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Abstract: Lignocellulosic biomass is an established source of energy with various applications. Yet, 

its diversity renders the proper combustion of its thermochemical degradation vapors challenging. 

In this work, the combustion of syngas obtained from biomass thermochemical conversion was 

numerically investigated to limit pollutant emission. The Computational Fluid Dynamics (CFD) 

simulation was performed using the open-source OpenFOAM. The reactor was considered in an 

axisymmetric configuration. The gas mixture resulting from the pyro-gasification devolatilization 

was composed of seven species: CO, CO2, H2O, N2, O2, light, and heavy hydrocarbon, represented 

by methane (CH4) and benzene (C6H6), respectively. The evolutions of mass, momentum, energy, 

and species’ concentrations were tracked. The flow was modeled using the RANS formulation. For 

the chemistry, reduced kinetic schemes of three and four steps were tested. Moreover, the Eddy 

Dissipation Concept (EDC) model was used to account for the turbulence–chemistry interaction. 

The numerical prediction enabled us to describe the temperature and the species. Results show that 

all transported variables were closely dependent on the mass flow rate of the inflow gas, the primary 

and the secondary air injections. Finally, from a process perspective, the importance of the 

secondary air inlet to limit pollutants emissions can be concluded. 
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1. Introduction 

Crude oil, natural gas, and coal have been used for decades as the primary energy 

sources. However, excessive use of these fossil fuels has become the main cause of 

harmful environmental and health effects. Indeed, enormous amounts of greenhouse gas 

(GHG) are released [1], leading to global warming and brutal climate change. Hence, 

solar, wind, geothermal, sea waves, and biomass are investigated as viable alternatives 

and environmentally-friendly renewable energy sources. In particular, biomass has 

gained increased interest in the last decade due to its availability, abundance, low cost, 

viability, and sustainability. More precisely, biomass combustion [2–4], pyrolysis [5–7], 

and gasification [8,9] have been proven as three processes with high efficiency during 

energy conversion [10]. In this scope, this work proposes the use of an open-source 

numerical tool helping in the energy valorization of unconventional woody biomass, such 

as olive mill solid waste (a substrate much encountered in Northern Africa). Pyrolysis is 

a widely used thermochemical process. It requires a range of temperatures between 300 

°C and 1000 °C and a residence time varying between one to three hours. Different 

fractions of volatile organic compounds (VOC), bio-oil, tars, and char (fixed carbon and 

ash) are usually yielded. As for gasification, carbonaceous feedstock should react at high 

temperatures (higher than 600 °C) in a weak oxidant atmosphere, such as; N2/O2 (air), 
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N2/CO2, and N2/steam, depending on the chosen operating conditions. The main product 

targeted in this case is the syngas composed of CO, H2, and CnHm for which methane is in 

the majority [11,12]. This gas could be used directly for feeding furnaces, turbines, specific 

engines [13–15], power generation, or for chemical compounds, such as bio-methanol or 

bio-ethanol [16–18]. From an operational perspective, both pyrolysis and gasification 

could be implemented within the same reactor in a pyro-gasification continuous process. 

After tars filtration, the rest of the gas could be directly injected into combustion chambers. 

The gasification process is commonly realized at different isothermal temperature ranges, 

but always higher than 600 °C and sometimes reaching temperatures as high as 1400 °C. 

It is to be highlighted that parameters, such as the reactor design, the heating rate, the 

temperature, the residence time, the gasifier, and the feedstock nature strongly affect the 

content rates of yielded products [19–26]. Moreover, many reactors could be used, such 

as the fixed bed, the entrained bed, and the fluidized bed reactors. Fixed bed reactors are 

reported in the literature in two varieties according to the flow type: the updraft and the 

downdraft fixed bed configurations [25]. The choice of the adequate gasifier depends on 

the size requirement (volume of feedstock and energy demand), the feedstock 

characteristics (moisture and ash content), and the quality of the gasification products 

(syngas, bio-oils, and bio-char). For example, updraft flow technology is preferred when 

the feedstock has a moisture content of less than 50%, as in the present study. Moreover, 

materials with high ash content are not advisable for fixed bed reactors, and woody 

biomass is not recommended for entrained flow bed reactors [26]. In industrial 

applications, different feedstocks could be used during the gasification process. However, 

the most commonly used feedstocks are coal, petroleum-based materials, coke, bitumen, 

and organic material, such as lignocellulosic biomass and wastes [21,27,28]. Other 

alternative feedstocks include industrial sludge, fluff, vehicle tires, dried sewage sludge, 

low-rank coal, and sugarcane bagasse [12]. The present study investigates the combustion 

of a woody gas mixture similar to that produced by a woody biomass’s pyro-gasification 

obtained by Farokhi et al. [29] (similar to olive mill solid waste syngas). The combustion 

of such gas mixtures showed a reduction of NOx emissions during the combustion of CO 

and H2 with air [30]. Furthermore, this gas mixture was recently investigated as an 

alternative fuel for reciprocating engines and gas turbines in the context of heat and/or 

electricity generation or co-generation processes [31,32]. The Computations Fluid 

