distinct models: if β = 0, we use the model of mutation
acquisition in fetal life, while if β = 1, we use the model of occurrence over life.

11



C Simulation-based study of the model

C.1 Inference from synthetic data

When we design mathematical models to describe biological phenomena and want to identify them
from experimental data, an important step is to first validate the practical identifiability of the model
[13] and the consistency of our estimation methodology. It can be done using synthetic datasets gen-
erated from the mathematical model, and thus for which the ground truth is known. Especially, an
important question is to know to which extent the number of available observations is sufficient to get
robust conclusions from the model estimation.
In this article, we study two different hypotheses (or models) - λ = 0 vs λ > 0 - that we want to
discriminate based on the observations of a limited number of patients. We also aim to interpret the
estimated parameters since they carry relevant biological information.

Ground truth Estimated parameters
Ni

∆ q λ T̄0 ∆̂ q̂ λ̂
15 0.030 0.850 20.0 19.2 0.027 0.904 17.6

[0.018, 0.037] [0.781, 0.956] [10.3, 27.3]

15 0.023 0.850 0.0 0.0 0.020 0.924 0.2
[0.016, 0.024] [0.815, 0.963] [0, 3.8]

14 0.139 0.554 0.0 0.0 0.146 0.604 0.0
[0.112, 0.184] [0.285, 0.767] [0, 0]

11 0.092 0.817 55.9 35.5 0.098 0.658 32.5
[0.056, 0.166] [0.223, 0.861] [17.4, 53]

15 0.119 0.336 38.2 19.4 0.127 0.612 21.3
[0.08, 0.193] [0.244, 0.817] [12.1, 33]

12 0.021 0.939 37.7 21.8 0.021 0.912 25.1
[0.014, 0.028] [0.784, 0.966] [13.4, 41.1]

14 0.197 0.546 96.6 40.1 0.058 0.786 41.3
[0.036, 0.085] [0.488, 0.913] [23.3, 65.1]

12 0.366 0.330 0.0 0.0 0.368 0.285 0.0
[0.284, 0.462] [0.045, 0.481] [0, 0]

15 0.134 0.664 0.0 0.0 0.142 0.618 0.0
[0.11, 0.179] [0.328, 0.767] [0, 0]

14 0.027 0.945 36.1 16.4 0.032 0.869 20.2
[0.022, 0.045] [0.672, 0.947] [11.5, 31.4]

12 0.251 0.427 0.0 0.0 0.247 0.382 0.0
[0.203, 0.294] [0.068, 0.61] [0, 0]

Table C.1: Results of the parameter estimation procedure using synthetic data. Ni observations are
generated from the model with known parameter values (ground truth). The model parameters are
then estimated using the ABC-SMC procedure (estimated parameters). We report the mean posterior
values of ∆, q, and λ parameters and 95% credibility intervals. We omit for clarity parameter α since
it does not much deviate from its prior. For the ground truth values, we also indicate T̄0, which is the
mean ”observed” acquisition time over the Ni simulated trajectories.

We generate different datasets. For each of them (index i), we sample a parameter vector θi (ground
truth) and simulate Ni trajectories from our model. Ni is chosen randomly between 11 (number of
JAK2V 617F patients we have in our real dataset) and 15 (number of CALRm patients). For each tra-
jectory (indexed by j ∈ {1, · · · , Ni}), we sample a value yj between 0 and 1. Our observation time and
observed clonal fraction (t̂j , η̂j) are determined such that η(t̂j) = yj = η̂j (with the function η given
in Equation (1)). We only consider trajectories without extinction and observation time t̂j ∈ [0, 100]
years. If one of these two conditions is not respected, we simulate a new trajectory until satisfying

both constraints. We define T̄0,i = 1
Ni

Ni∑
j=1

T0,i,j the mean ”observed” acquisition time over the Ni
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simulated trajectories.
Then, we run our parameter estimation procedure until convergence and compare our estimated pa-
rameters (mean posterior values and 95% credibility intervals) with the actual values used to generate
the data. Results of this study are presented in Tab. C.1.
Parameters ∆ and q are well estimated overall. We also correctly retrieved if data were generated
according to the hypothesis of mutation acquisition in fetal life (λ = 0, i.e, T0 = 0) or that of an
occurrence over life (λ > 0, i.e, T0 > 0). Yet, in the case of an acquisition after birth, λ is not very
well estimated. But if we consider, instead of λ, the mean ”observed” acquisition time T̄0 (let us recall

that T0 ∼ E(λ−1) such that E[T0] = λ) computed over the Ni simulated trajectories, we find that λ̂
estimates with accuracy T̄0. In our simulated dataset, the difference between T̄0 and λ is explained by
the fact that we simulate censored observation times2. Indeed, to have a synthetic dataset consistent
with real observations, we enforce that the observation time is below 100 years. Then, for large values
of λ, trajectories with late acquisition times are automatically excluded from our dataset, therefore
T̄0 < λ. Consequently, our estimation of λ might be potentially biased. We explore this point in more
detail in the next paragraph.

