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Stability properties for two coupled
reaction-diffusion equations

Mathieu Bajodek ∗, Hugo Lhachemi ∗, Giorgio Valmorbida ∗

∗ CentraleSupelec, Bat. Bréguet, 3 Rue Joliot Curie, 91190
Gif-Sur-Yvette, France (e-mail: mathieu.bajodek@laas.fr).

Abstract: This paper studies the stability of the interconnection of two reaction-diffusion
equations. We focus on the case where the input and output operators of the interconnection are
bounded. Using the spectral decomposition of both equations, we propose a sufficient condition
to estimate the exponential stability decay rate of the closed-loop system. This stability test
is proposed as constraints of a semidefinite programming. An extension of this condition is
also outlined in the form of a Hurwitz criterion. The proposed stability analysis conditions are
illustrated with two examples.
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1. INTRODUCTION

Reaction-diffusion phenomena appear in many fields such
as pharmaceutics or epidemiology. They belong to the class
of parabolic partial differential equations (PDEs). A fun-
damental problem is to characterize how the trajectories
behave, especially to rule on the exponential stability of
the steady state.

In the literature, as a particular case of the study of
linear operators, the stability analysis of linear PDEs is
detailed in Pazy (2012). Modal analysis is the most used
approach for studying the stability of a single reaction-
diffusion equation. Spectral reduction methods have also
led to the synthesis of controllers and observers for single
linear parabolic PDE, see for instance Russel (1978);
Lasiecka and Triggiani (2000); Morris and Levine (2010);
Katz and Fridman (2022). Nevertheless, the case of two
interconnected PDEs is more involved: the eigenstructures
of the associated linear operator cannot be, in general,
computed analytically and do not allow us to assess the
stability properties of the plant. Furthermore, by summing
the Lyapunov functionals of each PDEs, the application
of the Lyapunov theorem leads to conservative stability
conditions that are restricted to the case where both PDEs
are stable (see Mironchenko and Ito (2015)).

For PDEs interconnections of type hyperbolic-hyperbolic
in Di Meglio et al. (2013), hyperbolic-parabolic in Karafyl-
lis and Krstic (2018) or parabolic-parabolic in Grüne and
Meurer (2022), the stability analysis methods vary. This
diversity comes from the different analysis tools and ap-
proximation scheme involved. Global exponential stability
(GES) can be assessed via frequency analysis using the
small-gain theorem as in Karafyllis and Krstic (2018). It
can also rely on the use of Lyapunov functionals which
include interconnected terms as in Lhachemi and Prieur
(2022). In parallel to this last technique, an approximation
is performed to obtain numerical solutions. Finite element
methods as in Li et al. (1994); Burman et al. (2022),
Legendre polynomials approximation as in Baudouin et al.

(2019); Bajodek et al. (2022) or modal decomposition
as in Katz and Fridman (2022); Lhachemi and Prieur
(2022) can be applied. Then, the application of Lyapunov’s
theorem leads to linear matrix inequalities (LMIs), which
can be solved by linear semidefinite programming (see
e.g. Valmorbida et al. (2015); Peet (2021)).

Here, the case of parabolic-parabolic interconnected PDEs
is investigated. The proposed methodology consists of

• performing a modal decomposition of the Sturm-
Liouville operators;

• projecting the coupling terms on this eigenbasis;
• rewriting the infinite-dimensional interconnected sys-

tem as a finite-dimensional system coupled with a
residual infinite-dimensional dynamics;

• applying Lyapunov’s theorem on the finite-dimensional
system while evaluating the impact of the residual
infinite-dimensional dynamics.

The objective is to derive GES sufficient conditions and
provide the exponential decay rate of the solutions.

The paper is structured as follows. Section II introduces
the system description and the modal decomposition of
the two Sturm-Liouville operators. An equivalent model
based on this modal decomposition is proposed. Section III
is concerned with the derivation of sufficient stability
analysis condition. The first condition, in Theorem 8, is an
LMI test and the second one, in Theorem 12, is a Hurwitz
test of the approximated state matrix. Lastly, Section IV
shows numerically that the coupling of two parabolic PDEs
can have a either stabilizing or destabilizing effect.

