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This paper studies the stability of the interconnection of two reaction-diffusion equations. We focus on the case where the input and output operators of the interconnection are bounded. Using the spectral decomposition of both equations, we propose a sufficient condition to estimate the exponential stability decay rate of the closed-loop system. This stability test is proposed as constraints of a semidefinite programming. An extension of this condition is also outlined in the form of a Hurwitz criterion. The proposed stability analysis conditions are illustrated with an example of two reaction-diffusion equations with constant couplings terms.

INTRODUCTION

Reaction-diffusion phenomena appear in many fields such as pharmaceutics or epidemiology. They belong to the class of parabolic partial differential equations (PDEs). A fundamental problem is to characterize how the trajectories behave, especially to rule on the exponential stability of the steady state.

In the literature, as a particular case of the study of linear operators, the stability analysis of linear PDEs is detailed in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. Modal analysis is the most used approach for studying the stability of a single reactiondiffusion equation. Spectral reduction methods have also led to the synthesis of controllers and observers for single linear parabolic PDE, see for instance [START_REF] Russel | Controllability ans stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]; [START_REF] Lasiecka | Control theory for partial differential equations[END_REF]; [START_REF] Morris | Control of systems governed by partial differential equations[END_REF]; [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. Nevertheless, the case of two interconnected PDEs is more involved: the eigenstructures of the associated linear operator cannot be, in general, computed analytically and do not allow us to assess the stability properties of the plant. Furthermore, by summing the Lyapunov functionals of each PDEs, the application of the Lyapunov theorem leads to conservative stability conditions that are restricted to the case where both PDEs are stable (see [START_REF] Mironchenko | Construction of Lyapunov functions for interconnected parabolic systems: an iISS approach[END_REF]).

For PDEs interconnections of type hyperbolic-hyperbolic in Di [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF], hyperbolic-parabolic in [START_REF] Karafyllis | Small-gain stability analysis of certain hyperbolic-parabolic PDE loops[END_REF] or parabolic-parabolic in [START_REF] Grüne | Finite-dimensional output stabilization for a class of linear distributed parameter systems -A small-gain approach[END_REF], the stability analysis methods vary. This diversity comes from the different analysis tools and approximation scheme involved. Global exponential stability (GES) can be assessed via frequency analysis using the small-gain theorem as in [START_REF] Karafyllis | Small-gain stability analysis of certain hyperbolic-parabolic PDE loops[END_REF]. It can also rely on the use of Lyapunov functionals which include interconnected terms as in [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF]. In parallel to this last technique, an approximation is performed to obtain numerical solutions. Finite element methods as in [START_REF] Li | Convergence and stability analysis of an explicit finite difference method for 2-dimensional reaction-diffusion equations[END_REF]; [START_REF] Burman | Loosely coupled, non-iterative timesplitting scheme based on Robin-Robin coupling: Unified analysis for parabolic-parabolic and parabolichyperbolic problems[END_REF], Legendre polynomials approximation as in [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF]; [START_REF] Bajodek | Stability analysis of an ordinary differential equation interconnected with the reaction-diffusion equation[END_REF] or modal decomposition as in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]; [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF] can be applied. Then, the application of Lyapunov's theorem leads to linear matrix inequalities (LMIs), which can be solved by linear semidefinite programming (see e.g. [START_REF] Valmorbida | Stability analysis for a class of partial differential equations via semidefinite programming[END_REF]; [START_REF] Peet | A Partial Integral Equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs[END_REF]).

Here, the case of parabolic-parabolic interconnected PDEs is investigated. The proposed methodology consists of • performing a modal decomposition of the Sturm-Liouville operators; • projecting the coupling terms on this eigenbasis;

• rewriting the infinite-dimensional interconnected system as a finite-dimensional system coupled with a residual infinite-dimensional dynamics; • applying Lyapunov's theorem on the finite-dimensional system while evaluating the impact of the residual infinite-dimensional dynamics.

The objective is to derive GES sufficient conditions and provide the exponential decay rate of the solutions.