2Without censoring, we would have lim
Ni−→∞

T̄0 = λ
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C.2 Bias in the estimation of λ

Our observations are censored: individuals who would acquire the driver mutation at too old an
age would not appear in our cohort since they would die before exhibiting MPN symptoms and before
having too high CF.
In our model, λ is the mean mutation acquisition time, estimated from censored observations. Thus,
instead of truly estimating λ, we estimate the mean ”observed” acquisition time T̄0, as shown in the
previous paragraph. Intuitively, if the true value for λ is low, it can still be accurately estimated
since it will effectively correspond to the mean ”observed” acquisition time. If too high, the mean
”observed” acquisition time over the population T̄0 would be such that T̄0 < λ and parameter λ would
be underestimated. We quantify this effect of censoring on estimation with a simulation-based study.

For λ ∈ {1, 2, · · · , 100}, we repeat for i ∈ {1, · · · , 1000} the following procedure:
• We sample a parameter vector θi from our prior (except λ that is assigned to a given value)

• We simulate 15 trajectories (without extinction), j ∈ {1, 2, · · · , 15}

• We keep track of the 15 acquisition times T0,i,j

• For each trajectory j, we sample a value uniformly between 0 and 1 for the CF ηi,j , and compute
the associated observation time ti,j

• We censor the individuals (trajectories) whose observation time ti,j exceeds 100 years. We get
Ni ≤ 15 uncensored trajectories.

• We compute the mean ”observed” acquisition time T̄0,i (computed over the Ni uncensored tra-
jectories)

Then we compute the mean (over the 1,000 iterations) number of censored individuals (trajectories)
over the 15 simulated trajectories for each λ ∈ {1, 2, · · · , 100} (Fig. C.1). We observe that, for λ ≥ 25,
the censoring effect begins. The higher the true λ, the higher the number of censored individuals.

We also compute, for each λ ∈ {1, 2, · · · , 100}, the mean (over the 1,000 iterations) ”observed”
acquisition time T̄0 (calculated over the uncensored individuals) and the 5 and 95% quantiles (Fig. C.2).
For λ < 20 years, there is not much difference between λ and T̄0. Then, we progressively observe the
effect of censoring individuals (trajectories). With our parameter estimation procedure, we estimate
accurately T̄0 rather than the true λ (as shown in the previous section). In the JAK2V 617F case, where
we estimated pretty low values for λ (with a mean value of approximately 15 years), we are in the
range of values where we should estimate it accurately. For the CALRm case, for which we estimated a
mean value of λ about 25, we likely underestimated the true acquisition time. With our simple model
of censoring, estimating an acquisition time of 25 years (that would thus correspond to T̄0) might
approximately correspond to an actual acquisition time of about 28 years (corresponding to the true
value of λ).
This study has two primary limits: first we consider a censoring age of 100, when a more accurate
analysis would account for more realist demographic values. Second, the CF fraction is uniformly
sampled over [0,1], when a more thorough study would account for a distribution of these CF values
more in line with those found in reality. Yet, even with this simplistic model of censoring, we can find
some qualitative results, namely that we probably slightly underestimate the actual acquisition time
of the mutation CALRm for the general population. Then, our estimate for parameter λ should be
considered as the estimated mean acquisition time of the mutation for the individuals that will develop
an MPN, and they are actually the individuals that we focus on in our study.
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Figure C.1: Number of censored individuals (observation times higher than 100 years) for a simulated
cohort of 15 individuals, for different values of λ (mean value calculated on 1,000 simulations for each
value of λ).

Figure C.2: Mean ”observed” acquisition time T̄0 computed for uncensored individuals (y-axis) against
the true mean acquisition time λ (x-axis) of the mutation. Blue line indicates the mean value (for each
true λ, 1, 000 × 15 trajectories are simulated) and shaded area represents a 90% confidence interval.
Dashed black line materialises T̄0 = λ.
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C.3 Robustness of the estimation of ∆

In our model-based study on the development of MPN, we made the following assumptions:

• A constant value of ∆ over the lifetime

• A constant number of WT HSCs

We will illustrate in the following how violations of these assumptions might impact our estimation of
∆.
To simplify, we will consider the case of a mutation acquired in fetal life (that is, T0 = 0, or equiva-
lently, λ = 0) and study the dynamics of the clonal expansion described by the deterministic approxi-
mation (5), that is:

N(t) = exp(α∆t)

We set α = 1/30 [/days] and ∆ = 0.02 (the same values as used in § B.2)

