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In this paper it is proposed to extend the result described in Khalil and Praly (2014) and the references therein, regarding the high-gain observer-based nonlinear control to the case of systems with diffusion sensor dynamic. Based on some usual hypotheses, we provide sufficient conditions involving the high-gain parameter and the length on the PDE sensor. In fact it is brought into light an explicit trade off between them: the larger the observer gain, the smaller the length of the PDE sensor needs to be. The stability analysis of the closed loop system is based on a Lyapunov functional.
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INTRODUCTION

The present paper deals with the design of output feedback control for a class of nonlinear cascade ODE-PDE systems. Throughout the past decades, the high-gain observers have been used extensively for the design of output feedback control of nonlinear systems, see [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and the references therein. An important advantage of using the high-gain observers is that they can recover the performances of state feedback control in the sense that, for instance, the trajectories of the system under output feedback approach those under state feedback as the observer gain increases.

Moreover, from the work [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF], it is well known that the separation principle holds not only because the observer gain is made high, but also because, by designing the feedback control as a globally bounded function, the state of the plant is protected from the peaking phenomenon [START_REF] Khalil | Nonlinear Systems[END_REF] when the high-gain observer estimates are used instead of the true states.

In fact, the design of output feedback control for cascade ODE-PDE systems has not been yet very much studied, one can cite for instance the work [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] for a linear ODE or the work [START_REF] Wu | Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics[END_REF] where a nonlinear ODE is considered. However in this later work, the nonlinear ODE is restrictive and the method, based on LMIs, does not provide explicit conditions regarding the length that the PDE must satisfy in order to ensure global exponential stability of the overall system.

In the present paper we propose to extend the design of high-gain observer-based output feedback control for nonlinear systems with sensors described by heat PDEs. More precisely, we will derive explicit sufficient conditions, involving both the high-gain and the length of the PDE, ensuring exponential convergence of the overall closed cascade ODE-PDE. It has also to be noticed that the observer designed here is more simple than those designed in [START_REF] Ahmed-Ali | Observer design for a class of nonlinear ODE-PDE cascade systems[END_REF] and Ahmed-Ali et al. (2019a) for the same cascade ODE-PDE systems which used backstepping technics. A sampled-data version of our algorithm is also presented with its convergence conditions. A conference version of the present work has been presented at [START_REF] Ahmed-Ali | High-gain observer-based output feedback control with sensor dynamic governed by parabolic pde[END_REF]. The main difference between the two versions is in the the fact that this version contains supplementary results by treating the sampled-data case.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix transposition, R n denotes the n-dimensional Euclidean space with vector norm |.|, I n is the n × n identity matrix, R n×m is the set of all n×m real matrices, and the notation P > 0, for P ∈ R n×n , means that P is symmetric and positive definite. In matrices, symmetric terms are denoted * ; λ min (P ) (resp.λ max (P )) denotes the smallest (resp. largest) eigenvalue. L 2 (0, D) is the Hilbert space of square integrable functions z :→ R with the corresponding norm

z L 2 = D 0 z 2 (x)dx. H k (0, D)
is the Sobolev space of functions z : [0, D] → R having k square integrable weak derivatives. Given a two-argument function u(x, t), then its partial derivatives are denoted u t = ∂u ∂t , u xx = ∂ 2 u ∂x 2 . u[t] and u x [t] refer to the functions defined on 0 ≤ x ≤ D by (u[t])(x) = u(x, t) and (u x [t])(x) = ∂u(x,t) ∂x . In this paper the Halany's type Inequalities, [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF] summarized in the following lemma will be used. Lemma 1. Let 0 < δ 1 < 2δ and let V : [t 0 -h, ∞) → [0, ∞) be an absolutely continuous function which satisfies 2α(t-t0) sup -h≤s≤0 V (s) where α is the unique positive solution of equation

V (t) ≤ -2δV (t) + δ 1 sup -h≤s≤0 V (t + s) Then V (t) ≤ e -
α = δ - δ 1 e 2αh 2 
2. PROBLEM STATEMENT Let us consider the following class of systems in the state space R n × L 2 (0, D).

             Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, v) u(D, t) = X 1 u x (0, t) = 0 u t = u xx , x ∈ [0, D] y(t) = u(0, t) (1) 
where v and y represent respectively the input and the output of the above system. Throughout the paper, we assume the following hypotheses: H1: The function f is continuous globally Lipschitz in both X and v with a Lipschitz constant K 0 . H2: : There exists a continuous globally Lipschitz function α(X), such that the following dynamical system Ẋi = X i+1 Ẋn = f (X, α(X))

is globally exponentially stable.

Using the converse Lyapunov Theorem [START_REF] Khalil | Nonlinear Systems[END_REF] we can say that there exists a function V 0 (X) > 0 and positive parameters c i , i = 1, . . . , 4 such that:

           c 1 |X| 2 ≤ V 0 (X) ≤ c 2 |X| 2 | ∂V0 ∂Xi | ≤ c 3 |X| n-1 i=1 ∂V0 ∂Xi X i+1 + ∂V0 ∂Xn f (X, α(X)) ≤ -c 4 |X| 2 (2)
for all X.

If we consider the changes of coordinates p(x, t) = u(x, t)-X 1 then the above system can be written as follows

             Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, v) p(D, t) = 0 p x (0, t) = 0 p t = p xx -X 2 , x ∈ [0, D] y(t) = p(0, t) + X 1 (3)

OUTPUT FEEDBACK DESIGN

Based on the above hypotheses, we propose the following high-gain observer-based output feedback control:

             Żi = Z i+1 -l i θ i (û(0, t) -y), i = 1, . . . , n -1 Żn = f (Z, v) -l n θ n (û(0, t) -y) v = α(Z) û(D, t) = Z 1 ûx (0, t) = 0 ût = ûxx -l 1 θ(û(0, t) -y) x ∈ [0, D] (4) The vector gains L = (l 1 , • • • , l n ) ∈ R n×1 is chosen such that the matrix (A -LC) is Hurwitz where A =           0 1 0 . . . . . . 0 0 0 0 1 0 . . . 0 0 0 0 0 1 0 . . . 0 . . . . . . . . . 0 1 0 . . . 0 0 . . . 0 0 1 0 0 0 . . . . . . 0 0 1 0 0 . . . 0 0 0 0           ∈ R n×2 and C = [1, 0, • • • , 0] ∈ R 1×n . Let us use the change of coordinates p(x, t) = û(x, t) -Z 1
then the observer (4) can be expressed as follows

             Żi = Z i+1 -l i θ i (û(0, t) -y), i = 1, . . . , n -1 Żn = f (Z, v) -l n θ n (û(0, t) -y) v = α(Z) p(D, t) = 0 px (0, t) = 0 pt = pxx -Z 2 x ∈ [0, D] (5) 
Remark 2. The existence and uniqueness of solutions of system (5) can be analyzed by using Theorem 2.1 of [START_REF] Karafyllis | Iss in different norms forel 1-d parabolic pdes with boundary disturbances. siam journal on control and optimization[END_REF]. As in Remark 4 of [START_REF] Ahmed-Ali | Sampled boundary observer for strict-feedback nonlinear ode systems with parabolic pde sensor[END_REF] where the considered system is very similar to the one considered here, we can say that for every p

[0] ∈ C 2 (0, D) with (p[0])(D) = (p[0]) (0) = 0, there exists an unique solution p ∈ ([0, D] × C 0 [0, ∞)) ∩ ([0, D] × C 1 (0, ∞)) with p[t] ∈ C 2 (0, D)
for all t ≥ 0. We can also use the same arguments for system (3) to say that for every p

[0] ∈ C 2 (0, D) with (p[0])(D) = (p[0]) (0) = 0, there exists an unique solution p ∈ ([0, D] × C 0 [0, ∞)) ∩ ([0, D] × C 1 (0, ∞)) with p[t] ∈ C 2 (0, D) for all t ≥ 0 and η ∈ (C 1 (0, ∞); R n × R n ). From this we can also claim that both u ∈ ([0, D] × C 0 [0, ∞)) ∩ ([0, D] × C 1 (0, ∞)), u[t] ∈ C 2 (0, D), û ∈ ([0, D] × C 0 [0, ∞)) ∩ ([0, D] × C 1 (0, ∞)) and û[t] ∈ C 2 (0, D).
Let us consider the dynamical error system e = Z -X and ũ = û -u, then for any x ∈ [0, D], we obtain

