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Abstract
In this paper it is proposed to extend the result described in Khalil and Praly (2014) and
the references therein, regarding the high-gain observer-based nonlinear control to the case of
systems with diffusion sensor dynamic. Based on some usual hypotheses, we provide sufficient
conditions involving the high-gain parameter and the length on the PDE sensor. In fact it is
brought into light an explicit trade off between them: the larger the observer gain, the smaller
the length of the PDE sensor needs to be. The stability analysis of the closed loop system is
based on a Lyapunov functional.
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1. INTRODUCTION

The present paper deals with the design of output feedback
control for a class of nonlinear cascade ODE-PDE systems.
Throughout the past decades, the high-gain observers have
been used extensively for the design of output feedback
control of nonlinear systems, see Khalil and Praly (2014)
and the references therein. An important advantage of
using the high-gain observers is that they can recover
the performances of state feedback control in the sense
that, for instance, the trajectories of the system under
output feedback approach those under state feedback as
the observer gain increases.

Moreover, from the work Atassi and Khalil (1999), it is
well known that the separation principle holds not only
because the observer gain is made high, but also because,
by designing the feedback control as a globally bounded
function, the state of the plant is protected from the
peaking phenomenon Khalil (1996) when the high-gain
observer estimates are used instead of the true states.

In fact, the design of output feedback control for cascade
ODE-PDE systems has not been yet very much studied,
one can cite for instance the work Krstic (2009) for a linear
ODE or the work Wu (2013) where a nonlinear ODE is
considered. However in this later work, the nonlinear ODE
is restrictive and the method, based on LMIs, does not
provide explicit conditions regarding the length that the

PDE must satisfy in order to ensure global exponential
stability of the overall system.

In the present paper we propose to extend the design
of high-gain observer-based output feedback control for
nonlinear systems with sensors described by heat PDEs.
More precisely, we will derive explicit sufficient conditions,
involving both the high-gain and the length of the
PDE, ensuring exponential convergence of the overall
closed cascade ODE-PDE. It has also to be noticed that
the observer designed here is more simple than those
designed in Ahmed-Ali et al. (2015) and Ahmed-Ali
et al. (2019a) for the same cascade ODE-PDE systems
which used backstepping technics. A sampled-data version
of our algorithm is also presented with its convergence
conditions. A conference version of the present work has
been presented at Ahmed-Ali et al. (2020). The main
difference between the two versions is in the the fact that
this version contains supplementary results by treating the
sampled-data case.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, Rn denotes the n-dimensional Euclidean
space with vector norm |.|, In is the n×n identity matrix,
Rn×m is the set of all n×m real matrices, and the notation
P > 0, for P ∈ Rn×n, means that P is symmetric and
positive definite. In matrices, symmetric terms are denoted
∗; λmin(P ) (resp.λmax(P )) denotes the smallest (resp.



largest) eigenvalue. L2(0, D) is the Hilbert space of square
integrable functions z :→ R with the corresponding norm

‖z‖L2
=

√∫ D
0
z2(x)dx. Hk(0, D) is the Sobolev space of

functions z : [0, D] → R having k square integrable weak
derivatives. Given a two-argument function u(x, t), then its

partial derivatives are denoted ut = ∂u
∂t , uxx = ∂2u

∂x2 . u[t]
and ux[t] refer to the functions defined on 0 ≤ x ≤ D by

(u[t])(x) = u(x, t) and (ux[t])(x) = ∂u(x,t)
∂x . In this paper

the Halany’s type Inequalities, Fridman and Blighovsky
(2012) summarized in the following lemma will be used.

Lemma 1. Let 0 < δ1 < 2δ and let V : [t0−h,∞)→ [0,∞)
be an absolutely continuous function which satisfies

V̇ (t) ≤ −2δV (t) + δ1sup−h≤s≤0V (t+ s)

Then

V (t) ≤ e−2α(t−t0)sup−h≤s≤0V (s)

where α is the unique positive solution of equation

α = δ − δ1e
2αh

2

2. PROBLEM STATEMENT

Let us consider the following class of systems in the state
space Rn × L2(0, D).

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v)
u(D, t) = X1

ux(0, t) = 0
ut = uxx, x ∈ [0, D]
y(t) = u(0, t)

(1)

where v and y represent respectively the input and the
output of the above system. Throughout the paper, we
assume the following hypotheses:

H1: The function f is continuous globally Lipschitz in
both X and v with a Lipschitz constant K0.