Notation: Throughout this paper, notations R, R+, Rn×m

and Sn≻0(≺0) stand for real numbers, positive numbers,

matrices of size n × m and positive (negative) definite
matrices of size n, respectively. Matrices In, M⊤ and
diag(u1, . . . , un) correspond to the identity matrix of
size n, transpose of matrix M in Rn×n and diagonal
matrix whose diagonal coefficients are (u1, . . . , un). We
also use vec(·) as the vectorization operation and ⊗ as



(
∂x(p1∂x)+q1 b1

I 0

)
z1

Reaction-diffusion n°1

z1z2

(
∂x(p2∂x)+q2 b2

I 0

)
z2

Reaction-diffusion n°2

Fig. 1. Block diagram of system (1).

the Kronecker product. Moreover, σ(M) and σ̄(M) stand
for the minimal and maximal eigenvalue of the symmetric
matrix M . Matrix M ∈ Rn×n is said to be µ-Hurwitz if
M +µIn is Hurwitz. We introduce some functional spaces
for real-values functions defined on [0, 1]. Denote by C0

and L2 the spaces of continuous and square-integrable
functions, respectively. Denote also by Ck the set of func-
tions with the k first derivatives in C0 and by Hk the k-th
order Sobolev space. Lastly, the Euclidian norm |·| and the
L2 norm ∥·∥ are defined by

|·| :=
{
Rn 7→ R+

u →
√
u⊤u

, ∥·∥ :=


L2 7→ R+

z →

√∫ 1

0

|z(x)|2dx
.

2. REACTION-DIFFUSION SYSTEMS

In this section, we present the system under investigation
and propose an equivalent model thanks to a modal based
decomposition as in Lhachemi and Prieur (2022).

2.1 Interconnected plant

Consider two reaction-diffusion equations
∂tzi(t, x)=[∂x(pi(x)∂x)+qi(x)]zi(t, x)+bi(x)z3−i(t, x),

cos(θi0)zi(t, 0)− sin(θi0)∂xzi(t, 0) = 0,

cos(θi1)zi(t, 1) + sin(θi1)∂xzi(t, 1) = 0,

zi(0, x) = zi0(x),
(1)

for i ∈ {1, 2} and (t, x) ∈ R+×(0, 1). The initial conditions
zi0 are in L2((0, 1);R), the scalars θij are in [0, π/2],
the diffusion functions pi are in C1((0, 1);R+) and the
both reaction qi and interconnection bi functions are in
C0((0, 1);R). The plant (1) is represented in Fig. 1.

Remark 1. The use of functions q1 and q2 covers the cases
where boundary conditions are subject to constant inputs,
up to an appropriate change of variables.

Remark 2. The method we are going to propose ap-
plies to any couplings of the form Biz3−i where Bi ∈
L(L2((0, 1);R)) is a bounded operator. For a fixed ξ ∈
[0, 1], unbounded couplings as bi(x)z3−i(t, ξ) on the dy-
namics can be addressed as well. Finally, the method can
also be extended to n coupled reaction-diffusion equations.

The operator of system (1) is given by

A =

(
∂x(p1∂x) + q1 b1

b2 ∂x(p2∂x) + q2

)
, (2)

on the domain D(A) = D(A1)×D(A2), where

Ai = ∂x(pi∂x) + qi, (3)

D(Ai) = {f ∈ H2((0, 1);R), s.t.
cos(θi0)f(0)−sin(θi0)f

′(0)=0

cos(θi1)f(1)+sin(θi1)f
′(1)=0

}.

Remark 3. In view of (2) and −Ai being a Sturm-Liouville
operator, classical results on the bounded perturbation
of generators of C0-semigroups (see (Pazy, 2012, Chap-
ter 3)) can be readily invoked for assessing and concluding
the well-posedness of system (1), yielding solutions in
C0(R+, L

2((0, 1);R)× L2((0, 1);R)).
Definition 4. The trivial solution of system (1) is GES
with exponential decay rate µ > 0 if there exist κ > 0
such that the solution satisfies∥∥∥[ z1(t)

z2(t)

]∥∥∥ ≤ κe−µt ∥[ z10z20 ]∥ , (4)

for all t in R+.

In this paper, the global exponential stability (GES) of the
trivial solution (z1, z2) = (0, 0) of system (1) is studied.

