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Abstract—The search for information of interest in massive
time series is crucial in many industrial applications. Companies
need their data to be analyzed or modeled in real time, which
often requires to extract some patterns, also referred as motifs.
However, for diverse and ever more signals, human expertise
is overwhelmed by time and by huge amount of data. It is
the case for environmental monitoring where it is question to
detect radiological phenomena from environmental signals. In
this paper, we propose an unsupervised and unknown length
motif discovery method based on the Matrix Profile with a low
computational cost. Its performance is evaluated on a dataset of
simulated radiological signals dedicated to environmental mon-
itoring, and compared to a similarity DTW based method and
to a classical standard deviation based method. The advantages
and drawbacks of each method are highlighted in terms of
performance, runtime, accuracy and robustness to different types
of noisy signals.

Index Terms—pattern discovery, time series, data mining, motif
discovery, unsupervised, variable-length, real time, matrix profile,
DTW, Crossmatch

I. INTRODUCTION

Environmental monitoring signals come from the recording
of both background noise and patterns, also called motifs,
corresponding to some phenomena [1]. Those phenomena cor-
respond to natural and human-made environmental events. For
several years, motif discovery has become an important topic
in data mining [2]. It allows to efficiently discover phenomena
by extracting motifs of interest from the background of the
signal and measure their similarities. The main problems of
motif discovery algorithms are the difficulty to detect motifs
with unknown lengths, the large processing time, discovering
ill-known (warped) motifs, and online processing [3].

Among recent methods of the state-of-art [4], approaches
based on discretization [5], autoencoder [6], Dynamic Time
Warping (DTW) [7] and Matrix Profile (MP) [8] have been

Fig. 1: Time series and motif locations (orange).

studied. Following on from results presented in the compar-
ative study in [4], approaches based on discretization and
autoencoder have not been selected here due to their low
performance compared to DTW [7] based approach. Moreover,
the MP has shown its flexibility to many problems in data
mining [8], [9], which makes it interesting for our problem.

In this paper, we propose two unsupervised methods to
discover unknown-length motifs with low time complexity for
the purpose of being applicable in real time.

The first method we propose is an improvement of the Pan
Matrix Profile (PMP), introduced by Madrid et al. [9]. The
principle of the Pan Matrix Profile is to compute a Matrix
Profile (MP) [8] for all lengths of potential patterns, to discover
motifs of different lengths and their starting indices. This leads
to very high computational cost. Unlike PMP our method
needs only one computation of the MP to directly get the
length and the motifs locations of all patterns. Our proposed
method needs only one computation of the MP, which greatly
reduces the time complexity.

The second method we propose is an adaptation of the
Crossmatch algorithm [10] to discover unknown length motifs



with low complexity. The latter computes a similarity matrix
equivalent to the DTW distance, for two evolving time series.
Noering et al. [4] adapted the similarity matrix of the Cross-
match algorithm and combined it with the motif extraction and
clustering method of [11], to discover motifs in one signal.
Our modification consists in thresholding the diagonal of the
similarity matrix. This new version greatly reduces the time
complexity.

Then, we compare the proposed methods based on the MP
and on the Crossmatch to a classical approach based on sliding
standard deviation thresholding.

As our motivation is to discover motifs online in radio-
logical signals of environmental monitoring, we evaluate our
methods on signals constructed with different background
noises and motifs simulated by an environmental software,
owned by CEA. Discovery methods are evaluated with the
ground truth of positions of motifs. Some of those signals are
illustrated in Fig. 1.

In Section II, we present our proposed methods. In Sec-
tion III, we evaluate their performance on synthetic signals
which model real environmental signals. Then, we conclude
in Section IV.

II. METHODOLOGY

A. Proposed method based on Matrix Profile

Matrix Profile (MP) mi is a sliding Euclidean distance as:

mi = min
j>i+L or i<i−L

d(xi:i+L−1, xj:j+L−1), (1)

with d the Euclidean distance, x = {xi} the input time
series and L the length of the subsequence xi:i+L−1. Its min-
imum values identify diverse repetitive and unique patterns in
the signal. Extreme values are zero at positions of a motif if the
length of the searched motif corresponds to the subsequence
length L (Fig. 2a). However, for noisy signals (Fig. 2b), due to
its implementation with the MSTAMP algorithm [8], [12], the
MP behaves differently: it creates local maxima at the position
of the motif instead of a local minima.