                 ėi = e i+1 -l i θ i ũ(0, t), i = 1, . . . , n -1 ėn = f (Z, α(Z)) -f (X, α(Z)) -l n θ n ũ(0, t) Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, α(Z)) ũ(D, t) = e 1 ũx (0, t) = 0 ũt = ũxx -l 1 θũ(0, t), x ∈ [0, D] (6) Now if we introduce the change of coordinate w(x, t) = ũ(x, t) -e 1 , then we have                  ėi = e i+1 -l i θ i e 1 -l i θ i w(0, t) i = 1, . . . , n -1 ėn = f (Z, α(Z)) -f (X, α(Z)) -l n θ n e 1 -l n θ n w(0, t) Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, α(Z)) w(D, t) = 0 w x (0, t) = 0. w t = w xx -e 2 , , x ∈ [0, D]
(7) By using the classical change of coordinates

ξ i = θ 1-i e i , we derive                    ξi = θξ i+1 -θl i ξ 1 -l i θw(0, t), i = 1, . . . , n -1 ξn = θ 1-n [f (Z, α(Z)) -f (X, α(Z))] -θl n ξ 1 -θl n w(0, t) Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, α(Z)) 'w(D, t) = 0 w x (0, t) = 0 w t = w xx -θξ 2
Let us now introduce the following augmented vector state η = [ξ, X] T , where ξ = (ξ 1 , . . . , ξ n ) T . Then the above system can be written as

     η = F 0 (η, w(0, t)) w(D, t) = 0 w x (0, t) = 0 w t = w xx -θξ 2 (8)
where F 0 (η, w(0, t)) is given by

       θξ i+1 -θl i ξ 1 -l i θw(0, t), i = 1, . . . , n -1 θ 1-n [f (∆ξ + X, α(Z)) -f (X, α(Z))] -θlnξ 1 -θlnw(0, t) X i+1 , i = 1, . . . , n -1 f (X, α(∆ξ + X))        .
where ∆ = diag(1, . . . , θ n-1 ). Notice that since w(D, t) = 0, then w(0, t) = -D 0 w x (x, t)dx.

Theorem 3. Consider the system (1). Then for all (X(0),

Z(0)) ∈ (R n × R n ) and (u[0], û[0]) ∈ (C 2 (0, D) × C 2 (0, D)) with (u[0])(D) = X 1 (0), (u[0]) (0) = 0, (û[0])(D) = Z 1 (0), (û[0]
) (0) = 0, there exist θ 0 and D (θ) such that ∀θ > θ 0 and ∀D ∈ (0, D (θ)) the following inequality holds:

|X| + |e| + D 0 ũ2 (x, t)dx ≤ M 1 e -σ 1 t
for some positive constant M 1 > 0 and σ 1 > 0 where M 1 depends on the initial conditions.

Proof. In order to prove the exponential stability of the system (8), we will divide the proof in three parts: for the infinite dimensional sub-system, for the finite dimensional one and finally for the overall error system.

Infinite dimensional sub-system

In this first part we will analyse the sub-system

w t = w xx -θξ 2 w(D, t) = 0 w x (0, t) = 0 (9) 
In order to do this, we consider the following functional :

W = 1 2 D 0 w 2 (x, t)dx + 1 2 D 0 w 2 x (x, t)dx
Then, the time derivative of W(t) along the trajectory of the system (5) is

Ẇ (t) = D 0 w(x, t)w t (x, t)dx + D 0 w x (x, t)w xt (x, t)dx = D 0 w(x, t)(w xx (x, t) -θξ 2 )dx + D 0 w x (x, t)w tx (x, t)dx
From the fact that w(D, t) = 0, then we have w t (D, t) = 0. From this and by using the integration by parts on [0, D], we can easily derive that