2.2 Spectral decomposition

Let the two operators Ai = ∂x(pi∂x) + qi be defined on
the domains D(Ai) for i ∈ {1, 2} as in (3). From the
properties of Sturm-Liouville operators, the eigenvalues
{λi,n}n≥1 of each operator Ai are real and ordered such
that λi,n+1 < λi,n for any integer n ≥ 1. For each
i ∈ {1, 2}, λi,n are simple, tend to −∞ as n tends to
infinity and satisfy (see, e.g., Orlov (2017)):

λi,n ≤ −π2(n− 1)2p
i
+ q̄i, (5)

where p
i
= inf

x∈[0,1]
(pi(x)) and q̄i = sup

x∈[0,1]

(qi(x)).

They are associated to normalized eigenvectors {φi,n}n≥1

that form a Hilbert basis of L2.

For i in {1, 2} and any integer ni ≥ 1, consider the
sequence {φi,1, . . . , φi,ni

} and define the vectors

Φi(x) = [φi,1(x) · · · φi,ni(x)]
⊤ ∈ Rni . (6)

Define also

ζi(t)=

∫ 1

0

Φi(x)zi(t, x)dx, ζ=
[
ζ1
ζ2

]
∈ Rn1+n2 , ∀t ∈ R+,

(7)
the vectors of the ni projections of the state zi on the
eigenfunctions sets {φi,1, . . . , φi,ni

}. Define lastly the error
state functions

ηi(t, x) = zi(t, x)− Φ⊤
i (x)ζi(t), ∀(t, x) ∈ R+ × (0, 1). (8)

Proposition 5. For given integers ni ≥ 1, the dynamics of
system (1) can be rewritten as

d

dt
ζ(t) = Aζ(t) +

∫ 1

0

[
Φ1(x)b1(x)η2(t, x)
Φ2(x)b2(x)η1(t, x)

]
dx,

∂tηi(t, x) = [∂x(pi(x)∂x)+qi(x)]ηi(t, x)

+ bi(x)
(
Φ⊤

3−i(x)ζ3−i(t) + η3−i(t, x)
)

− Φ⊤
i (x)

∫ 1

0

Φi(ξ)bi(ξ)
(
Φ⊤

3−i(ξ)ζ3−i(t) + η3−i(t, ξ)
)
dξ,

cos(θi0)ηi(t, 0)− sin(θi0)∂xηi(t, 0) = 0,

cos(θi1)ηi(t, 1) + sin(θi1)∂xηi(t, 1) = 0,
(9)

for i ∈ {1, 2} and (t, x) ∈ R+ × (0, 1), where the matrices
are given by

A =

[
Λ1 B1

B2 Λ2

]
,

Λ1 = diag(λ1,1, . . . , λ1,n1
),

Λ2 = diag(λ2,1, . . . , λ2,n2
),

B1 =

∫ 1

0

(Φ1b1Φ
⊤
2 )(x)dx, B2 =

∫ 1

0

(Φ2b2Φ
⊤
1 )(x)dx.

(10)



+

+Φ⊤
1

Φ⊤
2

(
∂x(p1∂x)+q1 b̃1

I 0

)
z1

(
∂x(p2∂x)+q2 b̃2

I 0

)
z2 z1

η1

ζ1

z2

η2

ζ2 (
Λ1 B1 B̃1

In1
0 0

)
ζ1

(
Λ2 B2 B̃2

In2
0 0

)
ζ2

Fig. 2. Block diagram of system (9).

Proof. From one side, the dynamics of the vector ζ are
obtained by replacing the state zi by its decomposition
given by (8). From the other side, the dynamics of the
error ηi rewrites as follows

∂tηi(t, x) = ∂tzi(t, x)− Φ⊤
i (x)

d

dt
ζi(t),

= ∂tzi(t, x)−Φ⊤
i (x)

(
Λiζi(t) +

∫ 1

0

Φi(ξ)bi(ξ)z3−i(t, ξ)dξ

)
,

= [∂x(pi(x)∂x) + qi(x)]zi(t, x) + bi(x)z3−i(t, x)

−Φ⊤
i (x)Λiζi(t)−Φ⊤

i (x)

∫ 1

0

Φi(ξ)bi(ξ)z3−i(t, ξ)dξ,

which corresponds to the PDE in system (9). Finally, the
boundary conditions satisfied by zi also hold for ηi. ■

The block diagram of this augmented system is represented

in Fig 2, where b̃iz3−i := biz3−i − Φ⊤
i

∫ 1

0
(Φibiz3−i)(x)dx

and B̃iη3−i :=
∫ 1

0
(Φibiη3−i)(x)dx. It can be seen as an

equivalent representation of the original system in Fig.1,
where the terms zi are retrieved using (8).