Dynamics (CFD), which is low cost compared to experimental tests, has become a crucial 

tool for understanding the combustion process of the gas mixture and for controlling the 

emission levels. In this context, Zhou et al. [33] recently built a model allowing for the 

reproduction of the combustion of blended solid fuels. The major advantage they 

concluded was the flexibility of such a model in understanding and predicting the 

chemical kinetics of reactions. Indeed, after a lab-scale validation, these authors were able 

to extend the modeling to the scale of an industrial boiler fed with waste wood chips 

characterized by different ash contents. Inspired by these previous works [29,33], we 

selected the geometry of an updraft fixed bed reactor where the gas mixture will be burnt 

above the bed (in the freeboard zone). In a practical case, this configuration avoids the 

high cost of syngas cleaning from other undesirable components, such as tars. 

The primary focus of this study is the effect of the inlet airflow (primary/secondary) 

and the fuel flow rate on the temperature and species’ concentrations along the axis of the 

reactor, as that is where experimental measurements were performed. Therefore, a model 

was built based on Open-FOAM software. The Realizable k-ε model, proven in many 

studies, was chosen for the turbulence description. Seven species (CO, CO2, H2, H2O, CH4, 

and C6H6) were considered [33,34]. The Eddy Dissipation Concept model (EDC) was 

selected with reduced kinetic schemes to consider the turbulence–chemistry interactions. 

The proposed work would improve the actual reactor’s performance and understand the 

impact of feedstock variations and the effects of the air supply (primary and secondary) 

on thermal performances and pollutant emission. 
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2. Validation Experiments and Feedstock Variability 

The experimental data used to validate our calculations correspond to the case of 

wood pellets used as feedstock in an updraft fixed bed gasifier [29]. In the experimental 

device, the grate was designed to allow air injection through 32 circular holes (Figure 1a—

left, see Section 3.2 for accurate description). After ensuring the beginning of pellet 

ignition, the decomposition process starts, and the products are ready to react with 

primary air. The secondary air is injected via 12 holes placed above the grate in an axis-

symmetric configuration around the axis. What interests us first of all during calculations 

is the flammable gas mixture without hydrogen. According to Shen et al. [35], woody 

biomass is characterized by low ash content (less than 2%). Despite that, it could be higher 

in some cases, such as for some Nigerian species, Entada Giga 5.09%, and DelonixRegia 

4.98% [36]. Woody biomass also presents a high volatile matter content reaching 81.5% 

(wet basis) for the maritime pine when the moisture content is 8.6% [37]. These properties 

make woody biomass a high-quality fuel and a good candidate for the pyro-gasification 

process. It is equally important to underscore that the conversion of woody biomass 

releases harmful emissions, such as some volatile organic compounds (phenolic aliphatic 

hydrocarbons), NOx (NO + NO2), SOx (SO + SO2), and particulate matter emissions (PMs). 

These emissions are undesirable and must be mitigated as much as possible. It was found, 

for example, that high amounts of gaseous and particulate emissions were generated by 

the combustion of the wood in a household boiler [38]. Moreover, hazardous air pollutants 

(HAPs), depending mainly on the biomass properties, could be deduced after 

characterization via ultimate analysis allowing the knowledge of the contents of carbon, 

oxygen, hydrogen, nitrogen, and sulfur. In addition, the proximate analysis provides 

other crucial properties, such as porosity, density, particle size, fixed carbon content, ash 

content, moisture content, and the high heating value (HHV) [39]. Additionally, the HAPs 

are also influenced by the reactor’s design and the operating conditions [40]. Nevertheless, 

woody biomass presents the lowest nitrogen and sulfur contents among other biomasses 

and coals, knowing that these elements are directly responsible for NOx and SOx emissions 

[41]. Furthermore, it was reported that the HHV of the gas mixture obtained by 

gasification depends on the fuel and the gasifier [42–45]. Furthermore, the low heating 

value (LHV) is strongly influenced by the operating conditions; the equivalence ratio 

[42,43], the gasifier temperature [44], the residence time [45], and the moisture content 

[46]. For information, the LHV value was found to be equal to 13.3 MJ/m3 during the 

gasification of the wood granulate when using water steam as gasifying agent [44]. 

According to Couto et al. [47], after analyzing different wood species, the synthesis gas 

from wood was distinguished by its HHV reaching 14.68 MJ/m3. This diversity of 

feedstock and resulting properties highlights the need for a free/open-source numerical 

tool to help engineers to better design/adapt their furnaces to their substrate specificity. 
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(b) 

Figure 1. (a). General view of the reactor bed design (Salome) and 2D wedge mesh (OpenFOAM). 