The paper is structured as follows. Section II introduces the system description and the modal decomposition of the two Sturm-Liouville operators. An equivalent model based on this modal decomposition is proposed. Section III is concerned with the derivation of sufficient stability analysis condition. The first condition, in Theorem 8, is an LMI test and the second one, in Theorem 12, is a Hurwitz test of the approximated state matrix. Lastly, Section IV shows numerically that the coupling of two parabolic PDEs can have a stabilizing effect.

Notation: Throughout this paper, notations R, R + , R n×m and S n ≻0(≺0) stand for real numbers, positive numbers, matrices of size n × m and positive (negative) definite matrices of size n, respectively. Matrices I n , M ⊤ and diag(u 1 , . . . , u n ) correspond to the identity matrix of size n, transpose of matrix M in R n×n and diagonal matrix whose diagonal coefficients are (u 1 , . . . , u n ). We also use vec(•) as the vectorization operation and ⊗ as the 

|•| := R n → R + u → √ u ⊤ u , ∥•∥ :=      L 2 → R + z → 1 0 |z(x)| 2 dx .

REACTION-DIFFUSION SYSTEMS

In this section, we present the system under investigation and propose an equivalent model thanks to a modal based decomposition as in [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF].

Interconnected plant

Consider two reaction-diffusion equations

       ∂ t z i (t, x) = [∂ x (p i (x)∂ x )+q i (x)]z i (t, x)+b i (x)z 3-i (t, x), cos(θ i0 )z i (t, 0) -sin(θ i0 )∂ x z i (t, 0) = 0, cos(θ i1 )z i (t, 1) + sin(θ i1 )∂ x z i (t, 1) = 0, z i (0, x) = z i0 (x),
(1) for i ∈ {1, 2} and (t, x) ∈ R + ×(0, 1). The initial conditions z i0 are in L 2 ((0, 1); R), the scalars θ ij are in [0, π/2], the diffusion functions p i are in C 1 ((0, 1); R + ) and the both reaction q i and interconnection b i functions are in C 0 ((0, 1); R). The plant (1) is represented in Fig. 1. Remark 1. The proposed method applies to any couplings of the form B i z 3-i , where B i is a linear and bounded operator of L(L 2 ((0, 1); R). The method can also be extended to n coupled reaction-diffusion equations. The operator of system (1) is given by

A = ∂ x (p 1 ∂ x ) + q 1 b 1 b 2 ∂ x (p 2 ∂ x ) + q 2 , (2) 
on the domain D(A) = D(A 1 ) × D(A 2 ), where

A i = ∂ x (p i ∂ x ) + q i , (3) 
D(A i ) = {f ∈ H 2 ((0, 1); R), s.t. cos(θi0)f (0)-sin(θi0)f ′ (0)=0 cos(θi1)f (1)+sin(θi1)f ′ (1)=0 }. Remark 2.
In view of (2) and -A i being a Sturm-Liouville operator, classical results on the bounded perturbation of generators of C 0 -semigroups (see (Pazy, 2012, Chapter 3)) can be readily invoked for assessing and concluding the well-posedness of system (1), yielding solutions in

C 0 (R + , L 2 ((0, 1); R) × L 2 ((0, 1); R)).
Definition 3. The trivial solution of system (1) is GES with exponential decay rate µ > 0 if there exist κ > 0 such that the solution satisfies

z1(t) z2(t) ≤ κe -µt ∥[ z10 z20 ]∥ , (4) 
for all t in R + .

In this paper, the global exponential stability (GES) of the trivial solution (z 1 , z 2 ) = (0, 0) of system (1) is studied.

Spectral decomposition

Let the two operators

A i = ∂ x (p i ∂ x ) + q i be defined on the domains D(A i ) for i ∈ {1, 2} as in (3).
From the properties of Sturm-Liouville operators, the eigenvalues {λ i,n } n≥1 of each operator A i are real and ordered such that λ i,n+1 < λ i,n for any integer n ≥ 1. For each i ∈ {1, 2}, λ i,n are simple, tend to -∞ as n tends to infinity and satisfy (see, e.g., Orlov ( 2017)):

λ i,n ≤ -π 2 (n -1) 2 p i + qi , (5) 
where

p i = inf x∈[0,1] (p i (x)) and qi = sup x∈[0,1] (q i (x)).
They are associated to normalized eigenvectors {φ i,n } n≥1 that form a Hilbert basis of L 2 .