Ẇ = - D 0 w 2 x (x, t)dx -θ D 0 w(x, t)ξ 2 dx - D 0 w 2 xx (x, t)dx +θ D 0 w xx ξ 2 dx Using Young's inequality leads to Ẇ ≤ - D 0 w 2 x (x, t)dx - 1 2 D 0 w 2 xx (x, t)dx + 1 2 D 0 w 2 (x, t)dx + Dθ 2 |ξ 2 | 2
Using Wirtinger's inequality Fridman and Blighovsky (2012), we have

Ẇ ≤ -( π 2 4D 2 - 1 2 ) D 0 w 2 (x, t)dx - π 2 8D 2 D 0 w 2 x (x, t)dx + Dθ 2 |ξ 2 | 2 . Since |ξ 2 | ≤ |η|, then Ẇ ≤ -( π 2 4D 2 - 1 2 ) D 0 w 2 (x, t)dx - π 2 8D 2 D 0 w 2 x (x, t)dx + Dθ 2 |η| 2

Finite-dimensional system

Let us now analyse the unperturbed sub-system η = F 0 (η, 0).

By considering the following Lyapunov function,

V (η) = 1 θ 2(n-1) V 0 (X) + ξ T P ξ
where P is a positive definite symmetric matrix which satisfies P (A -LC) + (A -LC) T P = -I n then, we can derive the following inequalities satisfied by V :

   c 1 |η| 2 ≤ V (η) ≤ c 2 |η| 2 | ∂V ∂η | ≤ c 3 |η| where              c 1 = min c1 θ 2(n-1) , λ min (P ) c 2 = max c2 θ 2(n-1) , λ max (P ) c 3 = max c3 θ 2(n-1) , 2λ max (P )
with c 1 , c 2 and c 3 defined in (2). Now let us compute the derivative of V along the solution of the unperturbed system, we obtain, V = ∂V ∂η F 0 (η, 0).

After some computations as in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], we can easily derive the following inequality:

V ≤ - c 4 2θ 2(n-1) |X| 2 -θ -2λ max (P )K 0 - 2c 2 3 c 4 K 2 0 |ξ| 2 .
for some positive constant K 0 independent of θ, and c 4 defined in (2).

Choosing θ > θ 0 such that

θ 0 = max 2λ max (P )K 0 + 2c 2 3 c 4 K 2 0 + c 4 2 , 1 (10) we deduce that V ≤ -c 4 |η| 2 with c 4 = c 4 2θ 2(n-1) .
From this, we deduce that the unperturbed system is globally uniformly exponentially stable. Now let us compute the derivative V along the sub-system η = F 0 (η, w(0, t)), we obtain,

V = ∂V ∂η F 0 (η, w(0, t))
which can be rewritten as follows:

V = ∂V ∂η F 0 (η, 0) + ∂V ∂η (F 0 (η, w(0, t)) -F 0 (η, 0))
Using the above inequalities, we easily derive that

V ≤ -c 4 |η| 2 + | ∂V ∂η || (F 0 (η, w(0, t)) -F 0 (η, 0)) |
Using again Young's inequality, this leads to:

V ≤ -c 4 |η| 2 + β| ∂V ∂η | 2 + 1 β | (F 0 (η, w(0, t)) -F 0 (η, 0)) | 2
for β > 0.

On the other hand, we can easily see that, from the definition of F 0 ,

| (F 0 (η, w(0, t)) -F 0 (η, 0)) | ≤ θ|L||w(0, t)|
which also gives

| (F 0 (η, w(0, t)) -F 0 (η, 0)) | ≤ θ|L| D 0 |w x (x, t)|dx
Now using the inequality of Cauchy-Schwarz, we obtain

| (F 0 (η, w(0, t)) -F 0 (η, 0)) | 2 ≤ θ 2 |L| 2 D D 0 w 2 x (x, t)dx
and from this we derive that

V ≤ -(c 4 -βc 2 3 )|η| 2 + 1 β |θ 2 |L| 2 D D 0 w 2 x (x, t)dx

Stability of the overall error system

At this stage, we now consider the Lyapunov functionnal W 1 = W + V . Then from the two previous parts, its time derivative satisfies the following inequality