(b). A sketch of the meshed down part of the reactor bed prepared in 2D wedge (length unit is the 

meter). 

3. Modeling Tools 

The combustion of the woody syngas was simulated using the open-source CFD 

platform Open-FOAM (version 18.12+) [48]. In our case, the study was restricted to only 

combustion in the gas phase (in the freeboard of the reactor) because we targeted to use 

this process to feed a combustion chamber directly with this gas mixture [49–51].  

3.1. Flow, Turbulence, and Combustion Model 

RANS equations were used to describe the turbulent flow and combustion of woody 

biomass syngas. They are composed of the continuity, momentum, energy, and species 

transport equations [52]. In the current work, the main assumptions are: 

• The governing equations are implemented in an unsteady state 

• The fuel gas mixture is compressible  

• Soret (diffusion) effect, gravitational acceleration effect, and radiant effect are 

neglected. 

• The pressure follows the equation-of-state of an ideal gas (Equation (7)) 

𝜕�̅�

𝜕𝑡
+ 𝛻. (�̅��̃�) = 0 (1) 

𝜕(�̅��̃�)

𝜕𝑡
+ 𝛻. (�̅�Ũ ⊗ �̃�) − 𝛻. 𝜏 = −𝛻�̅� (2) 

𝜕(�̅�ℎ̃)

𝜕𝑡
+ 𝛻. (�̅��̃�ℎ̃) +

𝜕(�̅��̃�)

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) −

𝜕�̅�

𝜕𝑡
= 𝛻. (𝛼𝑒𝑓𝑓𝛻ℎ̃) + Q̅heat (3) 

𝜕�̅�𝑌�̃�

𝜕𝑡
+ 𝛻. (�̅��̃�𝑌ĩ) = 𝛻. (𝜇𝑒𝑓𝑓𝛻𝑌�̃�) + 𝑅�̅� (4) 
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�̅� = �̅�𝑅𝑇 ∑
𝑌�̃�

𝑤𝑖̅̅̅̅𝑖   (5) 

Q̅heat = −𝛻. (𝜆 𝛻𝑇) + �̅� ∑ ℎ�̃�𝑌�̃�𝑈�̃�
𝑁
𝑖=1   (6) 

𝜏 = �̅�𝜇𝑒𝑓𝑓 𝛻�̃� + 𝜌 ̅𝜇𝑒𝑓𝑓[(𝛻�̃�)
𝑇𝑟

−
2

3
(𝛻. �̃�)𝐼] (7) 

where �̅� is the mean density, �̃� is the Favre-averaged velocity, t is the time, 𝜏 is the 

averaged stress tensor, �̅� is the mean pressure, ℎ̃ is the Favre-averaged internal energy, 

�̃� is the Favre-averaged specific kinetic energy, 𝛼𝑒𝑓𝑓 is the effective thermal diffusivity, 

�̅�ℎ𝑒𝑎𝑡 is the mean heat generation rate, μeff is the effective dynamic eddy viscosity, R is the 

gas constant, T is the temperature, 𝑅�̅� is the mean reaction rate, 𝑌�̃� and 𝑤𝑖̅̅ ̅ are the Favre-

averaged mass fraction and mean molar mass for the ith species, λ is the thermal 

conductivity of the mixture, Tr refers to the transpose of 𝛻�̃� and I is the identity tensor. 

Turbulence was modeled using the Realizable k-ε turbulence model [53–55]. The transport 

equations for the turbulent kinetic energy k and its dissipation rate ε in this model are 

written as [56]: 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̃��̅��̃�) − 𝛻2(�̅� 𝐷𝑘𝑒𝑓𝑓

�̃�) = �̅�𝐺 −
2

3
�̅�(𝛻. Ũ)�̃� − �̅�𝜀 + 𝑆𝑘 (8) 

𝜕�̅�𝜀̃

𝜕𝑡
+ 𝛻. (�̃��̅�𝜀̃) − 𝛻2(�̅�𝐷𝜀𝑒𝑓𝑓

𝜀̃) = 𝐶1�̅�|𝑆|𝜀̃ + 𝐶2�̅�
𝜀̃2

𝑘 + √𝜈𝜀̃
+ 𝑆𝜀 (9) 

where �̃�  represents the Favre-averaged of turbulent kinetic energy, 𝜀̃  represents the 

Favre-averaged turbulent dissipation rate, G is the turbulent kinetic energy production 

rate due to the anisotropic part of the Reynolds-stress tensor, Dεeff is the effective 

diffusivity for ε, Dkeff is the effective diffusivity for k. C1 is the model coefficient (C1 =1.44), 

C2 is the model coefficient equal to 1.92, Sk is the internal source term for k, Sε is the internal 

source term for ε, and S is the mean strain rate. The expression of the boundary conditions 

for the turbulent kinetic energy k and its dissipation rate ε follow the expressions below 

[49]: 

𝑘 =
3

2
(𝑈 ⋅ 𝐼)2 (10) 

𝜀 =
𝐶𝜇

0.75 ⋅ 𝑘
3
2

𝐿𝑡
 (11) 

where, U and I are the flow velocity and the turbulence intensity, respectively. Cµ and Lt 

are the turbulent intensity and its integral length scale. 