C.3.1 Variable ∆ over the lifetime

An expanding malignant clone (with one initial driver mutation) can acquire an associated mutation
also impacting hematopoiesis over the lifetime, resulting in two subclones: one without the associated
mutation and one with it. We suppose that this latter subclone has a greater proliferative advantage.
Thus, if we only look at the driver mutation, that is, disregarding whether or not the associated
mutation is present, we might overestimate the proliferative advantage of the driver mutation since
our observation also includes the information about an associated mutation. We illustrate this point
in the following example.
We consider a malignant clone (with the initial driver mutation) that expands at a rate of α∆. We
consider that one mutated cell of this clone acquires an associated mutation at time t = 20 years,
resulting in two subclones: one with only the driver mutation that continues to expand at a rate α∆,
the second with the associated mutation that will develop at a growth rate α∆(1 + z) with z > 0.
Here, we choose z = 1 (Fig. C.3).

Figure C.3: Schematic representation of the clonal expansion of a malignant clone with one driver
mutation (blue cells), whose proliferative advantage is ∆. At some point, one mutated cells acquires
an associated mutation (purple cell), that confers to it an higher proliferative advantage ∆(1 + z).
Then, two subclones expand in parallel, with different growth rates.

Figure C.4 (top panel) shows the number of mutated cells according to whether or not the (sub)clone
presents the associated mutation. In the first years following the associated mutation, the subclone
having only the driver mutation remains the main one: the subclone with the associated mutation
would be barely perceptible during this period (Fig. C.4, middle panel). Then, there is a period
during which both subclones coexist, each with non-negligible CF. Eventually, the subclone with the
associated mutation will take over.
Without the information about the associated mutation, we would measure the CF of both subclones
together. From this observation, we would infer the value for ∆ (Fig. C.4 bottom panel). In this
illustrative example, when the associated mutation is barely perceptible, the estimated value for ∆
would be that of the initial clone. Then, when both subclones coexist, we slightly overestimate this
parameter. Yet, even when one subclone takes over, we are far from estimating the proliferative
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advantage of the subclone with the associated mutation.
This qualitative study shows that the proliferative advantage of the driver mutation (either JAK2V 617F

or CALRm) could be slightly overestimated because of patients having associated mutations (see § D.1).
However, the acquisition of mutations in ”WT” cells (which should not be considered WT anymore)
could also compensate for the effect. We study this latter point in the next paragraph.
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Figure C.4: Dynamics of two subclones: the first one (blue line) having only the driver mutation (with
a proliferative advantage ∆ = 0.02), and the second one appeared at t = 20 years (vertical purple
dashed line) having an associated mutation which conferred to him a higher proliferative advantage
∆(1 + z) = 0.04. The top panel shows the clonal expansion (log number of HSCs) of each subclone
(blue and purple dashed lines) when the solid black line represents the number of both mutated
cells (that is, mutated cells with the driver mutation, whether or not they also have the associated
mutations). When, experimentally, we only search for the driver mutation, it corresponds to having
the information for the black line (at a given time). The middle panel represents the CF that would
be measured among progenitor cells. The bottom panel’s black curve indicates what would be the
theoretical estimated value of ∆ when there are two subclones but that we only assume a clonal
expansion of one clone. The objective would be to accurately estimate the proliferative advantage of
the driver mutation (∆ = 0.02, blue line). Still, because of the acquisition of an associated mutation,
the value of ∆ might be overestimated.
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C.3.2 A variable number of WT HSCs during life

Our model assumes a constant number of WT HSCs equal to 100,000 [6]. Yet, the number of WT
HSCs is not necessarily constant over the lifetime. WT cells can also acquire mutations in the TET2
or DNMT3A genes, for example, so that they would not be really WT anymore. So, to be more precise,
we should say that we study the expansion of a malignant clone with JAK2V 617F or CALRm driver
mutations parallel to HSCs that do not have this mutation. In our model, we assume this latter pool
to be of constant size when it might actually also expand because of mutation acquisitions.
To illustrate this point, we consider a clonal expansion as described in previous paragraph; that is,
we set ∆ = 0.02. Then, we consider that the number of WT HSCs (we continue to define them a
bit abusively as WT; it would be more precise to consider them as not JAK2V 617F or not CALRm)
increases, from an initial number of NWT=100,000, at a rate α∆x with x < 1. We illustrate this
dynamics in Fig. C.5 (top panel) with different values for x: 0.0 (as in the main model), 0.05, 0.1, and
0.2.
The expansion of the WT HSC pool will result in a reduced CF among progenitor cells η̃, compared
to the situation with a constant number of HSC (η, given by eq. (2), when x = 0), as illustrated in
Fig. C.5 (middle panel):

η̃(t) =
1−∆

1−∆ +NWT exp(α∆(x− 1)t)
< η(t)

Then, if the previous equation describes the actual dynamics but we still model the WT HSC pool
as being of constant size, we would estimate a reduced value ∆̃ ≈ ∆(1− x), as illustrated in Fig. C.5
(bottom panel). If the malignant clone of interest has a much higher proliferative advantage than the
ones for the mutations that occurred in WT cells (i.e, x � 1), we would only slightly underestimate
the value ∆ of the mutation.