H2: : There exists a continuous globally Lipschitz function
α(X), such that the following dynamical system{

Ẋi = Xi+1

Ẋn = f(X,α(X))

is globally exponentially stable.

Using the converse Lyapunov Theorem Khalil (1996) we
can say that there exists a function V0(X) > 0 and positive
parameters ci, i = 1, . . . , 4 such that:


c1|X|2 ≤ V0(X) ≤ c2|X|2

| ∂V0

∂Xi
| ≤ c3|X|∑n−1

i=1
∂V0

∂Xi
Xi+1 + ∂V0

∂Xn
f(X,α(X)) ≤ −c4|X|2

(2)

for all X.
If we consider the changes of coordinates p(x, t) = u(x, t)−
X1 then the above system can be written as follows



Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v)
p(D, t) = 0
px(0, t) = 0
pt = pxx −X2, x ∈ [0, D]
y(t) = p(0, t) +X1

(3)

3. OUTPUT FEEDBACK DESIGN

Based on the above hypotheses, we propose the following
high-gain observer-based output feedback control:

Żi = Zi+1 − liθi(û(0, t)− y), i = 1, . . . , n− 1

Żn = f(Z, v)− lnθn(û(0, t)− y)
v = α(Z)
û(D, t) = Z1

ûx(0, t) = 0
ût = ûxx − l1θ(û(0, t)− y) x ∈ [0, D]

(4)

The vector gains L = (l1, · · · , ln)> ∈ Rn×1 is chosen such
that the matrix (A− LC) is Hurwitz where

A =



0 1 0 . . . . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 0 . . . 0
...

...
... 0 1 0

...
0 0 . . . 0 0 1 0
0 0 . . . . . . 0 0 1
0 0 . . . 0 0 0 0


∈ Rn×2

and C = [1, 0, · · · , 0] ∈ R1×n. Let us use the change of
coordinates

p̂(x, t) = û(x, t)− Z1

then the observer (4) can be expressed as follows

Żi = Zi+1 − liθi(û(0, t)− y), i = 1, . . . , n− 1

Żn = f(Z, v)− lnθn(û(0, t)− y)
v = α(Z)
p̂(D, t) = 0
p̂x(0, t) = 0
p̂t = p̂xx − Z2 x ∈ [0, D]

(5)

Remark 2. The existence and uniqueness of solutions of
system (5) can be analyzed by using Theorem 2.1 of
Karafyllis and Krstic (2017). As in Remark 4 of Ahmed-Ali
et al. (2019b) where the considered system is very similar
to the one considered here, we can say that for every
p̂[0] ∈ C2(0, D) with (p̂[0])(D) = (p̂[0])′(0) = 0, there
exists an unique solution p̂ ∈ ([0, D]×C0[0,∞))∩ ([0, D]×
C1(0,∞)) with p̂[t] ∈ C2(0, D) for all t ≥ 0. We can also
use the same arguments for system (3) to say that for
every p[0] ∈ C2(0, D) with (p[0])(D) = (p[0])′(0) = 0,
there exists an unique solution p ∈ ([0, D] × C0[0,∞)) ∩
([0, D] × C1(0,∞)) with p[t] ∈ C2(0, D) for all t ≥ 0 and
η ∈ (C1(0,∞);Rn × Rn). From this we can also claim
that both u ∈ ([0, D] × C0[0,∞)) ∩ ([0, D] × C1(0,∞)),
u[t] ∈ C2(0, D), û ∈ ([0, D]×C0[0,∞))∩([0, D]×C1(0,∞))
and û[t] ∈ C2(0, D).

Let us consider the dynamical error system e = Z−X and
ũ = û− u, then for any x ∈ [0, D], we obtain





ėi = ei+1 − liθiũ(0, t), i = 1, . . . , n− 1
ėn = f(Z,α(Z))− f(X,α(Z))− lnθnũ(0, t)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))
ũ(D, t) = e1
ũx(0, t) = 0
ũt = ũxx − l1θũ(0, t), x ∈ [0, D]

(6)

Now if we introduce the change of coordinate

w(x, t) = ũ(x, t)− e1,
then we have

ėi = ei+1 − liθie1 − liθiw(0, t) i = 1, . . . , n− 1
ėn = f(Z,α(Z))− f(X,α(Z))− lnθne1 − lnθnw(0, t)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))
w(D, t) = 0
wx(0, t) = 0.
wt = wxx − e2, , x ∈ [0, D]