The EDC approach [57,58] was proven a potent tool for investigating combustion in 

moderate or low oxygen dilution conditions. The idea consists in dividing the 

computational domain into reacting fine structures cells and non-reacting regions called 

surroundings. The reacting regions are modeled as perfectly stirred reactors (PSR) 

needing fine structure treatment since reactants are mixed on a molecular scale, and mass 

is exchanged with the surroundings. The fine structures are the seats of the smallest scales 

of turbulence. If turbulence and turbulent mixing decrease, the reaction progress can be 

limited by either mixing or chemistry. In such a regime, finite rate chemistry is necessary 

to accurately describe the turbulence-chemistry interaction [59]. However, those reactions 

could extend outside the fine structures due to the species’ mass transfer. Therefore, the 

fine structure mass share is expressed as [60]: 

𝛾∗ = 𝐶𝛾

1
2(

𝜈𝜀

𝑘2
)

1
2 = 𝛾𝐿

2 (12) 

where, 𝐶𝛾 = (
3𝐶𝐷2

4𝐶𝐷1
2 )

1/4

≈ 2.13. CD1 equal to 0.135 and CD2 equal to 0.5 are two constants of 

the EDC model [61]. 𝜈 is the turbulent viscosity. 𝜀 is the turbulence dissipation rate, and 
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k is the turbulence kinetic energy. As proposed by Magnussen [60], the mean reaction rate 

between a certain fraction χ of fine structure regions and the rest of the fluid (𝑅�̅�) is given 

by: 

𝑅�̅� =
�̅�

𝜏∗

𝛾𝐿
2𝜒

1 − 𝛾𝐿
2𝜒

(𝑌�̃� − 𝑌𝑖
∗) (13) 

Whereas, the fine structure and the surroundings are linked by the fluid averaged 

properties and the fine structure mass share 𝛾∗ as: 

�̅� = 𝜓0(1 − 𝛾∗) + 𝜓∗𝛾∗ (14) 

In the above Equations (14)–(16); *, ◦, − and ~ denote, respectively, the fine structure, 

the surrounding, and the fluid mean properties (Reynolds and Favre averaged), Yi* is the 

fine structure mass fractions of species i. χ represents the reacting fraction of the fine 

structures. τ* is the fine structures residence time or EDC mixing time. γL is the fine 

structure length fraction. γ* is the fine structure share.  

According to the original EDC’s version [57], the fine structures residence time τ* 

and a dimensionless fine structure length fraction could be defined based on the Reynolds 

number as follows: 

𝑅𝑒𝑡 =
𝑘2

𝜀 𝜈
 (15) 

𝛾𝐿 = 𝐶𝛾𝑅𝑒𝑡
−1/4

 (16) 

𝜏∗ = 𝐶𝜏𝑅𝑒𝑡
−1/2 𝑘

𝜀
 (17) 

With, 𝐶𝜏 = (
𝐶𝐷2

3
)

1/2

. 

To manage the computational cost of integrating the chemistry, only reduced kinetic 

schemes could be considered. All these equations were implemented in the reacting-Foam 

solver (part of OpenFOAM).  

3.2. Simulation Setup 

The computational domain is an updraft fixed bed reactor in the freeboard zone, 

operating at a nominal capacity of 8–11 kW. The combustion chamber is a cylinder with a 

diameter of 200 mm and a height of 820 mm, as shown in Figure 1a. Three inlets 

characterize this reactor: the first is reserved for the woody biomass syngas feed and is 

composed of 32 holes of 3 mm diameter. The second and the third serve to supply the 

reactor with primary and secondary air with 12 holes of 4 mm diameter. These two air 

inlets are placed above the bed at 60 mm and 75 mm, respectively. Figure 1b presents a 

sketch of the down part of the reactor bed with a 2D wedge mesh. More details of the 

reactor design were reported in the literature [62,63]. Such setups are notoriously greedy 

computational power, which would hinder engineers’ reuse of our work. Therefore, the 

reactor geometry was simplified by adopting an axisymmetric 2D configuration [52]. 