The number of WT HSCs could also vary because of other factors, such as ageing. Lee-Six et
al. inferred, based on phylodynamics methods and the data of a 59 years old healthy individual, the
evolution of the HSC population size over life [6]. We report their findings (mean value) in Fig. C.6
(top panel) and now study how our estimation of ∆ would be impacted if, instead of considering that
log(NWT (t)) linearly increases over life, we consider the same evolution for NWT (t) as the one reported
by Lee-Six et al. [6]. Results of this study are displayed in Fig. C.6 (bottom panel). Above 30 years,
when the presence of mutated cells becomes perceptible in our illustrative example, sometimes we
overestimate, sometimes we underestimate the true proliferative advantage ∆ = 0.02, depending on
the evolution of the WT HSC pool size.

As a conclusion of this qualitative study, based only on limited examples, we see how more complex
models that account for the acquisition of associated mutations in the malignant clone, acquisition of
mutations in WT HSCs, or evolution of the WT HSC pool size over life, can impact our estimations of
the proliferative advantage ∆ of the diver mutation of interest (either JAK2V 617F or CALRm). When
the acquisition of associated mutations in a patient might result in overestimating ∆, the increasing
size of the WT HSC pool will have the reverse effect. If both occur, they might compensate in some
ways. We should then consider that our estimation of parameter ∆ also accounts for various effects
over a lifetime that are impossible to enumerate in detail, even less quantify.
Our results remain therefore valid as long as these effects do not predominate over the expansion of the
mutated clone, and that they would have the same order of magnitude for patients having the mutation
JAK2V 617F and those having the mutation CALRm (such that we could compare both populations).
Note that, to respect this assumption, we excluded patients with homozygous mutated cells. Indeed,
we could not reasonably assume that homozygous subclones have the same proliferative advantage
than the heterozygous ones.
We should also highlight that parameter ∆ is estimated at a population level, not for a given patient.
When looking at the mutations in the population of JAK2V 617F or CALRm patients, only some
of them were found with associated mutations (note that patients with Essential Thrombocythemia
display very few associated mutations); patients with more than one driver mutation might not bias
our estimations to a too large extent.
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Figure C.5: Dynamics of the clonal expansion of a malignant clone when WT HSCs also expand. The
top panel displays the increasing log-number of mutated HSCs (blue line) and the log-number of WT
HSCs for different x-values (black lines). x = 0 corresponds to our model, with NWT being constant.
To these dynamics in the HSC pool correspond evolutions of the clonal fraction (CF) among progenitor
cells, as displayed in the middle panel. An expansion of the WT HSC pool will result in reduced values
for the CF of mutated cells, and, thus, underestimating the proliferative advantage ∆ of the driver
mutation. The bottom panel shows what would be the estimation of ∆ (dotted line) if assuming a
constant number of WT HSCs, when, in reality their pool would expand with x = 0.2. The horizontal
line corresponds to ∆(1−x). When mutated cells are perceptible, we will underestimate ∆ by a factor
(1− x).
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Figure C.6: The top panel presents the dynamics of the clonal expansion of a malignant clone (blue
line) parallel to WT HSCs whose number vary over life according to Lee-Six et al. [6] (black line). y-axis
are in a log-scale. The middle panel shows the evolution of the corresponding CF among progenitor
cells (solid line) compared to the one that would be obtained from our model, assuming a constant
number of WT HSCs equal to 100,000 (dashed line). The bottom panel shows what would be the
estimation of ∆ (solid line) if assuming a constant number of WT HSCs, when, in reality their pool
expands according to the dynamics reported in [6].

21



D Estimations based on real data

D.1 Data

To estimate our model parameters, we use data from 15 CALRm [3] and 11 JAK2V 617F (from Mosca
et al. [8]) recently diagnosed MPN patients that have no homozygous mutated HSCs. Note that we
conduct two separate model calibrations, first for JAK2V 617F patients, then for CALRm ones. The
clonal architectures of the hematopoietic progenitor and stem cells were measured before patients
start a therapy. The extraction and purification of highly immature hematopoietic stem cells is very
challenging, and it is infeasible to obtain information for true HSCs. Thus, the information we will
consider in most cases - and when available - is the clonal fraction (CF, that is the fraction of mutated
cells) of HSC-enriched progenitor cells (CD90+CD38−CD34+). Let (t̂i, η̂i) denote our observations
where η̂i is the CF of immature progenitor cells of patient i measured at age t̂i.
The observed CF η̂i among immature progenitor cells is therefore an indirect measure of the number
of mutated HSCs. We consider it as a realization of the stochastic process η(t) at time t̂i (see eq. (2)).

