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Generalized relation between electromechanical responses at fixed voltage and fixed electric field

Daniel Bennett,!>* Daniel Tanner,!? Philippe Ghosez,' Pierre-Eymeric Janolin,> and Eric Bousquet!

LPhysique Théorique des Matériaux, QMAT, CESAM, University of Liége, B-4000 Sart-Tilman, Belgium
2Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, 91190 Gif-sur-Yvette, France

We present a general relation between the electromechanical couplings of infinitesimal strain and electric
field to arbitrary order, measured at fixed voltage and at fixed electric field. We show that the improper response
at fixed field can be written as the strain derivative of the n™ order susceptibility tensor, and the proper response
at fixed voltage drop can be written as the response at fixed field plus corrections for dilations and 90° rotations
induced by strain. Our theory correctly reproduces the proper piezoelectric response and we go beyond with
the electrostrictive response. We present first-principles calculations of the improper electrostrictive response
at fixed field, and illustrate how the correction is used to obtain the proper response at fixed voltage. This
distinction is of high importance given the recent interest in giant electrostrictors exhibiting electromechanical

responses as large as the piezoelectric ones.

INTRODUCTION

The calculation of the piezoelectric response from first-
principles density functional theory (DFT) simulations is
nowadays standard, either using finite differences [1] or den-
sity functional perturbation theory (DFPT) [2]. However, care
should be taken, as two possible piezoelectric responses can
be obtained: the so-called “proper” and “improper” responses
[1-4]. The improper response is computed from DFT when
calculations are performed at fixed electric field, whereas the
proper response is typically measured experimentally, where
the voltage and not the electric field is held fixed [1, 5]. The
distinction between fixed field and fixed voltage drop becomes
necessary when strains are introduced.

This problem is sketched in Fig. 1: we have a dielectric
material of thickness d sandwiched between two metal plates,
across which a potential drop AV is applied. The voltage drop
is related to the electric field in the material via

AV =E&d. )]

If a small strain 1) appears in the material, changing the thick-
ness to (14 1)d, Eq. (1) becomes:

AV(n)=&(1+n)d . 2)

If the field £ is held fixed, which is typically the case in first-
principles calculations, the potential difference has to change
by nAV. Thus when strain is introduced we need to com-
pensate for this effect in order to hold the potential difference
fixed. If the potential drop AV is fixed, then it is the reduced
field &' = (14 n)E rather than £ which is held fixed in Eq. 2.
The voltage drop in each calculation will then be

AV =(1+n)' (1+n)d=Ed 3)

which is independent of 7.
In addition to the strain dependence of the relationship be-
tween £ and AV (Eq. 2), changes in the volume induced by
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FIG. 1. Sketch of a dielectric material of thickness d sandwiched be-
tween two metal plates. A potential difference AV is applied, result-

ing in an electric field of £ = % inside the material. When a strain
of 1 is applied to the material, the field changes to £ = % if the
potential difference is held fixed (experiment), or the potential differ-

ence changes to (1+1)AV if the field is held fixed (first-principles).

strain can lead to different ways of measuring the energy per
unit volume. Depending on whether calculations are done
at fixed £ or AV, and whether the energy per unit volume
is measured with respect to the equilibrium reference vol-
ume () or the perturbed volume (L), there are four possi-
ble ways to define an electromechanical response, see Fig. 2:
(i) the improper response, measured at fixed £ and equilib-
rium volume €, (ii) the proper response, measured at fixed
AV and strained volume €, (iii) an intermediate situation with
fixed £ and Q, and (iv) a second intermediate situation with
fixed AV and Qg are used. This means that great care should
be taken when comparing first-principles calculations of any
electromechanical response to experimental measurements.
Although this problem is well-known in the context of
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FIG. 2. Tlustration of the four possible ways to define electrome-
chanical responses, depending on the quantity held fixed (£ or AV)
and the units of volume used (Q( or Q). The improper response is
obtained by fixing £ and working in units of unstrained volume, Q,
and the improper response is obtained by fixing AV and working in
units of strained volume, Q. Two additional ‘intermediate’ responses
which are neither proper nor improper are possible by switching the
quantity held fixed or the units of volume.

piezoelectricity, its generalization to other electromechanical
responses measured at fixed voltage and fixed electric field has
not been reported. This generalization is becoming relevant,
with increasing interest in higher-order couplings such as the
electro-optic response and electrostriction. Indeed, giant elec-
trostrictors have recently been shown to give rise to electrome-
chanical responses as large as piezoelectric ones [6, 7], or even
much larger: up to 2 x 10° pC/N [8]. However, no strict defi-
nition nor derivation of the proper versus improper responses
have been given for electrostriction. In this paper, we derive
an analogous relation for electrostriction and more generally
any electromechanical response to an infinitesimal strain.