3. STABILITY TEST

In this section, a GES stability condition for system (1)
is derived by the use of the modal augmented model (9).
In the following, the time argument will be omitted for
simplicity reasons.

3.1 Lyapunov functional

For given integers n1, n2 ≥ 1 and a P ∈ Sn1+n2
≻0 , consider

the following Lyapunov functional

V(ζ, η1, η2) = ζ⊤Pζ + ∥[ η1
η2 ]∥2, (11)

where the augmented state ζ =
[
ζ1
ζ2

]
∈ Rn1+n2 and error

state functions [ η1
η2 ] are defined by (7) and (8), respectively.

Similarly to Lhachemi and Prieur (2022), it is based on
the ni first projections of the state on the orthonormal
sequences {φi,n}n≥1 and to the sum of the square L2

norms of each error functions ηi.

Remark 6. Matrix P can be decomposed as three matrices

P =
[

P1 P12

P⊤
12 P2

]
, where P1 ≻ 0, P2 ≻ 0 and P12 is free.

Note that ζ⊤Pζ introduces interconnected terms between
the two reaction-diffusion equations thanks to the matrices
P12. This is in contrast with Kitsos and Fridman (2022),
where P12 = 0.

Along the trajectories of system (1), using the dynamics
expressed by (9) and the orthonormality and completeness
of the sequences {φi,n}, we obtain

1

2

d

dt
V(ζ, η1, η2)=ζ⊤PAζ + ζ⊤P

∫ 1

0

[
(Φ1b1η2)(x)
(Φ2b2η1)(x)

]
dx

+

∞∑
n=n1+1

λ1,n

(∫ 1

0

φ1,n(x)η1(x)dx

)2

+

∫ 1

0

η1(x)b1(x)
(
Φ⊤

2 (x)ζ2 + η2(x)
)
dx

+

∞∑
n=n2+1

λ2,n

(∫ 1

0

φ2,n(x)η2(x)dx

)2

+

∫ 1

0

η2(x)b2(x)
(
Φ⊤

1 (x)ζ1 + η1(x)
)
dx.

(12)

In the following, V in (11) and its derivatives in (12) will
be used to state on the stability of system (1) in the sense
of the L2 norm as in Definition 4.

Remark 7. Note that stability tests could also be given in
H1 norm following similar developments. The Lyapunov
functional to take into consideration would be

VH1(ζ, η1, η2) = ζ⊤Pζ+

2∑
i=1

∞∑
n=ni+1

λi

(∫ 1

0

φi,n(x)ηi(x)dx

)2

.

(13)
One can refer to Lhachemi and Prieur (2022) for further
details in that direction.

3.2 Main theorem

The stability of system (1) is studied exploiting (11)-(12)
by formulating inequalities that guarantee the decrease
of (11) along the trajectories of (1). These inequalities
are cast as linear matrix inequalities (LMIs), affine on
the parameter P of (11), which can suitably written as
constraints of a semidefinite programming.

Theorem 8. For given orders n1, n2 ≥ 1 and scalar µ > 0,
if there exist P ∈ Sn1+n2

≻0 and scalars α1, α2, β1, β2 > 0
such thatΓ(P )+

[
α2∥b2Φ1∥2In1

0

0 α1∥b1Φ2∥2In2

]
P

P⊤
[
−β1In1

0

0 −β2In2

]≺0,

(14a)[[
γ1,n1

+β2∥b2Φ2∥2 ∥b1∥+∥b2∥
∥b1∥+∥b2∥ γ2,n2+β1∥b1Φ1∥2

]
I2

I2
[−α1 0

0 −α2

]]≺0,

(14b)

with A ∈ R(n1+n2)×(n1+n2) as in (10) and

Γ(P ) = PA+A⊤P + 2µP,

γ1,n1 = 2(−π2n2
1p1+q̄1+µ), γ2,n2 = 2(−π2n2

2p2+q̄2+µ).

Then, the trivial solution of system (1) is GES with the
exponential decay rate µ.