Tables D.1 and D.2 list the patients whose observations are used in this article. The CF corresponds
to the measured heterozygous Clonal Fraction (in percentage) among the corresponding progenitor
compartment. For CALRm patients, we also indicate the mutation type (T1 or T2), corresponding to
the 2 most frequent variants in CALRm patients. We also give the information about other mutations
found associated in the same or different HSCs. The information is obtained from VAF measures in
mature cells; we cannot know whether the other mutations are present in subclones having the driver
mutation (CALRm or JAK2V 617F ), or not.
To verify JAK2V 617F was not a germinal mutation, we purified and analyzed the JAK2V 617F VAF in
T lymphocytes from 8 out of 11 patients available (that is, all JAK2V 617F patients except #3, #5,
and #11). We did not detect the JAK2V 617F mutation in those cells showing that they do not belong
to the clone and that the mutation is acquired and not germline.
We only consider patients’ observations before they started a therapy under IFNα. Furthermore, we
do not consider patients with homozygous subclones, except for patients P4 and P28 that had respec-
tively homozygous CF of 2% and 1.7%. Since these values were very low, we made the assumption
that the homozygous mutated cells had a behaviour similar to the heterozygous ones and thus the CF
considered in the table is the sum of the CF for homozygous and heterozygous cells.

The CF among progenitor cells were measured based on the surface markers CD34, CD38 and CD90
and cells were sorted according to the following phenotypes: CD34+CD38+, CD34+CD38−CD90− and
CD34+CD38−CD90+. Briefly, different progenitor cells were isolated from the other cells, purified and
sorted at one progenitor per well in 96-well plates. Each progenitor gave a progeny of cells (colony)
after 10 to 15 days of culture. The genotyping of each colony by Taqman allelic discrimination qPCR
enabled to retrospectively know the genotype of each progenitor (more details previously reported by
Mosca et al. [8] and El-Khoury et al. [3]).
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ID ID0 Age CF [%] Progenitor compartment Other mutations Disease
1 P2 34 35 CD34+CD38- None PV
2 P4 58 70.5 CD34+CD38-CD90+ TET2fS1906Rfs (25%) PV

3 - 39 5 CD34+CD38-CD90+
TET2 Y1679Pfs* (45%)
DNMT3A N727D (20%)

ET

4 P11 51 50 CD34+CD38- SUZ12 Ala33Val (61%) PV
5 P14 35 5 CD34+CD38+CD90- None ET
6 - 57 14.5 CD34+CD38-CD90+ None PV
7 P20 45 2 CD34+CD38- None PV
8 P22 53 19 CD34+CD38-CD90+ None PV
9 - 29 17 CD34+CD38-CD90+ None ET
10 - 61 32 CD34+CD38-CD90+ None ET
11 P28 51 13 CD34+CD38- None PV

Table D.1: Observations for JAK2V 617F patients (from Mosca et al. [8]). Age is in years. ID0 refers
to the label used in [8]. If ID0 = ”-”, then the patient’s data is used for the first time in our article.
The information about other mutations - associated in the same or different HSCs than those carrying
the driver mutation - is obtained from measures in mature cells. The percentage refers to a VAF
measure. The last column indicates the disease of the patient. ET for Essential Thrombocythemia;
PV for Polycythemia Vera.

ID ID0 Type Age CF [%] Progenitor compartment Other mutations Disease
1 P166 1 48 30.4 CD34+CD38-CD90+ None ET
2 P46 1 58 100 CD34+CD38-CD90+ None ET
3 P30 1 70 91.8 CD34+CD38-CD90+ None ET
4 P48 1 53 68.2 CD34+CD38- TP53 V143M (7%) ET
5 P90 1 58 7.7 CD34+CD38-CD90+ None ET
6 P169 1 46 100 CD34+CD38-CD90+ None ET

7 P38 1 66 100 CD34+CD38-CD90+
ASXL1 G658* (6%)
ASXL1 E635Rfs (40%)
EZH2 R690H (27%)

PMF

8 P157 1 44 50 CD34+CD38-CD90+
SF3B1 K666N (28%)
JAK2V617F (2%)

PMF

9 P28 2 53 99.7 CD34+CD38-CD90+ None ET
10 P54 2 49 100 CD34+CD38-CD90+ None ET
11 P103 2 60 100 CD34+CD38-CD90+ None ET
12 P53 2 69 24 CD34+CD38-CD90+ DNMT3A L901R (22%) ET
13 P187 2 86 79 CD34+CD38-CD90+ ASXL1 L775fs* (2%) PMF
14 P170 2 70 94 CD34+CD38-CD90+ None ET
15 P52 2 44 5 CD34+CD38-CD90+ None ET

Table D.2: Observations for CALRm patients [3]. Age is in years. ID0 refers to the label used in [3].
We indicate whether the CALRm mutation is type 1 or 2. The information about other mutations -
associated in the same or different HSCs than those carrying the driver mutation - is obtained from
measures in mature cells. The percentage refers to a VAF measure. The last column indicates the
disease of the patient. ET for Essential Thrombocythemia; PMF for Primary Myelofibrosis.
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D.2 Posterior distributions for the real data

We run our ABC-SMC procedure until convergence (see § B.1) and get the parameter posterior dis-
tributions for the JAK2V 617F patient population (Fig. D.2) and the CALRm one (Fig. D.3).