(7)
By using the classical change of coordinates ξi = θ1−iei,

we derive

ξ̇i = θξi+1 − θliξ1 − liθw(0, t), i = 1, . . . , n− 1

ξ̇n = θ1−n [f(Z,α(Z))− f(X,α(Z))]− θlnξ1 − θlnw(0, t)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))
‘w(D, t) = 0
wx(0, t) = 0
wt = wxx − θξ2

Let us now introduce the following augmented vector state

η = [ξ,X]T , where ξ = (ξ1, . . . , ξn)T .

Then the above system can be written as
η̇ = F0(η, w(0, t))
w(D, t) = 0
wx(0, t) = 0
wt = wxx − θξ2

(8)

where F0(η, w(0, t)) is given by
θξi+1 − θliξ1 − liθw(0, t), i = 1, . . . , n− 1

θ1−n [f(∆ξ +X,α(Z))− f(X,α(Z))]− θlnξ1 − θlnw(0, t)

Xi+1, i = 1, . . . , n− 1

f(X,α(∆ξ +X))

 .

where ∆ = diag(1, . . . , θn−1). Notice that since w(D, t) =

0, then w(0, t) = −
∫D
0
wx(x, t)dx.

Theorem 3. Consider the system (1). Then for all (X(0), Z(0)) ∈
(Rn × Rn) and (u[0], û[0]) ∈ (C2(0, D)× C2(0, D)) with (u[0])(D) =
X1(0), (u[0])′(0) = 0, (û[0])(D) = Z1(0), (û[0])′(0) = 0, there exist
θ0 and D?(θ) such that ∀θ > θ0 and ∀D ∈ (0, D?(θ)) the following
inequality holds:

|X|+ |e|+
∫ D

0

ũ2(x, t)dx ≤M1e
−σ1t

for some positive constant M1 > 0 and σ1 > 0 where M1 depends
on the initial conditions.

Proof. In order to prove the exponential stability of the
system (8), we will divide the proof in three parts: for the
infinite dimensional sub-system, for the finite dimensional
one and finally for the overall error system.

Infinite dimensional sub-system

In this first part we will analyse the sub-system

{
wt = wxx − θξ2
w(D, t) = 0
wx(0, t) = 0

(9)

In order to do this, we consider the following functional :

W =
1

2

∫ D

0

w2(x, t)dx+
1

2

∫ D

0

w2
x(x, t)dx

Then, the time derivative of W(t) along the trajectory of
the system (5) is

Ẇ (t) =

∫ D

0

w(x, t)wt(x, t)dx+

∫ D

0

wx(x, t)wxt(x, t)dx

=

∫ D

0

w(x, t)(wxx(x, t)− θξ2)dx

+

∫ D

0

wx(x, t)wtx(x, t)dx

From the fact that w(D, t) = 0, then we have wt(D, t) = 0.
From this and by using the integration by parts on [0, D],
we can easily derive that

Ẇ = −
∫ D

0

w2
x(x, t)dx− θ

∫ D

0

w(x, t)ξ2dx−
∫ D

0

w2
xx(x, t)dx

+θ

∫ D

0

wxxξ2dx

Using Young’s inequality leads to

Ẇ ≤−
∫ D

0

w2
x(x, t)dx− 1

2

∫ D

0

w2
xx(x, t)dx

+
1

2

∫ D

0

w2(x, t)dx+Dθ2|ξ2|2

Using Wirtinger’s inequality Fridman and Blighovsky
(2012), we have

Ẇ ≤−(
π2

4D2
− 1

2
)

∫ D

0

w2(x, t)dx

− π2

8D2

∫ D

0

w2
x(x, t)dx+Dθ2|ξ2|2.

Since |ξ2| ≤ |η|, then

Ẇ ≤−(
π2

4D2
− 1

2
)

∫ D

0

w2(x, t)dx

− π2

8D2

∫ D

0

w2
x(x, t)dx+Dθ2|η|2



Finite-dimensional system

Let us now analyse the unperturbed sub-system

η̇ = F0(η, 0).