This paper is organized as follows: first, we review the re-
lation between piezoelectric tensors measured at fixed electric
field and fixed potential difference. The same methodology is
then applied to obtain a corresponding relation for the elec-
trostrictive tensor, and a general electromechanical coupling
between an infinitesimal strain and electric field to arbitrary
order. Detailed derivations are available in the Supplementary
Material. We then use these relations to correct recent calcu-
lations of the electrostrictive response of rocksalt crystals in
the literature [9], focusing on MgO, and re-examine the com-
parison with experimental measurements.

THEORY

For a crystal with mechanical degrees of freedom such as
phonon displacements u and macroscopic strain deformations
7], which is subject to an applied electric field £ [10-12], the
properties close to the equilibrium state can be described by

Toupin’s electric enthalpy density [13, 14]:

Fay = Feell — (5 P+ ;8052> ; “4)
where Qg is the volume of the reference state () = 0), Feey is
the zero-field Kohn-Sham energy per unit volume of the sys-
tem, and P is the total polarization of the system [15, 16]. An
homogeneous deformation results in a change in the positions
r in the reference state: Arg = Tlggrg. The symmetric part
of 7 is simply the strain tensor, 1. In Ref. [2] it was shown
that the proper piezoelectric tensor is symmetric under the ex-
change of the strain indices. Thus, although we consider gen-
eral deformations 7] in this paper, we use the terms strain and
deformation interchangeably.

The various clamped responses (¢ = 0) are defined as the
derivatives of Eq. (4) about the equilibrium state: {7},£} = 0.
For example, the piezoelectric tensor e is defined as [2]:

(92.7'—90 0P,

M _ _ 9
dEaTlpy (7.£}=0 IMigy

Capy

)

where the superscript (i) denotes that this is the improper ten-
sor, measured at fixed electric field. In order to obtain the
proper tensor, at a fixed potential difference, two corrections
must be made to Eq. (4). First, the electrostatic energy must be
scaled by Q%, where Q = Qqdet(I+ 7)) is the volume after a
strain deformation 7). Secondly, in order to hold the potential
difference fixed, we make the following change of variables to
“reduced coordinates” for the electric field, polarization and
displacement field D [17]:

E=01U+7n)€E

Qo

P_Q—O(I+n) P) ©)
lig ~\—1

D790(1+n) D

which are equivalent to some of the reduced fields defined in
Ref. [5], but here the units of each field are preserved [18].
Thus, the enthalpy Eq. (4) becomes, in reduced coordinates:

Q1
Fo=Feen —E P+ ———gETg e .

002 )

where g = (I+1)7 (I+17). By differentiating we can see that
Dy, = —5er where we used D = & + P, although note that
D' # gl +P.

The proper piezoelectric tensor, measured at fixed voltage
drop, is defined as:

9*Fy _ 0P,
IEq Mgy {71,£'}=0 IMpy

®)

eaﬁy = —

The term linear in £ is absent in Eq. (8) as the derivation is
carried out about the equilibrium state (7], — 0). Summation
convention is assumed, using Latin letters for dummy indices



and Greek letters for free indices. Next, we explicitly evaluate
the derivative in order to write Eq. (8) in terms of Eq. (5):

9 |det(1+7) (I +71)g] P}

eaﬁ}’: aﬁﬁy
_ J [(1 +flii) (aocjfﬁaj)PjJrO(ﬁz)]
aﬁﬁy
aPOC ~ aPa ~ aP
= —— +Py0g,— PyOyg + Nii=—— — ~7]
IMgy a0y~ Ty%ap 1 Mgy na]anﬁy

€))

Going from the first line to the second line, we used the ex-
pansion (I+1j) " =1—1+O(f?), truncating to linear order,
assuming the strain is infinitesimal. For the same reason, we
use det(/+7) = 1 +tr (f}) + O(7}?) to simplify the volume
term. Note that it is important to do this before differentiating,
otherwise contributions which are quadratic in strain will be
retained. After differentiating, we set £,7 — 0, because the
derivatives are defined about the equilibrium state with zero
strain and applied field. The relation between piezoelectric
tensors measured at fixed voltage and at fixed field is then:

Capy = Copy+ Padpy—PySup (10)

As discussed in Ref. 1, the first term is a correction for dila-
tions of the polarization induced by strain. The second term is
a correction for rotations of the polarization by 90°, i.e. per-
mutations of the indices. Additionally, a problem unique to
the piezoelectric tensor is that Eq. (5) is sensitive to the branch
on which the polarization is measured (quantum of polariza-
tion), but this is remedied by using Eq. (10), which is branch
invariant [1].