A key parameter of our model is ∆ = p2 − p0. It gives an indication on how important is the
unbalance between symmetric and differentiated divisions that drives the clonal expansion of the
mutation. For CALRm patients, we estimate as mean value ∆ = 0.026 (see Fig. D.3, top left), and
for JAK2V 617F patients, a mean value equal to 0.017 (see Fig. D.2, top left). Our results indicate
that the mutation CALRm would give a higher proliferative advantage at the stem cell level than the
JAK2V 617F mutation, with notably P[∆ > 0.017 | DCALRm ] = 0.99.

The effect of the parameter ∆ can be seen on the trajectories presented in Fig. D.1 and compared
to the data. A higher value of ∆ is directly responsible for the steeper increase of the mutated CALRm

clonal fraction compared to JAK2V 617F .

Parameter λ refers to the mean acquisition time of the mutation in our model. Its prior distribution
was chosen zero-inflated so that we allowed λ = 0 with a non-zero probability, this latter situation
corresponding to the hypothesis of a mutation acquisition in fetal life.
In the case of the JAK2V 617F patient population, the posterior distribution of λ is still zero-inflated
with P[λ = 0.0 | DJAK2V 617F ] = 0.24 (Fig. D.2, bottom left), which is not the case anymore for the
CALRm population where, for this latter, λ > 0 almost surely (Fig. D.3, bottom left). The posterior
mean value of λ is equal to 15.2 years for JAK2V 617F and 24.7 for CALRm, suggesting a much later
acquisition of the mutation CALRm compared to JAK2V 617F , with notably P[λ < 15.2 | DCALRm ] =
0.13.

Parameter q = p0/p2 corresponds in our model to the probability of stochastic extinction of the
process. Its mean posterior value is estimated at 0.87 and 0.94 for CALRm and JAK2V 617F patient
populations, respectively, with P[q > 0.94 | DCALRm ] = 0.25 (see figures D.2 and D.3, top right).
These estimations would be in line with what could be expected: a mutation that would appear in
the population at a higher rate than the incidence rate of MPN. Note that, with our model, there are
two situations in which an individual who acquires the mutation does not develop an MPN: either the
malignant clone naturally disappears, or the mutation is acquired late in life so that the malignant
clone does not have time to expand given its estimated expansion rate.

Lastly, we present on the bottom right of figures D.2 and D.3 the posterior distribution of parameter
α that models the division rate of HSCs. Its posterior distributions do not deviate from the prior for
the two populations.

Figure D.1: Confronting JAK2V 617F (left) or CALRm (right) patient observations (black points) to
50 trajectories simulated with the model and parameters sampled from the posterior distributions
(colored solid lines) and representing the evolution of the CF among progenitor cells with age.
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Figure D.2: Posterior distributions of ∆ = p2− p0 (top left), the extinction probability q = p0/p2 (top
right), α (bottom right) and λ (bottom left) for JAK2V 617F patients.

Figure D.3: Posterior distributions of ∆ = p2− p0 (top left), the extinction probability q = p0/p2 (top
right), α (bottom right) and λ (bottom left) for CALRm patients.
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D.3 Leave-one-out analysis

To further assess the quality of the model fits, we proceed to a leave-one-out analysis. For each
patient population (either JAK2V 617F or CALRm) of size Np, we conduct Np model calibrations
i ∈ {1, · · · , Np} in which individual i is removed. We then evaluate the capacity of the model (cali-
brated from the Np − 1 observations) to generalize its results to an unseen individual. In particular,
we focus on the ability to predict the time at which the clonal fraction of a given individual could
be reached. It is the relevant information that we need to estimate accurately for our early screening
methodology to be valid.

More precisely, for a given patient population, the whole dataset is denoted by D. For a given individ-
ual i, with observations (t̂i, η̂i), the dataset without them is denoted as D−i. The model is calibrated
based on D−i. We estimate the posterior distribution of the parameter vector θ: p[θ|D−i].
In particular, we can analyze how p[∆|D−i] deviates from p[∆|D] for each patient i, and according to
whether or not they present other mutations (Fig. D.4).
This analysis does not reveal that including a patient with other mutations (than that of interest)
would impact the estimations of the model parameters.