The Pan Matrix Profile (PMP) [9] corresponds to the MP
calculated with the MSTAMP algorithm for different L values
of subsequence lengths. According to [13], L must be between
4 and a maximum length Lmax. In Fig. 3b, we represent
Matrix Profiles of the signal (Fig. 3a) for some values around
the local maxima (light blue line). In Fig. 3c, we represent
the PMP image for all values of L such as 4 ≤ L ≤ Lmax

= 40. The abscisses and ordonates correspond to the time
index i and the length L respectively. It can be noticed in Fig.
3c, that motifs of 1 point length are represented by a single
triangle, whereas longer motifs are represented by two same
size triangles that intersect. All triangles have the same size
and the coordinates α of the hollow between two intersecting
triangles exactly correspond to the starting index is and the
length LM of the corresponding motif (see notations in Fig.
3c). This hollow corresponds to the local maxima of the MP
when the subsequence length is equal to motifs length see
Fig. 2b and 3c). Based on these observations, and to reduce

Fig. 2: a) Non-noisy and b) noisy signals (blue) and their Matrix Profiles
(pink) obtained with a subsequence length L corresponding to some motif
lengths (orange).

the complexity, we propose to compute a unique MP (uMP)
for a single value of subsequence length denoted Lmax, which
must be chosen larger than the longest expected pattern. With
Thales’s theorem, we establish the following formula:

l1
l2

=
ϵ1
ϵ2
, with : ϵ1 = l1 × 2− (p2 − p1),

l2 = Lmax − 4.
(2)

The starting index of the motif is is = p1+l1 and the ending
index is ie = is + LM with LM = Lmax − ϵ2. To resume,
the algorithm consists in obtaining p1 and p2 by thresholding
the average of MP calculated for Lmax, to deduce α(is, LM ).
Moreover, since the MP is sensible to noise as highlighted
in Fig. 2, we also test our proposed uMP method with a
smoothing applied to the input signal as pre-processing.

B. Proposed method based on Crossmatch

Crossmatch [10], [14] is based on the computation of a
similarity matrix v. We here use the same formula than

Fig. 3: a) input signal and its b) signal and c) image visualizations of Matrix
Profile for different subsequence lengths L



Noering et al. [4] to get the similarity matrix v. Each value of
v(i, j) depends on the previous values of the matrix v:

v(i, j) = max


ϵbd − ||xi − yj ||+ v(i− 1, j − 1)

ϵbv − ||xi − yj ||+ v(i, j − 1)

ϵbh − ||xi − yj ||+ v(i− 1, j)

0

v(i, j) = 0 if |i− j| ≤ offset,

(3)

where xi and yj represent the sample points of time series x
and y. We compute the similarity matrix v for x = y, and we
use it to extract motifs. We set ϵbd = 0.03 and ϵbv = ϵbh =
−0.01 as time scaling penalization, i.e. horizontal or vertical
steps in v. Find more details about the Crossmatch algorithm
in [10]. Noering et al. use an offset region around the diagonal
of the similarity matrix (Fig. 4a) to eliminate trivial matches.
Focusing on trivial matches of the diagonal, we propose to fix
the offset to the minimal value 1 and, we extract a diagonal of
empirical width of 10 pixels (Fig. 4b). Consequently, all other
elements of our modified similarity matrix are zero. Then,
to get the intensity signal of the diagonal, the elements of
each column of the matrix are summed. The intensity signal
is thresholded using its mean (Fig. 4c) to detect location of
motifs and extract them from the background signal. We name
our Crossmatch adaptation the dCrossmatch, in reference to
the use of the diagonal.

C. Method based on moving standard deviation

With the aim of discovering motifs of interest in time series,
we compare our proposed methods to a classical approach
based on the moving standard deviation. The input parameter
lw is the window length for the moving standard deviation
(STD). Since signal’s background noise follows a normal
distribution, we apply the following threshold th to the signal:
th = µm+3σm, with σm the moving STD and µm the signal’s
moving mean. Signal’s moving mean is computed with n times
lw as window length. To obtain a large enough time horizon

Fig. 5: Moving standard deviation thresholding.

according to time series’ length, an empirical value of n = 20
is chosen. The method is illustrated in Fig. 5.

III. EXPERIMENTS

A. Signals

To evaluate performance of the methods proposed in this pa-
per, we create synthetic time series made of different sizes and
composed of normally distributed background noise and motifs
of different sizes, obtained by a radiological signal simulation
software owned by CEA. Synthetic signals are constructed
according to our observations on the real environmental sig-
nals: different noise levels for motifs and backgrounds are
considered. For some signals, the amplitudes of motifs vary
and we make slightly variations on the background. In the
end, the dataset contains different cases of signals. For each
case, we make 100 signals with different noise realizations.
Fig. 1 shows few examples of our synthetic time series. Table
I gives signal to background noise ratio (SNRBKG) and signal
to motif noise ratio (SNRmotifs), which we formulate as:

SNRBKG =
Pmotifs

σ2
BKG

, SNRmotifs =
Pmotifs

σ2
motifs

, (4)

where Pmotifs is the mean power of motif signals, and σ2
BKG and

σ2
motifs are the noise variances of the background and motifs,

respectively.

Fig. 4: Steps of our Crossmatch adaptation, dCrossmatch, a) is the similarity matrix of Noering et al. [4], b) our proposed similarity matrix with the extracted
diagonal, and c) the intensity signal of the diagonal and it threshold.