Proof. Firstly, the Lyapunov functional V defined by (11)
satisfies the following inequalities

min{σ(P ), 1}
(
|ζ|2 + ∥η1∥2 + ∥η2∥2

)
≤ V(ζ, η1, η2),

V(ζ, η1, η2) ≤ max{σ̄(P ), 1}
(
|ζ|2 + ∥η1∥2 + ∥η2∥2

)
.
(15)



Then, under the assumptions in the theorem, we show that
d
dtV(ζ, η1, η2) + 2µV(ζ, η1, η2) ≤ 0 along the trajectories
of system (1). To do so, let us focus on each term of
d
dtV(ζ, η1, η2) in (12). For the terms in ηi with i ∈ {1, 2},
the ordering of the eigenvalues and the bound (5) give
λi,n < λi,ni+1 < −π2n2

i pi + q̄i for any n ≥ ni so that

∞∑
n=ni+1

λi,n

(∫ 1

0

φi,n(x)ηi(x)dx

)2
≤(−π2n2

i pi+q̄i)∥ηi∥2.

(16)
For the two terms involving η1 and η2, applying twice
Cauchy-Schwarz’s inequality yields∫ 1

0

(b1(x) + b2(x))η1(x)η2(x)dx ≤ (∥b1∥+ ∥b2∥)∥η1∥∥η2∥,

(17)
Concerning the crossed term between η1 and ζ2, with any
positive scalar α1, Young’s inequality leads to∣∣∣∣2 ∫ 1

0

(η1b1Φ
⊤
2 )(x)ζ2dx

∣∣∣∣
≤ 1

α1

∫ 1

0

|η1(x)|2dx+ α1

∫ 1

0

|b1(x)Φ⊤
2 (x)ζ2|2dx,

≤ 1

α1
∥η1∥2 + α1∥b1Φ2∥2|ζ2|2. (18)

Similarly, with any positive scalar α2, we obtain

2

∣∣∣∣∫ 1

0

(η2b2Φ
⊤
1 )(x)ζ1dx

∣∣∣∣ ≤ 1

α2
∥η2∥2+α2∥b2Φ1∥2|ζ1|2. (19)

Furthermore, for i ∈ {1, 2} with any positive scalars βi,
the application of Cauchy–Schwarz’s inequality leads to

βi

∣∣∣∣∫ 1

0

(Φibiη3−i)(x)dx

∣∣∣∣2 ≤ βi∥biΦi∥2∥η3−i∥2. (20)

From (12) and (16)-(20), we have

d

dt
V(ζ, η1, η2) + 2µV(ζ, η1, η2)

≤ξ⊤

 Γ(P )+

[
α2∥b2Φ1∥2In1 0

0 α1∥b1Φ2∥2In2

]
P

P⊤
[
−β1In1

0

0 −β2In2

]
ξ

+ η⊤
[
γ1,n1

+β2∥b2Φ2∥2+ 1
α1

∥b1∥+∥b2∥
∥b1∥+∥b2∥ γ2,n2

+β1∥b1Φ1∥2+ 1
α2

]
η,

(21)

where ξ =

 ζ∫ 1

0
(Φ1b1η2)(x)dx∫ 1

0
(Φ2b2η1)(x)dx

 and η =
[
∥η1∥
∥η2∥

]
.

If the LMIs (14) hold, then the following inequality holds

d

dt
V(ζ, η1, η2) + 2µV(ζ, η1, η2) ≤ 0.

Regarding (15) and applying the Lyapunov theorem, it
implies that the following inequality holds(
|ζ|2+∥[ η1

η2 ]∥
2
)
(t)≤max{σ̄(P ), 1}

min{σ(P ), 1}
e−2µt

(
|ζ|2+∥[ η1

η2 ]∥
2
)
(0),

Since the augmented state ζ and the errors (η1, η2) are
related to the state (z1, z2) through relations (7) and (8),
the orthonormality of the decomposition gives

∥z1(t)∥2+∥z2(t)∥2 = |ζ(t)|2 + ∥η1(t)∥2 + ∥η2(t)∥2. (22)

Therefore, the L2 × L2 norm of the solution (z1, z2) van-
ishes with an exponential decay rate µ as in Definition 4,
which concludes the proof. ■

Remark 9. In (14) the LMIs haveNv = (n1+n2)(n1+n2−1)
2 +

4 variables and Nc = (n1+n2)(n1+n2−1)+10 constraints.
BothNv andNc depend quadratically on the orders n1 and
n2. Hence, the computational complexity using current
interior-point solver remains polynomial in n1 and n2.