Then, for the given CF η̂i, we can estimate p[ti|D−i, η̂i], where ti is the time at which η̂i should
be reached, that is, η(ti) = η̂i. We numerically estimate the previous quantity p[ti|D−i, η̂i] by simulat-
ing 2,000 trajectories from our model with the parameter vector sampled from the posterior p[θ|D−i].
We confront p[ti|D−i, η̂i] to the true observation time t̂i (Fig. D.5).

To evaluate the accuracy of the prediction, we subdivide the period [0, 100] years into twenty 5-years
intervals:

I1 = [0, 5], I2 = [5, 10], · · · , I19 = [90, 95], I20 = [95, 100]

We denote by Îi the 5-year interval that contains the observation time: t̂i ∈ Îi. We compute:

P[t̂i ∈ Îi|D−i, η̂i] (7)

We call the previous quantity ”score” and compare it to the score that would have been obtained ”by
chance” (that is, with a uniform sampling), whose value is equal to 1/20 = 0.05 (Fig. D.6).
The higher the score, the more accurate the prediction. For JAK2V 617F , only two over 11 individuals
(18%) have a score lower than expected ”by chance”. For the others, and especially #2, #3, #4, #5
and #8, we predict quite accurately the period when their CF should be reached (with higher prob-
abilities). We also get good results for CALRm patients, with, however, two of them (13%) having a
lower score than expected ”by chance”, and three of them (20%) a score approximately equal to 0.05.
Note that, because of the stochasticity of our model, we should not expect to have only excellent scores
since the posterior distributions represented in Fig. D.5 are intended to represent variability over a
population of patients.
The results of this study increases the confidence about the conclusions we drew from our early screen-
ing method.
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Figure D.4: Posterior distribution p[∆|D−i] of parameter ∆ when removing patient i (x-axis) of the
JAK2V 617F (left) or CALRm (right) patient populations. The right (gray) distribution represents the
posterior distribution computed without excluding any individual. The horizontal black lines indicate
mean posterior values. Individual with additional mutations are represented in dark.

Figure D.5: Posterior distributions of the time ti (y-axis) at which the observed CF η̂i of patient i
(x-axis) might be reached: p[ti|D−i, η̂i] for JAK2V 617F (left) or CALRm (right) patient populations.
Black points indicate p[ti = t̂i|D−i, η̂i]

Figure D.6: Score - given by eq. (7) - for JAK2V 617F (left) or CALRm (right) patients. We compare
them to the score that might be expected by chance (equal to 0.05). High scores indicate that the time
t̂i at which the CF η̂i of patient i is measured is near what would be expected with highest probability
by the model (calibrated without patient i).
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E Comparison with other studies for the JAK2V 617F mutation

To further assess the validity of our model, we verify that our estimations in the case of the JAK2V 617F

mutation are consistent with those reported by others [11, 14, 12]. First, we focus on our estimates
for the mean acquisition time λ, then for the proliferative advantage ∆.

E.1 Acquisition time

Van Egeren et al. [11] and Williams et al. [14] inferred, from the construction of phylogenetic trees,
the individual acquisition time of the mutation JAK2V 617F for several patients while we infer a mean
acquisition time at the population level. We will confront our results with theirs. More precisely, Van
Egeren et al. and Williams et al. estimate a period in which the mutation should have occurred.

Figure E.1: Data from Williams et al. [14] (individuals whose ID begin with ”PD”) and from Van
Egeren et al. [11] (Patients ET 1 and ET 2). We indicate the lower and upper estimates for the
acquisition time, as reported in the corresponding articles. Black points indicate mean estimates (the
mean value computed over the 12 individuals is equal to 14 years). Age values during fetal life (between
0 and 36 weeks post-conception) are set to T0 = 0.

We report below their findings (Fig. E.1):

• PD7271: between 6.9 weeks (post conception) and 1.4 years

• PD5163: between 3.1 weeks (post conception) and 8.5 years

• PD5117: between 2.9 weeks (post conception) and 10.8 years

• PD5182: between 6.4 weeks and 32.8 weeks (post conception)

• PD5179: between 0 and 19.7 years

• PD6629: between 13.5 and 29 years

• PD5847: between 0 and 25.6 years

• PD9478: between 0 and 9.3 years
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• PD6646: between 29 and 65.2 years

• PD4781: between 0 and 66.8 years

• ET1: at age 9 ± 2

• ET2: at age 19 ± 3

We denote this validation dataset by D′. For each individual i, we have a lower and upper bound for
the true acquisition time T0,i ∈ [T̂inf,i, T̂sup,i]. Note that Williams et al. also reported acquisition ages
in weeks post-conception, that is, they estimated an age of acquisition during fetal life. In our study,
the whole period of fetal live is modeled as T0 = 0. This is also why we have to authorize that λ = 0
(equivalent to T0 = 0) with a non-zero probability.