B. Evaluation metrics

The outputs of the algorithms are the indices of starting and
ending points of discovered motifs. Proposed evaluation met-
rics are the F1-score (F1), the True Positive Rate (TPR) and
the False Discovery Rate (FDR) to evaluate the performance
of motif detection. The index position errors (erri) allows to
evaluate the performance of motif locations. We define a found
motif as True Positive with a tolerance of 10 points on the
ground truth indices, and then we quantify the motif location
error with e, L1-norm of index position errors divided by the
number of True Positive since we only calculate errors for the
True Positive.

F1 = 2× precision×recall
precision+recall , FDR = FP

FP+TP ,

L1 =
∑
i

|erri|, e =
L1

TP
,

precision = TP
TP+FP , recall = TPR = TP

TP+FN ,

(5)

where TP is the number of True Positive, FP the number of
False Positive and FN the number of False Negative.

C. Results

To compare the performance of the methods, Fig. 6 exhibits
the different metrics. The left sub-figure illustrates the couple
of the F1-score and the error e which measures both motif
detection and location performance, whereas the right sub-
figure shows the couple of FDR and TPR metrics to quantify
the motif detection performance. These metrics are calculated
on the signals represented by numbers, as illustrated in table I.
A good method has its points located in the upper-left corner
of both graphs.

Scores and errors illustrated in Fig. 6 exhibit that the moving
STD and the proposed uMP method with smoothed input
signal are, without contest, the most efficient methods for
our dataset. The moving STD gives very good results in both
detection and location metrics and for all signals, except for
the signal case n°3. Despite this, this method is remarkably
stable.

Signal case n°3 is the most difficult one since motifs are
very noisy and close to the background (see Table I) then, it
provides lower detection precision (F1) and higher location
error (e) than other signals. All methods give limited or poor
results for it, except the uMP with smoothed input signal
(Fig. 7). This method is more efficient than the moving STD
one, except for signal cases n°2, 5, 7 and 11, which contain
motifs drowned in the background (low SNRBKG). However,
these signals have slightly or non-noisy motifs, which might
not correspond to real environmental radiological time series.
On the other hand, this method is a bit less accurate than

the moving STD one, referring to L1-norm position errors.
Besides, the raw uMP method is, in any case, less efficient
than the uMP with smoothed input signal.

The dCrossmatch method gives particularly low scores for
signal cases n°3, 4, 6 and 10. The common characteristic of
these signals is that their motifs and their background are very
noisy (see Table I).

Concerning the processing time, for an input signal of
length 1000, the uMP, the dCrossmatch and the moving STD
approaches have a runtime of about 10-1s, 10-2s and 10-3s
respectively (Table II). We use a computer with processor
Intel(R) Core(TM) i7-10875H CPU 2.30 GHz, with a RAM
memory of 64.0 Go.

TABLE II: TIME COMPUTATION OF EVALUATED METHODS FOR AN INPUT
SIGNAL OF LENGTH 1000.

Methods uMP dCrossmatch moving STD
Runtime (s) 10-1 10-2 10-3

D. Discussion

The dCrossmatch has an important dispersion of scores.
This is caused by noisy signal cases which provide bad results.
Smoothing the noisy signal is not possible since it impacts the
similarity measured by the dCrossmatch.

The moving STD gives the best and stable results, indeed,
dispersion is very low compared to other methods. It is also
the fastest method. Its only drawback is that it struggles
dealing with signal cases where motifs are very close to the
background and have the same power of noise.

To make up for it, the uMP with smoothed signal overcomes
this limitation which makes it also very useful to explore our
real environmental signals. In addition, for some signal cases,
it gives even slightly better results than the moving STD one.

To benefit of advantages of both the moving STD and the
uMP methods for different signal cases, we could use the two
methods in parallel. Indeed, since they have different draw-
backs depending on signal characteristics, the compensation
of both should allow an enough complete motif discovery
procedure.

IV. CONCLUSION

In this paper, we proposed methods which allow to tackle
the difficult problems of discovering motifs of variable and
unknown lengths. These methods have a low runtime, offering
the possibility of online processing. We proposed an adap-
tation of the Matrix Profile (uMP) for which we compared
performance with a DTW based Crossmatch method (dCross-
match) and a classical moving standard deviation thresholding
method. The classical thresholding and the uMP methods

TABLE I: SIGNAL TO BACKGROUND NOISE RATIO SNRBKG AND SIGNAL TO MOTIF NOISE RATIO SNRMOTIFS .

Signals 1 2 3 4 5 6 7 8 9 10 11 12
SNRBKG (dB) 8.2 0.24 7.19 14.37 0.28 8.25 0.24 8.2 8.2 15.18 1.08 8.2
SNRmotifs (dB) no noise no noise 7.19 14.37 20.27 20.28 34.22 34.23 no noise 15.18 21.09 no noise



Fig. 6: Visualization of a) the couple of F1-score F1 and motif location error e, and of b) TPR vs. FDR, for all cases of time series. Each case is represented
by a number.

provide good performance for the studied signals. Their lim-
itations could be compensated by combining both methods,
since both have fast runtime and are adjustable in real time.

Following this work, we are currently using the selected
methods of this paper on real environmental signals to then
classify discovered motifs and obtain a better knowledge of
radiological environment [15].
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