Electrostriction

The improper strain electrostrictive tensor m, measured at
fixed electric field, is defined as follows:

0
0 __ 1 9Fe, Veup

MaB1s = T2 9E,9E501ys e - 1D

1=0 aﬁy& ’

where 8(% = ‘3% is the improper permittivity tensor, mea-
sured at fixed electric field calculated about the equilibrium
state. The proper electrostrictive tensor, measured at fixed

voltage, is defined as follows:

1 9¥F,

MyBys = —= =t _ 9ap (12)
Py 2 9€,0E;0lys s

{n.£'}=0

/
where €,5 = % is the proper permittivity tensor, measured

at fixed voltage. Immediately we see that Eqs. (11) and (12)
are analogous to Egs. (5) and (8), but with polarization re-
placed by dielectric permittivity. As before, we must write

Eq. (12) in terms of Eq. (11). In order to do this, we must first
relate the proper and improper permittivity tensors:
€ap = (1+ ﬁn)s(% - 882’7{;3 - ﬁa/%%) +O(M%) . (13)

Note that £,5 = 8((;23 at ] = 0, which is expected. However, it
is clear that their derivatives with respect to strain will not be
equal at ) = 0. Inserting Eq. (13) into Eq. (12):
8£aﬁ
MyBys = ==

aBy anya

a ~ i i) ~ ~ i ~
= 9t (1+nii)8,% — el Tiip —Tlocjgj(-ﬁ)"'o(nz) :

ey o) (i)
o 1 1 1
= aﬁyg -‘ré'aﬁsyg — 8ay6ﬁ3 — 86[3 Oya

(14)

Hence, we obtain an analogous relation between the proper
and the improper response to Eq. (10) for the electrostriction:

MoBys = m%yé + eaﬁ 5)/5 — Sayaﬁg — 8513 5705 s (15)

where we have dropped the (i) superscript on the permittivi-
ties because we have set 7j — 0 and hence e = ¢. The cor-
rections are similar to those appearing in the proper-improper
relation for the piezoelectric tensors: the first term is a cor-
rection for changes in the permittivity induced by strain. The
second term is a correction for permutations of the indices.
Note that there are two of these terms, since € is a rank 2 ten-
SOT.

Generalization to all orders of electromechanical coupling

The proper-improper relation can be generalized to elec-
tromechanical couplings which are linear in strain and to any
order in electric field. The (improper) coupling between linear
strain and n'" order electric field is described by the following
tensor:

i) 1 3'”'1.7'—90

E-Enfifia = ) dE¢, ...0E, M, (7.61=0 (6)
O, ’
B 8ﬁﬁ1ﬁ2

measured at fixed field, where n = 1 corresponds to the piezo-
electric tensor and n = 2 corresponds to the electrostrictive
tensor. We can see that in general A is the first strain deriva-
tive of the n™ order susceptibility tensor:

Pgl 5 n=1
. dDg
28 =3 e n=2 (17)
8”’1Pgl

3552...35‘5" ’



defined to be the polarization and permittivity for n = 1,2, re-
spectively. The proper tensor, measured at fixed voltage, is
defined as:

A o1 " F§
STl 08, 08, O, | - o s
_ xe,..&,
aﬁﬁlﬁz
where
s n=1
oD/,
XE = /g1 5 n=72 (19)
r— JIEL, .
an—lpé
Jegoer, 172

Again, the aim is to write Eq. (18) in terms of Eq. (16). In
order to do this, we must first obtain the relation between the
n'™ order susceptibility tensors:

" P
XE..E = W
n A
= I+ Mg | =o—— 20
g( T’)k,g,] agkz.“agk” ( )

n

H (I+ ﬁ)k_iéi] det(1 + ﬁ)%ﬁ)...kn
i=1

Expanding det(I + ) and the products of (/+7)~', and trun-
cating to linear order, we get the following expression:

xXe e, = (1+ ﬁii)%Q...gn - Z%Sl),,,k,.,,,gn ke, - 21
i=1

Eq. (21) is the relation between n™ order susceptibility tensors
in reduced and unreduced coordinates at finite strain. It is
reassuring to see that when ) — 0 we have xg,..¢, = X‘(gll),,, £
as expected. Obtaining the proper-improper relation for A is
now straightforward:

) no
Ag, .. &, = I <(1 + ﬁii)%gf...s,, - ;lgf...ki...gn ﬁk,-&‘)
= Ac(‘,‘ll)...s,lﬁlﬁz + Oy X0 — ngl---ﬁlmgn Oie;

i=1 (22)
where 7 is in the i position. There is one term for dilations
induced by strain and n terms corresponding to permutations
of the n indices of the susceptibility. For n = 1,2, Eqgs. (10)
and (15) are reproduced, respectively.