By considering the following Lyapunov function,

V (η) =
1

θ2(n−1)
V0(X) + ξTPξ

where P is a positive definite symmetric matrix which
satisfies

P (A− LC) + (A− LC)TP = −In

then, we can derive the following inequalities satisfied by
V : 

c′1|η|2 ≤ V (η) ≤ c′2|η|2

|∂V∂η | ≤ c
′
3|η|

where 

c′1 = min
{

c1
θ2(n−1) , λmin(P )

}
c′2 = max

{
c2

θ2(n−1) , λmax(P )
}

c′3 = max
{

c3
θ2(n−1) , 2λmax(P )

}
with c1, c2 and c3 defined in (2).

Now let us compute the derivative of V along the solution
of the unperturbed system, we obtain,

V̇ =
∂V

∂η
F0(η, 0).

After some computations as in Khalil and Praly (2014),
we can easily derive the following inequality:

V̇ ≤ − c4
2θ2(n−1)

|X|2 −
[
θ − 2λmax(P )K0 −

2c23
c4
K2

0

]
|ξ|2.

for some positive constant K0 independent of θ, and c4
defined in (2).

Choosing θ > θ0 such that

θ0 = max

{
2λmax(P )K0 +

2c23
c4
K2

0 +
c4
2
, 1

}
(10)

we deduce that
V̇ ≤ −c′4|η|2

with
c′4 =

c4
2θ2(n−1)

.

From this, we deduce that the unperturbed system is
globally uniformly exponentially stable.

Now let us compute the derivative V̇ along the sub-system
η̇ = F0(η, w(0, t)), we obtain,

V̇ =
∂V

∂η
F0(η, w(0, t))

which can be rewritten as follows:

V̇ =
∂V

∂η
F0(η, 0) +

∂V

∂η
(F0(η, w(0, t))− F0(η, 0))

Using the above inequalities, we easily derive that

V̇ ≤ −c′4|η|2 + |∂V
∂η
|| (F0(η, w(0, t))− F0(η, 0)) |

Using again Young’s inequality, this leads to:

V̇ ≤ −c′4|η|2 + β|∂V
∂η
|2 +

1

β
| (F0(η, w(0, t))− F0(η, 0)) |2

for β > 0.

On the other hand, we can easily see that, from the
definition of F0,

| (F0(η, w(0, t))− F0(η, 0)) | ≤ θ|L||w(0, t)|

which also gives

| (F0(η, w(0, t))− F0(η, 0)) | ≤ θ|L|
∫ D

0

|wx(x, t)|dx

Now using the inequality of Cauchy-Schwarz, we obtain

| (F0(η, w(0, t))− F0(η, 0)) |2 ≤ θ2|L|2D
∫ D

0

w2
x(x, t)dx

and from this we derive that

V̇ ≤ −(c′4 − βc′23 )|η|2 +
1

β
|θ2|L|2D

∫ D

0

w2
x(x, t)dx

Stability of the overall error system

At this stage, we now consider the Lyapunov functionnal
W1 = W + V . Then from the two previous parts, its time
derivative satisfies the following inequality

Ẇ1 ≤ −
[
c′4 − βc

′
3
2 −Dθ2

]
|η|2 −

[
π2

4D2
−

1

2

]∫ D

0

w2(x, t)dx

−
[
π2

8D2
−

1

β
θ2|L|2D

]∫ D

0

w2
x(x, t)dx (11)

For any ε > 0, we can also write :

Ẇ1 + 2εW1 ≤ −
[
c′4 − βc

′
3
2 −Dθ2 − 2εc′2

]
|η|2

−
[
π2

4D2
−

1

2
− ε
]∫ D

0

w2(x, t)dx

−
[
π2

8D2
−

1

β
θ2|L|2D − ε

]∫ D

0

w2
x(x, t)dx (12)

In order to ensure the exponential stability, it is sufficient
to set ε → 0, and it is not difficult to see that we need to

choose β sufficiently small so that c′4 − βc′3
2
> 0 and we

have to choose D such that



D < D?(θ) = min

{
1

θ2
(c′4 − βc′3

2
),

π√
2
,

(
π2β

8θ2|L|2

)1/3
}

(13)

This ends the proof.

Remark: The expression for D∗(θ) shows that as θ
increases, D∗(θ) decreases. Hence there is a trade off
between θ and D; the larger the observer gain θ, the
smaller the length of the PDE sensor.