Therefore, the holes of the primary and secondary air inlets are not resolved. This 

emulates a concentrically slid inlet, which, as it has a different inlet area, leads to smaller 

momentum of inflows. To remedy this shortcoming, a non-uniform grid mesh was 

adopted with a fine mesh near the holes of primary and secondary air. The grid mesh 

geometry’s general view is shown in Figure 1b, where a non-uniform mesh is used. Thus, 

the computational domain contains 32,772 (see Section 3.3 for convergence analysis).  

Once the model is set and the geometry meshed, the simulation setup (boundary 

conditions, chemical reaction parameters…) is to be considered. In this regard, it is to be 

highlighted that it is difficult to reproduce precisely the experimental conditions because 

of uncertainties in the flow rate values and values of k and ε. Three cases named Case 1, 

Case 2, and Case 3 were investigated to identify which gives the best agreement with 
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experimental results obtained by Farokhi et al. [29]. Data characterizing these cases are 

summarized in Table 1. In order to have an idea of the fine structures residence time for 

each case simulation, Equations (17) and (19) were used to calculate this crucial parameter 

a priori (primary air and secondary air). Indeed, the reactor residence time (L/Umax ≈ 0.3 s) 

should be much larger than the fine structure residence time to ensure the validity of the 

EDC turbulence modeling approach. Table 2 exhibits the values of residence time 

corresponding to the three cases and based on the gas mixture properties presented in 

Table 1. 

Table 1. Mass flow rate, turbulence kinetic energy k (m2·s−2), and its dissipation rate ε (m2·s−3). The 

initial pressure condition for gas and air is P = 101325 Pa. P. air—Primary Air, S. air—Secondary Air. 

 Case 1 Case 2 Case 3 

�̇� (Gas)(10−6kg · s−1) 6.0 5.0 6.0 

�̇� (P. air)(10−6kg · s−1) 0.20 0.20 0.16 

�̇� (S. air)(10−6kg · s−1) 1.50 1.0 2.50 

Kinetic energy of 

turbulence k (m2 · s−2) 

Gas 

3.18 × 10−2 

P. air 

2.98 × 10−5 

S. air 

1.06 × 10−5 

Gas 

2.21 × 10−2 

P. air 

2.98 × 10−5 

S. air 

0.47 × 10−5 

Gas 

3.18 × 10−2 

P. air 

1.90 × 10−5 

S. air 

2.96 × 10−5 

Dissipation rate of 

turbulence 𝜀 (m2 · s−3) 

Gas 

1.33 × 10−2 

P. air 

6.68 × 10−5 

S. air 

4.51 × 10−5 

Gas 

0.77 × 10−2 

P. air 

6.68 × 10−5 

S. air 

1.33 × 10−5 

Gas 

1.33 × 10−2 

P. air 

3.40 × 10−5 

S. air 

20.92 × 10−5 

Flow velocity U (m·s−1) 
Gas 

2.90 

P. air 

0.61 

S. air 

1.45 

Gas 

2.41 

P. air 

0.61 

S. air 

0.97 

Gas 

2.9 

P. air 

0.49 

S. air 

2.42 

It could be concluded from Table 2 that the residence time of secondary air was the 

lowest in Case 1 and Case 2 (2.7 × 10−4 s and 1.2 × 10−4 s, respectively). For the rest of the 

cases, residence times were in the vicinity of 5 × 10−4 s. All of them are much lower than 

the reactor residence time, allowing us to conclude the validity of the EDC approach for 

the three flow rate configurations. Moreover, on top of uncertainty regarding the 

experimental setup, the reaction schemes used in these calculations are also a source of 

concern. Therefore, different chemical mechanisms were considered to evaluate the 

temperature and gaseous emissions to determine the most adequate. Table 3 summarizes 

the different used chemical kinetic mechanisms. These mechanisms are characterized by 

the frequency factor (A), the activation temperature (Ta), the temperature exponent (β), 

and the reaction order. The chemical kinetics were modeled using the Arrhenius law 

expressed as: 

�̇� = 𝐴𝑇𝛽exp(−𝑇𝑎 𝑇⁄ )[𝑓𝑢𝑒𝑙]𝑏[𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟]𝑐 (18) 

�̇� is the reaction rate, b and c are the exponents of the fuel concentration and the oxidizer 

concentration, respectively. 

Table 2. Calculation of turbulent Reynolds number and the fine structures residence time for each 

case. 