For i in {1, 2} and any integer n i ≥ 1, consider the sequence {φ i,1 , . . . , φ i,ni } and define the vectors

Φ i (x) = [φ i,1 (x) • • • φ i,ni (x)] ⊤ ∈ R ni . (6) Define also ζ i (t) = 1 0 Φ i (x)z i (t, x)dx, ζ = ζ1 ζ2 ∈ R n1+n2 , ∀t ∈ R + , (7 
) the vectors of the n i projections of the state z i on the eigenfunctions sets {φ i,1 , . . . , φ i,ni }. Define lastly the error state functions 8) Remark 4. Note that in the case p i , q i are constant functions, the eigenfunctions are known explicitly as trigonometric functions. In the case p i (x) = x and q i (x) = x -νi x , we also know that the eigenfunctions are Bessel functions. Proposition 5. For given integers n i ≥ 1, the dynamics of system (1) can be rewritten as

η i (t, x) = z i (t, x) -Φ ⊤ i (x)ζ i (t), ∀(t, x) ∈ R + × (0, 1). (
                           d dt ζ(t) = Aζ(t) + 1 0 Φ 1 (x)b 1 (x)η 2 (t, x) Φ 2 (x)b 2 (x)η 1 (t, x) dx, ∂ t η i (t, x) = [∂ x (p i (x)∂ x )+q i (x)]η i (t, x) + b i (x) Φ ⊤ 3-i (x)ζ 3-i (t) + η 3-i (t, x) -Φ ⊤ i (x) 1 0 Φ i (ξ)b i (ξ) Φ ⊤ 3-i (ξ)ζ 3-i (t) + η 3-i (t, ξ) dξ, cos(θ i0 )η i (t, 0) -sin(θ i0 )∂ x η i (t, 0) = 0, cos(θ i1 )η i (t, 1) + sin(θ i1 )∂ x η i (t, 1) = 0, ( 9 
) for i ∈ {1, 2} and (t, x) ∈ R + × (0, 1), where the matrices are given by

A = Λ 1 B 1 B 2 Λ 2 , Λ 1 = diag(λ 1,1 , . . . , λ 1,n1 ), Λ 2 = diag(λ 2,1 , . . . , λ 2,n2 ), B 1 = 1 0 (Φ 1 b 1 Φ ⊤ 2 )(x)dx, B 2 = 1 0 (Φ 2 b 2 Φ ⊤ 1 )(x)dx. ( 10 
) + + Φ ⊤ 1 Φ ⊤ 2 ∂x(p1∂x)+q1 b1 I 0 z 1 ∂x(p2∂x)+q2 b2 I 0 z 2 z 1 η 1 ζ 1 z 2 η 2 ζ 2 Λ1 B1 B1 In 1 0 0 ζ 1 Λ2 B2 B2 In 2 0 0 ζ 2 Fig. 2. Block diagram of system (9).
Proof. From one side, the dynamics of the vector ζ are obtained by replacing the state z i by its decomposition given by ( 8). From the other side, the dynamics of the error η i rewrites as follows

∂ t η i (t, x) = ∂ t z i (t, x) -Φ ⊤ i (x) d dt ζ i (t), = ∂ t z i (t, x)-Φ ⊤ i (x) Λ i ζ i (t) + 1 0 Φ i (ξ)b i (ξ)z 3-i (t, ξ)dξ , = [∂ x (p i (x)∂ x ) + q i (x)]z i (t, x) + b i (x)z 3-i (t, x) -Φ ⊤ i (x)Λ i ζ i (t)-Φ ⊤ i (x) 1 0 Φ i (ξ)b i (ξ)z 3-i (t, ξ)dξ,
which corresponds to the PDE in system (9). Finally, the boundary conditions satisfied by z i also hold for η i . ■

The block diagram of this augmented system is represented in Fig 2, where bi

z 3-i := b i z 3-i -Φ ⊤ i 1 0 (Φ i b i z 3-i )(x)dx and Bi η 3-i := 1 0 (Φ i b i η 3-i )(x)dx.
It can be seen as an equivalent representation of the original system in Fig. 1, where the terms z i are retrieved using (8).