4. EXTENSION TO SAMPLED-DATA CASE

In this section, we propose an extension of the above result
to the case where the output is available only at sampling
instants tk:

0 = t0 < t1 < . . . , < tk < . . . , lim
i→∞

tk =∞

with tk+1− tk ≤ h. For this case, we propose the following
high-gain observer-based output feedback control:
for t ∈ [tk, tk+1),

Żi = Zi+1 − liθi(û(0, tk)− ytk), i = 1, . . . , n− 1

Żn = f(Z, v)− lnθn(û(0, tk)− ytk)
v = α(Z)
û(D, t) = Z1

ûx(0, t) = 0
ût = ûxx − l1θ(û(0, tk)− ytk) x ∈ [0, D]

(14)
Using the same computations and change of coordinates
as the continuous time case, we easily derive the following
error system :
for t ∈ [tk, tk+1)
ξ̇i = θξi+1 − θliξ1(tk)− liθw(0, tk), i = 1, . . . , n− 1

ξ̇n = θ1−n [f(Z,α(Z))− f(X,α(Z))]
−θlnξ1(tk)− θlnw(0, tk)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))

and{
wt = wxx − θξ2
w(D, t) = 0
wx(0, t) = 0

Remark 4. The analysis of well posedness done in the
above section (continuous-time case) remains valid for
each interval [tk, tk+1). This allows us to also ensure the
existence of solutions with the same properties than the
continuous-time case.

Since w(D, tk) = 0 then

w(0, tk) = −
∫ D

0

wx(x, tk)dx

Then the above system can be obviously re-written as
follows :

ξ̇ = θ(A− LC)ξ − θLC(ξ(tk)− ξ(t))
+bθ1−n [f(∆ξ +X,α(Z))− f(X,α(Z))] + θL

∫ D
0
wx(x, tk)dx,

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))
wt = wxx − θξ2
w(D, t) = 0
wx(0, t) = 0

(15)

Where bT = (0, 0, . . . , 0, 1)︸ ︷︷ ︸
n

. Now, in order to study the

convergence of the above error system, we consider the
following Lyapunov functional inspired from the work of
Selivanov and Fridman (2016) :

W2 = W1 +W3

W3 = Wh2e2δh
∫ t

ti

e2δ(s−t)|ξ̇(s)|2ds−
π2

4
W

∫ t

ti

|ξ(s)− ξ(ti)|2ds

(16)

where δ and W are two positive constants which will be
defined latter. By using generalized Wirtinger’s inequality,
we easily deduce that both W3 is nonnegative and does not
grow at the jumps occurring at instants ti Selivanov and
Fridman (2016). Moreover we have

Ẇ3 + 2δW3 ≤Wh2e2δh|ξ̇(t)|2 −
π2

4
W |ξ(t)− ξ(ti)|2 (17)

Using Young’s inequality, we have

|ξ̇(t)|2 ≤ 4θ2 [|A− LC|+K0]2 |ξ(t)|2

+ 4θ2|L|2|ξ(t)− ξ(tk)|2 + 4θ2|L|2D
∫ D

0

w2
x(x, tk)dx

then

Ẇ3 + 2δW3 ≤Wh2e2δh [|A− LC|+K0]2 |ξ(t)|2

+ Wh2e2δh4θ2|L|2D
∫ D

0

w2
x(x, tk)dx

−
[
π2

4
W −Wh2e2δh4θ2|L|2

]
|ξ(t)− ξ(ti)|2

Now, let us compute the time derivative of W2 along
systems (15), then after some simple computations, we
deduce the following inequality

Ẇ2 ≤ −
[
c′4 − δc

′
3
2 −Dθ2

]
|η|2 −

[
π2

4D2
−

1

2

]∫ D

0

w2(x, t)dx

−
π2

8D2

∫ D

0

w2
x(x, t)dx+

2

δ
θ2|L|2D

∫ D

0

w2
x(x, tk)dx− 2δW3

+ Wh2e2δh [|A− LC|+K0]2 |ξ(t)|2

+ Wh2e2δh4θ2|L|2D
∫ D

0

w2
x(x, tk)dx

−
[
π2

4
W −Wh2e2δh4θ2|L|2 −

2

δ
θ2|L|2

]
|ξ(t)− ξ(ti)|2

(18)

which also gives



Ẇ2 + 2δW2 ≤

−
[
c′4 − δc

′
3
2 −Dθ2 −Wh2e2δh [|A− LC|+K0]2 − 2δc′2

]
|η|2

−
[
π2

4D2
−

1

2
− δ
]∫ D

0

w2(x, t)dx

−
[
π2

8D2
− δ
]∫ D

0

w2
x(x, t)dx

+

[
2

δ
θ2|L|2D +Wh2e2δh4θ2|L|2D

]∫ D

0

w2
x(x, tk)dx

−
[
π2

4
W −Wh2e2δh4θ2|L|2 −

2

δ
θ2|L|2

]
|ξ(t)− ξ(ti)|2.