Gas Mixture Primary Air Secondary Air 

Case 1 Case 1 Case 1 

K 

3.18 

𝜀 
1.33 

Ret 

3.80 × 106 

𝜏∗ 
5.0 × 10−4 

K 

2.98 

𝜀 
6.68 

Ret 

6.6 × 105 

𝜏∗ 
5.4 × 10−4 

K 

1.06 

𝜀 
4.51 

Ret 

1.2 × 105 

𝜏∗ 
2.7 × 10−4 

Case 2 Case 2 Case 2 

K 

2.21 

𝜀 
0.77 

Ret 

3.17 × 106 

𝜏∗ 
6.5 × 10−4 

K 

2.98 

𝜀 
6.68 

Ret 

6.6 × 105 

𝜏∗ 
5.4 × 10−4 

K 

0.47 

𝜀 
1.33 

Ret 

0.83 × 105 

𝜏∗ 
5.0 × 10−4 

Case 3 Case 3 Case 3 

K 

3.18 

𝜀 
1.33 

Ret 

3.8 × 105 

𝜏∗ 
5.0 × 10−4 

K 

1.90 

𝜀 
3.40 

Ret 

5.3 × 105 

𝜏∗ 
3.1 × 10−4 

K 

2.96 

𝜀 
20.92 

Ret 

2.1 × 105 

𝜏∗ 
1.2 × 10−4 
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Neglecting radiative transfer of the fine structure, the chemical species reaction rate 

�̇�𝑖
∗  is inherent to the fine structure mass fractions of species 𝑌𝑖  via the following 

expression: 

𝑑𝑌𝑖

𝑑𝑡
= �̇�𝑖

∗ +
1

𝜏∗
(𝑌𝑖

0 − 𝑌𝑖
∗) (19) 

Hence, after resolving Equation (19), the calculation of the mean reaction rate �̅� of 

Equation (15) is then achieved. 

All considered mechanisms are reduced scheme types composed of three or four-

step global reactions with six or seven species. Three-step mechanism (T-S) was 

considered for C6H6, CH4 and CO reactivity’s. Four-step (F-S) mechanism was devoted for 

CO2 decomposition and was coupled to the three-step mechanisms. All used mechanisms 

are summarized in Table 3. 

Table 3. Chemical kinetic mechanisms and corresponding Arrhenius coefficients. 

Mechanism 

Number 
Chemical Kinetics Mechanism A (s−1) β Ta (K) Reaction Order References 

T-S.1 

CH4 + 1.5O2 = CO + 2H20 1.398 × 10+10 −0.062 14,038 [CH4]0.5 [O2]1.066 [64] 

CO + 0.5O2 = CO2 7.66 × 10+11 0.215 9213 [CO] [O2] [64] 

C6H6 + 4.5O2 = 6CO + 3H2O 2.4 × 10+11 0 15,098 [C6H6]−0.1 [O2]1.85 [65] 

T-S.2 

CH4 + 1.5O2 = CO + 2H2O 1.400 × 10+10 −0.062 14,040 [CH4]0.5 [O2]1.066 [31] 

CO + 0.5O2 = CO2 7.380 × 10+11 0.215 9209 [CO] [O2]0.5 [31] 

C6H6 + 4.5O2 = 6CO2 + 3H2O 1.7 × 10+11 0 15,098 [C6H6]−0.1 [O2]1.85 [65,66] 

F-S.1 

CH4 + 1.5O2 = CO + 2H2O 1.4 × 10+10 −0.062 14,038 [CH4]0.5 [O2]1.066 [64] 

CO + 0.5O2 = CO2 2.24 × 10+12 0 20,471 [O2]0.25 [67] 

CO2 = CO + 0.5O2 5 × 10+8 0 20,471 [CO2] [67] 

C6H6 + 4.5O2 = 6CO2 + 3H2O 2.4 × 10+11 0 15,098 [C6H6]−0.1 [O2]1.85 [65,66] 

F-S.2 

CH4 + 0.5O2 = CO + 2H2 4.4 × 10+11 0 15,034 [CH4]0.5 [O2]1.25 [66] 

CO + 0.5O2 = CO2 7.66 × 10+11 0.215 9213 [CO] [O2]0.25 [31,68,69] 

H2 + 0.5O2 = H2O 6.8 × 10+15 −1 20,086 [H2]0.25 [O2]1.5 [65,66] 

C6H6 + 4.5O2 = 6CO + 3H2O 2.4 × 10+11 0 15,098 [C6H6]−0.1 [O2]1.85  

Finally, the gas composition is to be addressed. Table 4 presents the initial conditions 

of the woody biomass syngas flow, the two air supply types, the mass fractions of species, 

the temperature, and the turbulence intensity. The gas mixture properties presented in 

this table were the results of experimental measurements corresponding to the steam 

wood pellets pyro-gasification [29]. 

Table 4. Details of the inlet boundary conditions and gas flow characteristics [29]. 