STABILITY TEST

In this section, a GES stability condition for system (1) is derived by the use of the modal augmented model (9). In the following, the time argument will be omitted for simplicity reasons.

Lyapunov functional

For given integers n 1 , n 2 ≥ 1 and a P ∈ S n1+n2 ≻0 , consider the following Lyapunov functional

V(ζ, η 1 , η 2 ) = ζ ⊤ P ζ + ∥[ η1 η2 ]∥ 2 , ( 11 
)
where the augmented state ζ = ζ1 ζ2 ∈ R n1+n2 and error state functions [ η1 η2 ] are defined by ( 7) and ( 8), respectively. Similarly to [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF]; [START_REF] Wakaiki | Event-triggered control of infinite-dimensional systems[END_REF], it is based on the n i first projections of the state on the orthonormal sequences {φ i,n } n≥1 and to the sum of the square L 2 norms of each error functions η i . Remark 6. Matrix P can be decomposed as three matrices P = P1 P12 P ⊤ 12 P2 , where P 1 ≻ 0, P 2 ≻ 0 and P 12 selected to satisfy P ≻ 0. Note that ζ ⊤ P ζ introduces interconnected terms between the two reaction-diffusion equations thanks to the matrices P 12 . This is in contrast with [START_REF] Kitsos | Stabilization of underactuated linear coupled reaction-diffusion PDEs via distributed or boundary actuation[END_REF], where P 12 = 0.

Along the trajectories of system (1), using the dynamics expressed by ( 9) and the orthonormality and completeness of the sequences {φ i,n }, we obtain

1 2 d dt V(ζ, η 1 , η 2 ) = ζ ⊤ P Aζ + ζ ⊤ P 1 0 (Φ 1 b 1 η 2 )(x) (Φ 2 b 2 η 1 )(x) dx + ∞ n=n1+1 λ 1,n 1 0 φ 1,n (x)η 1 (x)dx 2 + 1 0 η 1 (x)b 1 (x) Φ ⊤ 2 (x)ζ 2 + η 2 (x) dx + ∞ n=n2+1 λ 2,n 1 0 φ 2,n (x)η 2 (x)dx 2 + 1 0 η 2 (x)b 2 (x) Φ ⊤ 1 (x)ζ 1 + η 1 (x) dx. ( 12 
)
In the following, V in (11) and its derivatives in (12) will be used to state on the stability of system (1) in the sense of the L 2 norm as in Definition 3. Remark 7. The stability tests induced by the Lyapunov functional (11) are given in L 2 norm. Note that, considering the following Lyapunov functional

V H 1 (ζ, η 1 , η 2 ) = ζ ⊤ P ζ+ 2 i=1 ∞ n=ni+1 λ i 1 0 φ i,n (x)η i (x)dx 2 , (13) 
other stability tests could be given in H 1 norm. One can refer to [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF] for details.

Main theorem

The stability of system (1) is studied exploiting (11)-( 12) by formulating inequalities that guarantee the decrease of (11) along the trajectories of (1). These inequalities are cast as linear matrix inequalities (LMIs), affine on the parameter P of (11), which can suitably written as constraints of a semidefinite programming. Theorem 8. For given orders n 1 , n 2 ≥ 1 and scalar µ > 0, if there exist P ∈ S n1+n2 ≻0 and scalars