As a first step, if we consider that the acquisition time for each individual is T̂0,i = 0.5 ·(T̂sup,i− T̂inf,i),
a rough estimation for the mean acquisition time λ̂ based on their dataset D′ would be

λ̂ =
1

12

12∑
i=1

T̂0,i = 14 years

comparable with our findings (a mean value for λ estimated to 15.2 years).

Then, we propose a second approach that accounts for the uncertainty of the original dataset (that is,
the lower and upper bounds). Our method here is based on two assumptions. First, we assume that
T0,i (for individual i) is a random variable that can be equal to 0 with probability b or otherwise (with
probability 1− b) is distributed over R+ following an exponential law of rate l−1. This assumption is
made to be in line with our model (see § B.4). In that case, we have λ = E[T0,i] = b× l.
Second, we assume that T0,i−Tinf,i|T0,i ∼ E(µ) and Tsup,i−T0,i|T0,i ∼ E(µ) (with µ the same in both
distributions). That is, we consider that the upper and lower bounds should be found ”near” the true
value of the acquisition time.
Under these two assumptions, we get the expression of the likelihood:

p[D′|l, b] =

12∏
i=1

p[(T̂inf,i, T̂sup,i)|l, b]
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with, for i ∈ {1, · · · , 12}:

p[(T̂inf,i, T̂sup,i)|l, b] =

∫
R

p[(T̂inf,i, T̂sup,i)|T0,i = t] · p[T0,i = t|l, b] dt

=

T̂sup,i∫
T̂inf,i

p[T̂inf,i|T0,i = t] · p[T̂sup,i|T0,i = t] · p[T0,i = t|l, b] dt

=

T̂sup,i∫
T̂inf,i

1

µ
exp(− 1

µ
(t− T̂inf,i))

1

µ
exp(− 1

µ
(T̂sup,i − t)) · p[T0,i = t|l, b] dt

=

T̂sup,i∫
T̂inf,i

1

µ2
exp(− 1

µ
(T̂sup,i − T̂inf,i)) · p[T0,i = t|l, b] dt

=
1

µ2
exp(− 1

µ
(T̂sup,i − T̂inf,i))

T̂sup,i∫
T̂inf,i

p[T0,i = t|l, b] dt

∝
T̂sup,i∫
T̂inf,i

p[T0,i = t|l, b] dt

= p[T0,i ∈ [T̂inf,i, T̂sup,i]|l, b]
= Fl,b(T̂sup,i)− Fl,b(T̂inf,i)

with Fl,b the cumulative density function of T0,i.

We get the profiled log-likelihood of both parameters, displayed in Fig. E.2. Profiled log-likelihood for
parameter b (and the same goes for l) is defined by:

Lb = max
l

log (p[D′|l, b])

Figure E.2: Profiled log-likelihood of parameters l (left) and b (right). The maximum likelihood

estimator (MLE) is (l̂, b̂) = (17.71, 0.529).

We estimate the posterior distributions of the two parameters using a standard Metropolis-Hastings
scheme (initialized at the MLE, 5 millions iterations, burn-out length of 2,000,000), with uniform prior
distributions for b over [0, 1] and l over [0,100]. Their posterior distributions are displayed in Fig. E.3.

Then, we can estimate the posterior distribution of the mean acquisition time, equal to b × l (see
Fig. E.4). The mean acquisition time (mean posterior value) is estimated to 15.4 (median value equal
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Figure E.3: Posterior distribution of parameters l (left) and b (right), given the validation dataset D′.

to 12.5, and with 90% credibility interval: [4.0, 37.6]). Thus, with this second approach, we retrieve
results that are consistent with ours.

Figure E.4: Posterior distribution of the mean acquisition time (equal to b × l) given the validation
dataset D′.

E.2 Fitness

Our model of the mutated HSC dynamics is not far from the one used by Watson et al. [12]. To
describe the proliferative advantage of mutated clones, they introduce a fitness effect s. We can derive
a relation between their parameter s and our parameter ∆. Indeed, according to Watson et al.:
”In a time interval dt a single HSC can divide symmetrically producing two terminally differentiated
cells [...] with probability D dt, divide symmetrically producing two stem cells with probability Bdt =
(D + s)dt, [...]” [12].
Thus, we derive the following relations αp2dt = (D + s)dt and αp0dt = D dt, that is:

s = α∆

Watson et al. estimated, for the fitness effect, s = 14.6 (% per year).
In our case, we estimate (mean posterior value) α∆ = 20.4 (% per year) with 95% credibility interval:
[14.2 , 28.6]. Compared to their results, we estimate a higher fitness effect of the mutated JAK2V 617F

clone. This difference can be explained by the fact that Watson et al. studied clonal hematopoiesis,
while we infer a proliferative advantage based on the observations from MPN patients.
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