Remark 10. For (i, j) ∈ {1, 2}2, the quantities ∥biΦj∥2 are
upper bounded by ∥bi∥2∥Φj∥2 = nj∥bi∥2, by orthonormal-
ity of the sequence Φj . When Φj are unknown, Theorem 8
can be used replacing the coefficients ∥biΦj∥2 by nj∥bi∥2.

Using the previous remark and imposing n1 = n2 = n, we
simplify the stability condition from Theorem 8 as follows.

Corollary 11. For a given integer n ≥ 1 and scalar µ > 0,
if there exist a P ∈ S2n≻0 and scalars α, β > 0 such that[

Γ(P ) + αnb̄2I2n P
P⊤ −βI2n

]
≺ 0, (23a)[

γn + 2b̄+ βnb̄2 1
1 −α

]
≺ 0, (23b)

with A ∈ R2n×2n as in (10) and

Γ(P ) = PA+A⊤P + 2µP,

γn = 2
(
−π2n2min

{
p
1
, p

2

}
+max {q̄1, q̄2}+ µ

)
,

b̄ = max {∥b1∥, ∥b2∥} .
Then, the trivial solution of system (1) is GES with the
exponential decay rate µ. Furthermore, if the LMIs (23)
hold for order n+ 1, then the conditions hold for order n.

In Theorem 8 and Corollary 11, in order to satisfy the
LMIs conditions, the matrix A must be µ-Hurwitz (i.e.
the real parts of the eigenvalues of matrix A in (10) are
smaller than −µ). In the next subsection, this criterion is
further explored.

3.3 A simpler criterion for stability

As an extension of Corollary 11, a simple stability test
based on the eigenvalues of the approximated matrix A is
put forward. It relies on a particular choice of matrix P
and scalars α, β with respect to the order n.

Theorem 12. For a given µ > 0, assume that A in (10) is
µ-Hurwitz and that the order

n >
∣∣2b̄σ̄(P0)

∣∣ ∣∣∣∣∣max{q̄1, q̄2}+ µ+ b̄

π2min{p
1
, p

2
}

∣∣∣∣∣ , (24)

σ̄(P0) := σ̄
(
−vec−1

(
(A⊤ ⊗ I + I ⊗A⊤ + 2µ)−1vec(I)

))
.

Then, the trivial solution of system (1) is GES with the
exponential decay rate µ.

Proof. Consider first the symmetric matrix P0 solution
of the Lyapunov equation

P0A+A⊤P0 + 2µP0 = −I2n.

Assuming that A is µ-Hurwitz, the Lyapunov matrix P0

is given by

P0 = −vec−1
(
(A⊤⊗I2n+I2n⊗A⊤+2µ)−1vec(I2n)

)
.
(25)

For any ρ > 0, taking the variables

P =
1

σ̄(P0)
P0, α =

√
ρ

b̄
n−3/2, β =

1
√
ρb̄

n1/2, (26)



we note by Schur complement that

− 1

σ̄(P0)
+ 2

√
ρn−1/2b̄ < 0, (27a)

γn + 2b̄+ 2
1
√
ρ
n3/2b̄ < 0. (27b)

imply that the LMIs (23a)-(23b) hold. Otherwise, inequal-
ities (27a)-(27b) are satisfied for orders n such that

n >
(
2b̄σ̄(P0)

)2
ρ, (28a)

n >

(
max{q̄1, q̄2}+ µ+ b̄

π2min{p
1
, p

2
}

)2
1

ρ
. (28b)

Assuming now that the order satisfies (24) and selecting

ρ =
∣∣2b̄σ̄(P0)

∣∣−1

∣∣∣∣∣max{q̄1, q̄2}+ µ+ b̄

π2min{p
1
, p

2
}

∣∣∣∣∣ . (29)

we obtain the two conditions (27a)-(27b), linked to
LMIs (23a)-(23b) with the particular choice of matrix P
and scalars α, β in (26). Corollary 11 yields the result. ■

The inequality (24) gives an estimation of the minimal
order n from which LMIs conditions (23) can be satisfied.
Matrix A provide stability properties such as the exponen-
tial decay or growth rate as the order n goes to infinity.
Similar asymptotic results have been obtained in Katz and
Fridman (2022) regarding the synthesis of controllers and
observers for a single reaction-diffusion equation.

4. EXAMPLES

In this section, we show that two stable reaction-diffusion
systems can result in an unstable interconnection under
the effect of the input and output operators. Conversely,
even if it is less intuitive, two unstable reaction-diffusion
systems can become stable by interconnection.