(19)

Now let us set δ sufficiently small such that c′4−δc′3
2
> 0.

For doing this, we can choose δ = 1
θ2n . If we set W =

4
π2

[
δ|L|2 + 2

δ θ
2|L|2

]
and if the sampling period h satisfies

Wh2e2δh4θ2 ≤ δ, we ensure that

π2

4
W −Wh2e2δh4θ2|L|2 −

2

δ
θ2|L|2 > 0

and consequently we have

Ẇ2 + 2δW2 ≤ −
[
c′4 − δc

′
3
2 −Dθ2 − δ [|A− LC|+K0]2 − 2δc′2

]
|η|2

−
[
π2

4D2
−

1

2
− δ
]∫ D

0

w2(x, t)dx

−
[
π2

8D2
− δ
]∫ D

0

w2
x(x, t)dx

+

[
2

δ
θ2|L|2D +Wh2e2δh4θ2|L|2D

]∫ D

0

w2
x(x, tk)dx

(20)

At this stage, suppose thatD < min

(
δ
θ2 ,

π
2
√
2δ
, π2

√
1

δ+ 1
2

)
,

and if choose θ sufficiently high so that

2δc′2 <
[
c′4 − δc

′
3
2 −Dθ2 − δ [|A− LC|+K0]2

]
which is equivalent to[

2c′2 +
(
1 + [|A− LC|+K0]2 + c′3

2
)] 1

θ2n
≤ c′4 (21)

we conclude that

Ẇ2 ≤ −2δW2 + 2

[
2

δ
θ2|L|2D + δ|L|2D

]
W2(tk) (22)

Using the fact that tk = t − τ(t) where τ(t) = t − tk ,
∀t ∈ [tk, tk+1), τ(t) ≤ h and by applying Lemma 1, we can
say that the system (15) is exponentially convergent if

2

δ
θ2|L|2D + δ|L|2D < δ. (23)

Combining this, with the above conditions, we deduce
that for all θ, satisfying conditions (10), (21), and if

δ = 1
θ2n

,W = 4
π2

[
δ|L|2 + 2

δ
θ2|L|2

]
D < D∗(θ) = min

(
δ

2
δ
|L|2θ2+δ|L|2

, δ
θ2
, π

2
√
2δ
, π
2

√
1

δ+ 1
2

)
Wh2e2δh4θ2 ≤ δ

(24)

then system (15) is exponentially convergent. It has
to be noticed that since the function Wh2e2δh4θ2 is an
increasing function then, ∀θ, there exists h̄(θ) such that
∀h ∈ (0, h̄(θ)) the inequality Wh2e2δh4θ2 ≤ δ holds. From
this we can state the following Theorem :

Theorem 5. Consider system (1). Then, there exist θ1,
D?(θ), h̄(θ) such that ∀θ > θ1, ∀D ∈ (0, D?(θ)) and
∀h ∈ (0, h̄(θ)), the observation error system (15) converges
exponentially to zero.

5. CONCLUSION

An extension of the design of high-gain observer-based
output feedback control for nonlinear systems with sensors
described by heat PDEs has been proposed by bringing
into light explicitly the expected trade-off between the
gain of the observer and the length of the PDE. Further
works will be undertaken in the same vein by i) considering
actuators PDEs and ii) by relaxing the global exponential
assumption. This later extension will require careful
analysis of the peaking phenomenon. On the other hand
it’s well known that a heat equation can be decoupled
into a finite dimensional unstable part and an infinite
dimensional stable one. We are currently investigating how
we can use this nice property in order to design a new
kind of high observers for the system considered here and
other classes of systems Orlov et al. (2004). We will also
investigate a sliding modes observer design for the above
class of systems in presence of disturbances Dimassi et al.
(2018).
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