Ẇ1 ≤ -c 4 -βc 3 2 -Dθ 2 |η| 2 - π 2 4D 2 - 1 2 D 0 w 2 (x, t)dx - π 2 8D 2 - 1 β θ 2 |L| 2 D D 0 w 2 x (x, t)dx (11) 
For any > 0, we can also write :

Ẇ1 + 2 W 1 ≤ -c 4 -βc 3 2 -Dθ 2 -2 c 2 |η| 2 - π 2 4D 2 - 1 2 - D 0 w 2 (x, t)dx - π 2 8D 2 - 1 β θ 2 |L| 2 D - D 0 w 2 x (x, t)dx (12)
In order to ensure the exponential stability, it is sufficient to set → 0, and it is not difficult to see that we need to choose β sufficiently small so that c 4 -βc 3 2 > 0 and we have to choose D such that

D < D (θ) = min 1 θ 2 (c 4 -βc 3 2 ), π √ 2 , π 2 β 8θ 2 |L| 2 1/3 (13)
This ends the proof.

Remark:

The expression for D * (θ) shows that as θ increases, D * (θ) decreases. Hence there is a trade off between θ and D; the larger the observer gain θ, the smaller the length of the PDE sensor.

EXTENSION TO SAMPLED-DATA CASE

In this section, we propose an extension of the above result to the case where the output is available only at sampling instants t k :

0 = t 0 < t 1 < . . . , < t k < . . . , lim i→∞ t k = ∞ with t k+1 -t k ≤ h.
For this case, we propose the following high-gain observer-based output feedback control:

for t ∈ [t k , t k+1 ),              Żi = Z i+1 -l i θ i (û(0, t k ) -y t k ), i = 1, . . . , n -1 Żn = f (Z, v) -l n θ n (û(0, t k ) -y t k ) v = α(Z) û(D, t) = Z 1 ûx (0, t) = 0 ût = ûxx -l 1 θ(û(0, t k ) -y t k ) x ∈ [0, D]
(14) Using the same computations and change of coordinates as the continuous time case, we easily derive the following error system :

for t ∈ [t k , t k+1 )            ξi = θξ i+1 -θl i ξ 1 (t k ) -l i θw(0, t k ), i = 1, . . . , n -1 ξn = θ 1-n [f (Z, α(Z)) -f (X, α(Z))] -θl n ξ 1 (t k ) -θl n w(0, t k ) Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, α(Z))
and

w t = w xx -θξ 2 w(D, t) = 0 w x (0, t) = 0
Remark 4. The analysis of well posedness done in the above section (continuous-time case) remains valid for each interval [t k , t k+1 ). This allows us to also ensure the existence of solutions with the same properties than the continuous-time case.

Since w(D, t k ) = 0 then w(0, t k ) = -D 0 w x (x, t k )dx Then the above system can be obviously re-written as follows :

ξ = θ(A -LC)ξ -θLC(ξ(t k ) -ξ(t)) +bθ 1-n [f (∆ξ + X, α(Z)) -f (X, α(Z))] + θL D 0 wx(x, t k )dx, Ẋi = X i+1 , i = 1, . . . , n -1 Ẋn = f (X, α(Z)) wt = wxx -θξ 2 w(D, t) = 0 wx(0, t) = 0 ( 15 
)
Where b T = (0, 0, . . . , 0, 1) n . Now, in order to study the convergence of the above error system, we consider the following Lyapunov functional inspired from the work of [START_REF] Selivanov | Observer-based input-to-state stabilization of networked control systems[END_REF] :

W 2 = W 1 + W 3 W 3 = W h 2 e 2δh t t i e 2δ(s-t) | ξ(s)| 2 ds - π 2 4 W t t i |ξ(s) -ξ(t i )| 2 ds (16)
where δ and W are two positive constants which will be defined latter. By using generalized Wirtinger's inequality, we easily deduce that both W 3 is nonnegative and does not grow at the jumps occurring at instants t i [START_REF] Selivanov | Observer-based input-to-state stabilization of networked control systems[END_REF]. Moreover we have