4.1 System data

Consider the following example
∂t

[
z1(t, x)
z2(t, x)

]
=

[
p1∂xx+q1 b1cos(πx)
b2cos(πx) p2∂xx+q2

][
z1(t, x)
z2(t, x)

]
,

∂xz1(t, 0) = 0, ∂xz1(t, 1) = 0,

∂xz2(t, 0) = 0, ∂xz2(t, 1) = 0,

(30)

where p1, p2, q1, q2 are constant functions and boundary
conditions are of Neumann type. In that case, we know
that the Sturm-Liouville diagonal operators −(pi∂xx + qi)
are associated to the eigenvectors {φi,n}n≥1 and eigenval-
ues {λi,n}n≥1 with

φi,n(x) =

{
1, if n = 1,√
2 cos((n− 1)πx), otherwise,

λi,n = −pi((n− 1)π)2 + qi.

(31)

We also know that b̄ = 1√
2
max{b1, b2}. Furthermore, for

any integers n1 = n2 = n ≥ 1, the matrix A in (10) is
given by

A =

[
Λ1 b1B

b2B
⊤ Λ2

]
,
Λ1 = −p1diag(1, . . . , n

2)π2 + q1,
Λ2 = −p2diag(1, . . . , n

2)π2 + q2,

Fig. 3. Solution (z1, z2)(t) for (z1, z2)(0) = 1.

Order n 1 2 5 10 15 20 30

Decay µ − 0.001 1.19 1.55 1.67 1.73 1.78

Table 1. First example: Maximal exponential
decay rate µ for a given n with Corollary 11.

Decay µ 1e−5 0.1 0.5 1 1.3 1.5 1.9

Order n 3 3 4 7 11 16 471

Table 2. First example: Minimal order n to
certify a given decay rate µ with Theorem 12.

with B = 1
2


0

√
2 0 0 0√

2 0 1 0 0

0 1 0
. . . 0

0 0
. . .

. . . 1
0 0 0 1 0

.
4.2 First example: stabilizing case

Consider the system (30) with

q1 = q2 = 1, p1 = p2 = 2, b1 = −b2 = 10. (32)

Both equation taken separately are unstable but make a
stable system once interconnected (see for instance a stable
solution simulated in Fig. 3).

Indeed, applying Theorem 8, the LMIs conditions (14)
with µ = 1e−5 are satisfied for orders (n1, n2) such that
n1 ≥ 2 and n2 ≥ 2. Applying Corollary 11, the LMIs
conditions (14) are satisfied for order n ≥ 2. The second
version provides a gain in terms of computational com-
plexity since it avoids testing pairs (n1, n2) by imposing
n1 = n2 = n. With a bisection algorithm, it is even
possible to find the maximal decay rate µ. The results
are summarized in Table 1.

Moreover, Theorem 12 can be applied with µ = 1e−5 by
increasing the order n. For n ≥ 3, we have

n ≥
∣∣2b̄σ̄(P0)

∣∣ ∣∣∣∣max{q1, q2}+ µ+ b̄

π2max{p1, p2}

∣∣∣∣ ≃ 2.55. (33)

which allows us to conclude that the system is GES. For
other values of parameter µ > 0, the minimal required
orders n are shown in Table 2. It gives a sketch of the
order from which the LMIs conditions hold (which is
not so pessimistic in that case) and allows to reduce the
calculation time using a positivity test instead of LMIs.
Lastly, we note that A is Hurwitz by construction from
order n = 2 and that A is 1.91-Hurwitz when n → ∞.



Fig. 4. Solution (z1, z2)(t) for (z1, z2)(0) = 1.

Order n 1 2 5 10 15 20 30

Growth |µ| 2.72 2.65 1.82 1.56 1.48 1.44 1.40

Table 3. Second example: Maximal exponential
growth −µ for a given n with Corollary 11.

4.3 Second example: destabilizing case

Consider the system (30) with

q1 = q2 = −1, p1 = p2 = 2, b1 = b2 = 10. (34)

Both equation taken separately are stable but make an
unstable system once interconnected. Indeed, for unitary
initial conditions the state is diverging as shown in Fig. 4.

With linear matrix inequalities conditions, one cannot con-
clude on instability of the interconnected system. However,
one can an get a bound of the exponential divergence as
shown in Table 3. We note that, for any order n, A is
unstable and is −1.30-Hurwitz (growth rate of 1.30), which
would be certified with Corollary 11 for large values of n.