α 1 , α 2 , β 1 , β 2 > 0 such that   Γ(P )+ α2∥b2Φ1∥ 2 In 1 0 0 α1∥b1Φ2∥ 2 In 2 P P ⊤ -β1In 1 0 0 -β2In 2   ≺ 0, (14a) γ1,n 1 +β2∥b2Φ2∥ 2 ∥b1∥+∥b2∥ ∥b1∥+∥b2∥ γ2,n 2 +β1∥b1Φ1∥ 2 I 2 I 2 -α1 0 0 -α2 ≺ 0, (14b) 
with A ∈ R (n1+n2)×(n1+n2) as in (10) and

Γ(P ) = P A + A ⊤ P + 2µP, γ 1,n1 = 2(-π 2 n 2 1 p 1 + q1 +µ), γ 2,n2 = 2(-π 2 n 2 2 p 2 + q2 +µ).
Then, the trivial solution of system (1) is GES with the exponential decay rate µ.

Proof. Firstly, the Lyapunov functional V defined by (11) satisfies the following inequalities min{σ(P ), 1}

|ζ| 2 + ∥η 1 ∥ 2 + ∥η 2 ∥ 2 ≤ V(ζ, η 1 , η 2 ), V(ζ, η 1 , η 2 ) ≤ max{σ(P ), 1} |ζ| 2 + ∥η 1 ∥ 2 + ∥η 2 ∥ 2 . ( 15 
)
Then, under the assumptions in the theorem, we show that

d dt V(ζ, η 1 , η 2 ) + 2µV(ζ, η 1 , η 2 )
≤ 0 along the trajectories of system (1). To do so, let us focus on each term of 12). For the terms in η i with i ∈ {1, 2}, the ordering of the eigenvalues and the bound (5) give λ i,n < λ i,ni+1 < -π 2 n 2 i p i + qi for any n ≥ n i so that

d dt V(ζ, η 1 , η 2 ) in (
∞ n=ni+1 λ i,n 1 0 φ i,n (x)η i (x)dx 2 ≤ (-π 2 n 2 i p i + qi )∥η i ∥ 2 .
(16) For the two terms involving η 1 and η 2 , applying twice Cauchy-Schwarz's inequality yields

1 0 (b 1 (x) + b 2 (x))η 1 (x)η 2 (x)dx ≤ (∥b 1 ∥ + ∥b 2 ∥)∥η 1 ∥∥η 2 ∥, (17) 
Concerning the crossed term between η 1 and ζ 2 , with any positive scalar α 1 , Young's inequality leads to

2 1 0 (η 1 b 1 Φ ⊤ 2 )(x)ζ 2 dx ≤ 1 α 1 1 0 |η 1 (x)| 2 dx + α 1 1 0 |b 1 (x)Φ ⊤ 2 (x)ζ 2 | 2 dx, ≤ 1 α 1 ∥η 1 ∥ 2 + α 1 ∥b 1 Φ 2 ∥ 2 |ζ 2 | 2 . ( 18 
)
Similarly, with any positive scalar α 2 , we obtain

2 1 0 (η 2 b 2 Φ ⊤ 1 )(x)ζ 1 dx ≤ 1 α 2 ∥η 2 ∥ 2 +α 2 ∥b 2 Φ 1 ∥ 2 |ζ 1 | 2 . (19)
Furthermore, for i ∈ {1, 2} with any positive scalars β i , the application of Cauchy-Schwarz's inequality leads to

β i 1 0 (Φ i b i η 3-i )(x)dx 2 ≤ β i ∥b i Φ i ∥ 2 ∥η 3-i ∥ 2 . ( 20 
)
From ( 12) and ( 16)-( 20), we have

d dt V(ζ, η 1 , η 2 ) + 2µV(ζ, η 1 , η 2 ) ≤ ξ ⊤   Γ(P )+ α2∥b2Φ1∥ 2 In 1 0 0 α1∥b1Φ2∥ 2 In 2 P P ⊤ -β1In 1 0 0 -β2In 2   ξ + η ⊤ γ1,n 1 +β2∥b2Φ2∥ 2 + 1 α 1 ∥b1∥+∥b2∥ ∥b1∥+∥b2∥ γ2,n 2 +β1∥b1Φ1∥ 2 + 1 α 2 η, (21) 
where