Ẇ3 + 2δW 3 ≤ W h 2 e 2δh | ξ(t)| 2 - π 2 4 W |ξ(t) -ξ(t i )| 2 (17) 
Using Young's inequality, we have

| ξ(t)| 2 ≤ 4θ 2 [|A -LC| + K 0 ] 2 |ξ(t)| 2 + 4θ 2 |L| 2 |ξ(t) -ξ(t k )| 2 + 4θ 2 |L| 2 D D 0 w 2 x (x, t k )dx then Ẇ3 + 2δW 3 ≤ W h 2 e 2δh [|A -LC| + K 0 ] 2 |ξ(t)| 2 + W h 2 e 2δh 4θ 2 |L| 2 D D 0 w 2 x (x, t k )dx - π 2 4 W -W h 2 e 2δh 4θ 2 |L| 2 |ξ(t) -ξ(t i )| 2
Now, let us compute the time derivative of W 2 along systems (15), then after some simple computations, we deduce the following inequality

Ẇ2 ≤ -c 4 -δc 3 2 -Dθ 2 |η| 2 - π 2 4D 2 - 1 2 D 0 w 2 (x, t)dx - π 2 8D 2 D 0 w 2 x (x, t)dx + 2 δ θ 2 |L| 2 D D 0 w 2 x (x, t k )dx -2δW 3 + W h 2 e 2δh [|A -LC| + K 0 ] 2 |ξ(t)| 2 + W h 2 e 2δh 4θ 2 |L| 2 D D 0 w 2 x (x, t k )dx - π 2 4 W -W h 2 e 2δh 4θ 2 |L| 2 - 2 δ θ 2 |L| 2 |ξ(t) -ξ(t i )| 2 (18) 
which also gives

Ẇ2 + 2δW 2 ≤ -c 4 -δc 3 2 -Dθ 2 -W h 2 e 2δh [|A -LC| + K 0 ] 2 -2δc 2 |η| 2 - π 2 4D 2 - 1 2 -δ D 0 w 2 (x, t)dx - π 2 8D 2 -δ D 0 w 2 x (x, t)dx + 2 δ θ 2 |L| 2 D + W h 2 e 2δh 4θ 2 |L| 2 D D 0 w 2 x (x, t k )dx
Combining this, with the above conditions, we deduce that for all θ, satisfying conditions (10), ( 21), and if

               δ = 1 θ 2n , W = 4 π 2 δ|L| 2 + 2 δ θ 2 |L| 2 D < D * (θ) = min δ 2 δ |L| 2 θ 2 +δ|L| 2 , δ θ 2 , π 2 √ 2δ , π 2 1 δ+ 1 2 W h 2 e 2δh 4θ 2 ≤ δ (24)
then system (15) is exponentially convergent. It has to be noticed that since the function W h 2 e 2δh 4θ 2 is an increasing function then, ∀θ, there exists h(θ) such that ∀h ∈ (0, h(θ)) the inequality W h 2 e 2δh 4θ 2 ≤ δ holds. From this we can state the following Theorem : Theorem 5. Consider system (1). Then, there exist θ 1 , D (θ), h(θ) such that ∀θ > θ 1 , ∀D ∈ (0, D (θ)) and ∀h ∈ (0, h(θ)), the observation error system (15) converges exponentially to zero.

CONCLUSION

An extension of the design of high-gain observer-based output feedback control for nonlinear systems with sensors described by heat PDEs has been proposed by bringing into light explicitly the expected trade-off between the gain of the observer and the length of the PDE. Further works will be undertaken in the same vein by i) considering actuators PDEs and ii) by relaxing the global exponential assumption. This later extension will require careful analysis of the peaking phenomenon. On the other hand it's well known that a heat equation can be decoupled into a finite dimensional unstable part and an infinite dimensional stable one. We are currently investigating how we can use this nice property in order to design a new kind of high observers for the system considered here and other classes of systems [START_REF] Orlov | Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control[END_REF]. We will also investigate a sliding modes observer design for the above class of systems in presence of disturbances [START_REF] Dimassi | A sliding mode observer for a linear reactionconvectiondiffusion equation with disturbances[END_REF].