Species C6H6 CH4 CO2 O2 H2O CO N2 Primary Air Secondary Air 

Mass fraction 0.130 0.029 0.264 0.019 0.109 0.015 0.432 0.233 0.767 0.233 0.767 

Temperature (K) 1373 300 300 

Intensity of turbulence (%) 5 23 58 

Turbulence length scale L(m) 7 × 10−2 4 × 10−2 4 × 10−2 
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3.3. Mesh Convergence 

Once the numerical setup had been defined and before starting the numerical study, 

the mesh size was tested to optimize the computation time, while establishing a 

convergent solution [70]. For this purpose, different (hexahedral) meshes of different sizes 

were tested until reaching stable results under further mesh refinement. Thus, the meshes 

named: M1 = 6994 cells, M2 = 17,570 cells, M3 = 32,772 cells, M4 = 45,302 cells, M5 = 58,193 

cells, and M6 = 67,010 cells, were tested. Figure 2 shows the flame temperature profile 

along the axis of the reactor for the different refinements (Case 1 with chemical kinetic 

mechanism F-S.1, allegedly the most demanding setup). The results of these calculations 

show that the refinement of the mesh influences the simulation only for the first three 

types of mesh M1, M2, and M3. Therefore, to save computation time and memory, it is 

not necessary to further refine the mesh beyond M3. Therefore, the M3 mesh characterized 

by 32,772 cells must be selected to perform the following calculations. 

 

Figure 2. The flame temperature’s evolution along the axial of the reactor for the different meshes, 

in Case 1 with chemical kinetic mechanism F-S.1. 

4. Simulation Results and Discussion 

Before diving deep into the results, a first qualitative analysis is proposed. Figure 

3a,b show the temperature 2D surface plot in the reactor for Case 1 and Case 3 (the two 

most different boundary conditions). First of all, they show no sign of numerical artifact. 

Second, they allow for to identification of the effect of the boundary conditions on the 

temperature distribution inside the reactor. For example, the oxidation zone (OZ) length 

is more prominent (approximately +30%) when using Case 1 compared to Case 3. This can 

be explained by the fact that the mass flow rate, the kinetic turbulence, and the flow 

velocity U of primary air increase the oxidation zone length along the axis of the reactor. 

On the contrary, the radial aspect of the combustion zone is more developed in Case 3 

than in Case 1 (the radius of OZ-1 is wider than the radius of OZ-3 for T > 800). Indeed, in 

this case, the larger flow rate in the secondary injection confines the reaction zone.  
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Figure 3. Temperature 2D surface plot in the entire reactor when adopting the same chemical kinetic 

mechanism F-S.1 for: (a)—Case 1 and (b)—Case 3. 

4.1. Axial Temperature Profile 

Figure 4 shows the flame’s temperature variation along the axis of the reactor for both 

experiments and numerical simulations. The trend is consistent between the simulations 

and agrees with the experiments. The temperature peak ranges between 1958 K and 2142 

K, which is small and was expected given the tested conditions and chemical models [71]. 

In more detail, decreasing the gas injection is responsible for most of the change in the 

peak temperature value for a given kinetic mechanism. Manipulation of the secondary air 

injection has only a marginal effect. Moreover, the choice of the kinetic mechanism also 

influences this indicator (e.g., a 50 K decrease when switching from T-S.1 to F-S.1, in Case 

1). Turbulence level also explains part of the differences observed between the 

simulations. Indeed, the lower efficiency of the micro-scale mixing between the gas and 

oxygen can explain the enlargement of the temperature profile at the expense of its 

sharpness in Case 2 [72,73]. Similar results were reported for other feedstocks combustion 

in different reactors [74–76]. All in all, the best agreement was obtained with the 

conditions of Case 3 with the F.S-1 kinetic mechanism. Nevertheless, all the tested cases 

can be considered to represent adequately the experimentally reported temperature.  
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Figure 4. The evolution of the flame’s temperature along the axis of the reactor for the different 

cases. Experimental data by [29]. 

4.2. Chemical Species Concentrations 

Figure 5 illustrates the evolution of CO2, O2, and CO concentrations along the axis of 

the reactor. Even though simulation curves surround the experimental values, these are 

different from the experimental curves. CO2 and O2 predictions are more influenced by 

the operating conditions (mainly gas rate flows and turbulence characteristics described 

in each Case), while the reaction mechanism controls CO concentration. As species’ 

concentrations exhibit significant differences between numerical predictions (while 

temperature did not), they can be used to assess the most suited model. In our case, as 

pollutants (e.g., CO) are our focus, it can be concluded that the best results are achieved 

in Case 1 (best agreement on average). The question of the chemical mechanism remains 

open. While the T.S-2 kinetic mechanism provides the best agreement on CO final value 

(length > 0.4 m), its value is under predicted over the whole reactor and drops earlier than 

experimental results. T.S.-1 slightly overestimates the final CO concentration but provides 

reasonable agreement over most of the reactor length (length < 0.4 m). As any experiment 

can show some absolute value measurement error, predicting a good dynamic is to be 

favored. Therefore, it can be concluded that the T.S.-1 mechanism is the most suited one 

in this configuration. Diving deeper into the results, the comparison between Case 1 and 