ξ =   ζ 1 0 (Φ1b1η2)(x)dx 1 0 (Φ2b2η1)(x)dx   and η = ∥η1∥ ∥η2∥ .
If the LMIs ( 14) hold, then the following inequality holds

d dt V(ζ, η 1 , η 2 ) + 2µV(ζ, η 1 , η 2 ) ≤ 0.
Regarding (15) and applying the Lyapunov theorem, it implies that the following inequality holds

|ζ| 2 +∥[ η1 η2 ]∥ 2 (t) ≤ max{σ(P ), 1} min{σ(P ), 1} e -2µt |ζ| 2 +∥[ η1 η2 ]∥ 2 (0),
Since the augmented state ζ and the errors (η 1 , η 2 ) are related to the state (z 1 , z 2 ) through relations ( 7) and ( 8), the orthonormality of the decomposition gives 22) Therefore, the L 2 × L 2 norm of the solution (z 1 , z 2 ) vanishes with an exponential decay rate µ as in Definition 3, which concludes the proof. ■ Remark 9. In ( 14) the LMIs have N v = (n1+n2)(n1+n2-1) 2 + 4 variables and N c = (n 1 +n 2 )(n 1 +n 2 -1)+10 constraints. Both N v and N c depend quadratically on the orders n 1 and n 2 . Hence, the computational complexity using the current interior-point solver remains polynomial in n 1 and n 2 . Remark 10. For (i, j) ∈ {1, 2} 2 , the quantities ∥b i Φ j ∥ 2 are upper bounded by ∥b i ∥ 2 ∥Φ j ∥ 2 = n j ∥b i ∥ 2 , by orthonormality of the sequence Φ j . At the cost of a loss of conservatism, we can simplify the condition provided in Theorem 8 by replacing the coefficients ∥b i Φ j ∥ 2 by n j ∥b i ∥ 2 .

∥z 1 (t)∥ 2 +∥z 2 (t)∥ 2 = |ζ(t)| 2 + ∥η 1 (t)∥ 2 + ∥η 2 (t)∥ 2 . (
Using the previous remark and imposing n 1 = n 2 = n, we simplify the stability condition from Theorem 8 as follows.

Corollary 11. For a given integer n ≥ 1 and scalar µ > 0, if there exist a P ∈ S 2n ≻0 and scalars α, β > 0 such that Γ(P ) + αn b2

I 2n P P ⊤ -βI 2n ≺ 0, (23a) 
γ n + 2 b + βn b2 1 1 -α ≺ 0, (23b) 
with A ∈ R 2n×2n as in (10) and

Γ(P ) = P A + A ⊤ P + 2µP, γ n = 2 -π 2 n 2 min p 1 , p 2 + max {q 1 , q2 } + µ , b = max {∥b 1 ∥, ∥b 2 ∥} .
Then, the trivial solution of system (1) is GES with the exponential decay rate µ. Furthermore, if the LMIs ( 23) hold for order n + 1, then the conditions hold for order n.

In Theorem 8 and Corollary 11, in order to satisfy the LMIs conditions, the matrix A must be µ-Hurwitz (i.e. the real parts of the eigenvalues of matrix A in (10) are smaller than -µ with µ > 0).

In the next subsection, this criterion is further explored to derive sufficient conditions of stability in terms of the singular values of the matrix A.

A simpler criterion for stability

As an extension of Corollary 11, a simple stability test based on the eigenvalues of the approximated matrix A is put forward. It relies on a particular choice of matrix P and scalars α, β with respect to the order n.

Theorem 12. For a given order n ≥ 1, assume that A in (10) with

n 1 = n 2 = n is µ-Hurwitz. If μ > 0 holds where μ = µ - n 3 2 b Γ n + Γ 2 n + n 2 2 , (24) 
Γ n = π 2 n 5 2 min{p 1 , p 2 } 4 b -n 1 2 max{q 1 , q2 }+µ+ b 4 b ,
then, the trivial solution of system (1) is GES for any exponential decay rate µ ′ < μ.