On both examples, we conjecture whether A is µ-Hurwitz
asymptotically implies that the system has a decay rate
(when µ > 0) or growth rate (when µ < 0) given by |µ|.

5. CONCLUSIONS

This paper has discussed the stability analysis of coupled
reaction-diffusion systems. With the help of the modal
decomposition of each subsystem, a sufficient condition
of stability has been proposed. Then, a simple test on
the eigenvalues of the approximated state matrix has
also been highlighted. In the numerical example section,
we were able to conclude that stability properties of
reaction-diffusion systems can be gained or lost through
interconnection.

Future work will investigate interconnections with un-
bounded input and output operators. It would also be in-
teresting to focus on nonlinear reaction-diffusion equations
and determine the basin of attraction of a stable equilib-
rium, expressed with a finite number of state variables.

REFERENCES

Bajodek, M., Seuret, A., and Gouaisbaut, F. (2022). Sta-
bility analysis of an ordinary differential equation inter-
connected with the reaction–diffusion equation. Auto-
matica, 145, 110515.

Baudouin, L., Seuret, A., and Gouaisbaut, F. (2019).
Stability analysis of a system coupled to a heat equation.
Automatica, 99, 195–202.

Burman, E., Durst, R., Fernández, M., and Guzmán,
J. (2022). Loosely coupled, non-iterative time-
splitting scheme based on Robin-Robin coupling: Uni-
fied analysis for parabolic–parabolic and parabolic–
hyperbolic problems. Journal of Numerical Mathemat-
ics. ArXiv:2110.08181.

Di Meglio, F., Vazquez, R., and Krstic, M. (2013). Stabi-
lization of a system of n + 1 coupled first-order hyper-
bolic linear PDEs with a single boundary input. IEEE
Transactions on Automatic Control, 58(12), 3097–3111.

Grüne, L. and Meurer, T. (2022). Finite-dimensional
output stabilization for a class of linear distributed
parameter systems - A small-gain approach. Systems
& Control Letters, 164, 105237.

Karafyllis, I. and Krstic, M. (2018). Small-gain stability
analysis of certain hyperbolic–parabolic PDE loops.
Systems & Control Letters, 118, 52–61.

Katz, R. and Fridman, E. (2022). Constructive method
for finite-dimensional observer-based control of 1-D
parabolic PDEs. Automatica, 144, 109285.

Kitsos, C. and Fridman, E. (2022). Stabilization of un-
deractuated linear coupled reaction-diffusion PDEs via
distributed or boundary actuation. ArXiv:2206.01977.

Lasiecka, I. and Triggiani, R. (2000). Control theory
for partial differential equations, volume 1. Cambridge
University Press.

Lhachemi, H. and Prieur, C. (2022). Stability analysis of
reaction-diffusion PDEs coupled at the boundaries with
an ODE. Automatica, 144, 110465.

Li, N., Steiner, J., and Tang, S. (1994). Convergence
and stability analysis of an explicit finite difference
method for 2-dimensional reaction-diffusion equations.
The ANZIAM Journal, 36(2), 234–241.

Mironchenko, A. and Ito, H. (2015). Construction of
Lyapunov functions for interconnected parabolic sys-
tems: an iISS approach. SIAM Journal on Control and
Optimization, 53(6), 3364–3382.

Morris, K. and Levine, W. (2010). Control of systems
governed by partial differential equations. The control
theory handbook.

Orlov, Y. (2017). On general properties of eigenvalues and
eigenfunctions of a Sturm–Liouville operator: comments
on ‘ISS with respect to boundary disturbances for 1D
parabolic PDEs’. IEEE Transactions on Automatic
Control, 62, 5970–5973.

Pazy, A. (2012). Semigroups of linear operators and
applications to partial differential equations, volume 44.
Springer Science & Business Media.

Peet, M. (2021). A Partial Integral Equation (PIE)
representation of coupled linear PDEs and scalable
stability analysis using LMIs. Automatica, 125, 109473.

Russel, D. (1978). Controllability ans stabilizability theory
for linear partial differential equations: recent progress
and open questions. SIAM Review, 20(4).

Valmorbida, G., Ahmadi, M., and Papachristodoulou, A.
(2015). Stability analysis for a class of partial differ-
ential equations via semidefinite programming. IEEE
Transactions on Automatic Control, 61(6), 1649–1654.