Case 3 shows that a reduction of the mass flow rate of the primary air in Case 3 leads to 

less efficient combustion (lower CO2 concentration and higher O2 concentration at the 

same time). This confirms the assumption that reducing the mass flow rate of the primary 

air (from Case 1 to Case 3) results in a reduction of CO emissions. Moreover, when 

reducing the mass flow rate of the inflow gas in Case 2, an increase of the mole fraction of 

CO2 and the concentration of CO against a large decrease of the O2 was observed. The 

increase of the CO2 indicates that the combustion in Case 2 was more complete and more 

stable than in Case 1. These results exemplify how CFD can be used to choose operating 

conditions to lower pollutant emissions. 
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(a) 

 

(b) 



Sustainability 2022, 14, 16587 14 of 19 
 

 

(c) 

Figure 5. (a) The CO2 volume fraction evolution along the center-line of the reactor. Experimental 

data by [29]; (b) The O2 mole fraction evolution along the center-line of the reactor. Experimental 

data by [29]; (c) The CO concentration evolution along the center-line of the reactor. Experimental 

data by [29]. 

4.3. Effect of the Mass Flow Rate on the Velocity Field 

Figure 6 shows the velocity vectors and the temperature contours for Case 1 when 

adopting the T-S.1 chemical mechanism. Two recirculation zones, denoted Z1 and Z2, were 

observed. The first zone (Z1) appears at 0.25 m, where the temperature reaches 

approximately 1580 K. The interaction between the two supplied air (primary and 

secondary) in zone Z1 with the main gas is intensive. An advantageous consequence is the 

transport of heat toward the burner walls, where it can be recovered. The second zone, Z2, 

is situated at the height of 0.35 m, where the temperature reaches 1328 K. In this zone (Z2), 

the interaction between the air and the main gas flow appears less intensive, and this gas 

behavior was reported by Farokhi et al. [29]. More precisely, the latter authors noted that 

air interactions produce a resistance to the reacting gas, which causes a split of the coming 

flow into the two up-mentioned zones (Z1 and Z2). 
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Figure 6. Velocity field and temperature contours for case 1 when adopting the chemical mechanism 

T-S.1. 

4.4. Heat Generation Spatial Distribution 

Figure 7 illustrates the mean heat generation rate ( �̅�ℎ𝑒𝑎𝑡 ) map for Case 1 when 

adopting T-S.1 mechanism. We note that �̅�ℎ𝑒𝑎𝑡 contours are placed at the gas inflow and 

after the primary air injection. This result correlates well with the temperature profile 

(Figure 3). At the gas inlet, �̅�ℎ𝑒𝑎𝑡 is less than 5000 kJ/kg, whereas it reaches 20,000 kJ/kg 

after the injection of the primary air. Nevertheless, as one can see, primary air injection is 

not sufficient to oxidize all the syngas. Indeed, while its flow rate is already high and the 

combustion reaction intense, it fails to reach the center of the reactor. Therefore, it 

highlights that proper secondary air injection tuning is mandatory to ensure adequate 

combustion and oxidation of the supplied gas. 
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Figure 7. The mean heat generation rate contour for Case 1 when adopting the kinetic scheme T-S.1. 

5. Conclusions 

This paper presents a full numerical description of the syngas combustion from the 

water steam wood pellets pyro-gasification in an updraft fixed bed reactor based on the 

open-source OpenFOAM. The temperature, the gaseous emission evolution of CO, CO2, 

and O2, the velocity field, and the release heat rate were studied. Each simulation run was 

realized based on a combination of cases (reported in Table 1 and describing the gas rate 

flows and the turbulence regimes) and a chemical kinetic mechanisms reported in Table 

3. It was revealed that: 

• Case 3-FS1 was the best combination for predicting the temperature profile despite 

the peak temperature being under estimated and for all combinations. This may be 

due to not taking into account of radiative transfer during our calculations; 

• Case 1-TS1 was the best for predicting CO2 emissions; 

• Case 1-FS2, Case 1-TS1 and Case 1-FS1 were better for predicting O2 concentrations; 

• Case 1-TS1 predicted better CO concentration for a length < 0.4m, but Case 2-TS2 was 

the best one for length > 0.4m. 

Hence, this realized workflow was shown to be capable of reproducing the behavior 

of an actual burner. Indeed, it was possible to assess the effect of operating conditions (gas 

inflow, primary and secondary air inflow) and to identify the relevant kinetic model for 

the tested biomass. Taking a step, this work illustrates how an open-source CFD tool could 

be used to improve reactor design and operation to increase efficiency and mitigate 

pollutant generation. 
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