Proof. For any W ≻ 0, consider the symmetric solution P 0 of the Lyapunov equation P 0 A + A ⊤ P 0 + 2µP 0 = -W, which is a positive definite matrix. Assuming that A is µ-Hurwitz, the Lyapunov matrix P 0 is given by

P 0 = -vec -1 (A ⊤ ⊗I 2n +I 2n ⊗A ⊤ +2µ) -1 vec(W ) .
(25) For any ρ > 0, taking the variables

P = 1 σ(P 0 ) P 0 , α = √ ρ b n -3 2 , β = 1 √ ρ b n 1 2 , (26) 
we note that

µ ′ -µ + 2 √ ρn -1 2 b < 0, (27a) -π 2 n 2 min{p 1 , p 2 }+max{q 1 , q2 }+µ ′ + b+ n 3 2 b √ ρ < 0, ( 27b 
)
imply by Schur complement that the LMIs (23a)-( 23b) hold. In order to make identical conditions (27a)-( 27b), we select a suitable scalar ρ > 0 such that

ρ+ π 2 n 5 2 min{p 1 , p 2 } 2 b -n 1 2 max{q 1 , q2 }+µ+ b 2 b √ ρ- n 2 2 = 0,
or equivalently

√ ρ = -Γ n + Γ 2 n + n 2 2 = n 2 2 Γ n + Γ 2 n + n 2 2 . ( 28 
)
Then, we obtain the two conditions (27a)-(27b) if

µ ′ < µ -2 √ ρn -1 2 b = µ - n 3 2 b Γ n + Γ 2 n + n 2 2 = μ,
with the particular choice of P, α, β in ( 26) and ρ in (28). Consequently, the LMIs (23a)-( 23b) are satisfied for any µ ′ < μ. Assuming now that μ > 0, Corollary 11 guarantees GES and decay rates µ ′ ∈ (0, μ) for system (1). ■

Theorem 12 provides a sufficient stability condition and guarantees exponential decay rates for system (1) in terms of an eigenvalue test on matrix A in (10). Note that such guaranteed decay rates are lower bounds of the exact decay rate of the system. Indeed, for a given order n, Theorem 12 is more conservative than Theorem 8 and Corollary 11. Nevertheless, the eigenvalue test may be faster and more appropriate than the LMI test.

As the order n goes to infinity, this theorem can be then rewritten as the asymptotic condition stated below. Similar asymptotic results have been obtained in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] regarding the synthesis of controllers and observers for a single reaction-diffusion equation.

Corollary 13. If the matrix A in (10) with n 1 = n 2 = n is µ-Hurwitz when n tends to infinity, then the trivial solution of system (1) is GES for any exponential decay rate µ ′ < µ.

Proof. The proof is directly linked to the passage to the limit in Theorem 12. Indeed, (24) becomes

μ = µ - n 3 2 b Γ n + Γ 2 n + n 2 2 -→ n→∞ µ, because Γ n ∼ n→∞ n 5 2
Thus, the scalar μ can be replaced asymptotically by µ. ■

Corollary 13 ensures a bound for the exponential decay rate of system (1), although it may be pessimistic. 

EXAMPLE

In this section, the proposed sufficient conditions of stability are illustrated. We show that two stable reactiondiffusion systems can result in an unstable interconnection under the effect of the input and output operators.

Consider the following example

       ∂ t z 1 (t, x) z 2 (t, x) = p 1 ∂ xx +q 1 b 1 cos(πx) b 2 cos(πx) p 2 ∂ xx +q 2 z 1 (t, x) z 2 (t, x) , ∂ x z 1 (t, 0) = 0, ∂ x z 1 (t, 1) = 0, ∂ x z 2 (t, 0) = 0, ∂ x z 2 (t, 1) = 0, (29) 
where p 1 , p 2 , q 1 , q 2 are constant functions and given by q

1 = q 2 = 1, p 1 = p 2 = 2, b 1 = -b 2 = 10. (30) 
In that case, we know that the Sturm-Liouville diagonal operators -(p i ∂ xx + q i ) are associated to the eigenvectors {φ i,n } n≥1 and eigenvalues {λ i,n } n≥1 with

φ i,n (x) = 1, if n = 1, √ 2 cos((n -1)πx), otherwise, λ i,n = -p i ((n -1)π) 2 + q i . (31) 
We also know that b = 1 √ 2 max{b 1 , b 2 }. Furthermore, for any integers n 1 = n 2 = n ≥ 1, the matrix A in (10) is given by

A = Λ 1 b 1 B b 2 B ⊤ Λ 2 , Λ 1 = -p 1 diag(1, . . . , n 2 )π 2 + q 1 , Λ 2 = -p 2 diag(1, . . . , n 2 )π 2 + q 2 , B = 1 2      0 √ 2 0 0 0 √ 2 0 1 0 0 0 1 0 . . . 0 0 0 . . . . . . 1 0 0 0 1 0      .
Both equation taken separately are unstable but make a stable system once interconnected. For instance, a stable solution is simulated in Fig. 3 from the initial condition z 1 (0, x) = z 2 (0, x) = 1 for all x ∈ (0, 1).

Indeed, applying Theorem 8, the LMIs conditions ( 14) with µ = 10 -5 are satisfied for orders (n 1 , n 2 ) such that n 1 ≥ 2 and n 2 ≥ 2. Applying Corollary 11 with µ = 10 -5 , the LMIs conditions ( 14) are also satisfied for order n ≥ 2. The second version provides a gain in to obtain the certified decay rate μ. For n = 1, the matrix A is not Hurwitz and we cannot conclude on stability properties. For n ∈ [2, 5], even if A is Hurwitz by construction, we end with μ < 0 and do not assess stability. For n ≥ 6, the scalar μ is positive allowing us to state that the system is GES, with at least a decay rate given by μ. The results are shown in Table 2. Interestingly, the exponential decay rate μ guaranteed by Theorem 12 increases with the order n. We finally note that A is 1.91-Hurwitz when n → ∞. According to Corollary 13, this system is GES and has at least an exponential decay rate of 1.91.

Lastly, comparing Table 1 and Table 2 for a fixed certified decay rate, we note that using an eigenvalue test instead of a LMI test reduces the calculation time drastically.

CONCLUSIONS

This paper has discussed the stability analysis of coupled reaction-diffusion systems. With the help of the modal decomposition of each subsystem, a sufficient condition of stability has been proposed. Then, a simple test on the eigenvalues of the approximated state matrix has also been highlighted. In the numerical example section, we were able to conclude that stability properties of reactiondiffusion systems can be gained through interconnection.

Future work will investigate interconnections with unbounded input and output operators. It would also be interesting to focus on nonlinear reaction-diffusion equations and determine the basin of attraction of a stable equilibrium, expressed with a finite number of state variables.

Fig. 3 .

 3 Fig. 3. Solution (z 1 , z 2 )(t) for (z 1 , z 2 )(0) = 1.

Table 1 .

 1 Exponential decay rate µ guaranteed by Corollary 11 for a given order n.

	Order n	1	2	5	10	15	20	30
	Decay µ	-	0.001 1.19 1.55 1.67 1.73 1.78
	CPU time	0.1s	0.1s	0.2s	0.3s	0.6s	2s	6s
	Order n	≤ 5	6	10	20	50	100	500
	Decay μ	-	0.19	0.89	1.40	1.71	1.81 1.89
	CPU time	0.01s 0.01s 0.01s 0.02s 0.05s	0.1s	0.2s

Table 2 .

 2 Exponential decay rate μ guaranteed by Theorem 12 for a given order n.terms of computational complexity since it avoids testing pairs (n 1 , n 2 ) by imposing n 1 = n 2 = n. With a bisection algorithm, it is even possible to find the maximal decay rate µ which can be guaranteed by Corollary 11. The results as well as the computational times are summarized in Table1.Moreover, applying Theorem 12, the eigenvalue test on the matrix A is performed for several orders n. Starting from the scalar µ such that A is µ-Hurwitz, we remove the error

	gap	n Γn+ Γ 2 3 2 b n + n 2 2