First-principles calculations

We illustrate the proper-improper relation for electrostric-
tion using first-principles calculations of the electrostrictive

@ 330 — . . .
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FIG. 3. Improper (relative) dielectric permittivity of MgO as a func-
tion of applied strain 771 (dashed lines) [9], and the (relative) proper
permittivity obtained using Eq. (13) (solid lines), for (a): the elec-
tronic permittivity €= (clamped ions) and (b): the relaxed-ion per-
mittivity £°.

response of MgO, LiCl, LiF and NaCl. Typically, it is the elec-
trostrictive response to stress which is measured experimen-
tally, because it can be measured at fixed voltage [6]. The elec-
1%ap

29Xy
and is related to the electrostrictive response to strain used in
the previous section by Mygys = SapuvMuyvys, Where s is the
compliance tensor, the inverse of the elastic tensor. In order
to obtain the electrostrictive response to stress at fixed volt-
age, we first measure the electrostrictive response to strain m,
apply the correction Eq. (15), and then contract with the com-
pliance tensor to obtain M.

Fig. 3 shows the permittivity of MgO versus strain as ob-
tained with the ABINIT code [22, 23], following the method-
ology of Ref. [9]. Norm conserving pseudopotentials from
PseudoDojo were used [24], and the PBEsol functional was
used to treat exchange-correlation interactions [25]. A cutoff
energy of 50 Ha was used to truncate the plane-wave basis,
and a k-point grid of 8 x 8 x 8 was used to sample the Bril-
louin zone. The dielectric permittivity was then calculated us-
ing DFPT. The electronic or clamped-ion permittivity £~ was
first obtained, and then phonon calculations were performed

trostrictive response to a stress is defined as Mgy =



Improper Intermediate Intermediate Proper
Material M (pm?/V?) Experiment
fixed £ (&,P)— (&,P) Qyp—Q fixed AV

My 1829 2460 1514 2144 2020%
MgO

My, -199 -199 -514 -514 -

My 12613 15836 11001 14224 46200
LiCl

M, -1281 -1281 -2892 -2892 -18200P

My 4640 5941 3989 5290 5230°¢
LiF

My, -501 -501 -1151 -1151 -1730°¢

My 4572 6516 3600 5544 4030°¢
NaCl

My, -483 -483 -1455 -1455 -1030°¢

TABLE I. Measurements of the improper, proper and intermediate electrostrictive responses M| = Mj111 and M, = My of MgO, LiCl,
LiF and NaCl, compared to experimental measurements: a = Ref. [19], b = Ref. [20] and c= Ref. [21].

in order to obtain the relaxed-ion permittivity £°.

The dashed lines show the components of the permittivity
tensor obtained directly from ABINIT, which are in unreduced
units and therefore improper. The components of the proper
dielectric tensor, indicated by the solid lines, are obtained us-
ing Eq. (13). Note that for &, the proper and improper val-
ues are identical, which can be verified using Eq. (13). The
improper electrostrictive response m" is obtained by taking
the slope of €® about 7 = 0, and the proper response m is
obtained by taking the slope of € about 7 = 0. The two inter-
mediate values, obtained by either using reduced variables for
the electric field or units of strained volume, were calculated
using the corrections in Fig. 4 in order to illustrate their indi-
vidual contributions to the total correction. The electrostric-
tive response to stress M was then obtained by contracting m
with the compliance tensor in each case. In Table I we show
a comparison of the electrostrictive responses for the proper,
improper and intermediate cases, as well as experimental mea-
surements.

DISCUSSION AND CONCLUSIONS

In this paper, we highlighted the difficulties in comparing
electromechanical responses obtained from first-principles
calculations to those obtained from experimental measure-
ments. In the context of piezoelectricity, this problem is
known as the ‘proper-improper’ relation, which may not be
intuitive as ‘proper’ and ‘improper’ are ambiguous terms.
We believe it is more physically insightful to reformulate the
problem in terms of responses measured at fixed electric field
and fixed voltage drop. Similar to the well-known relation for

piezoelectricity, we have derived the relations for electrostric-
tive and general electromechanical responses to infinitesimal
strain, measured at fixed field and at fixed voltage drop.

Depending on whether the field or voltage is held fixed, and
whether the energy is given per unstrained or strained unit
volume, there are four different ways to define an electrome-
chanical response: the so-called ‘improper® (fixed field) and
‘proper* (fixed voltage) responses, and two intermediate ones.
We summarize these possibilities in Fig. 4 to help the reader
in identifying each case. In order to correctly compare mea-
surements from first-principles calculations with experimental
measurements, it is important to identify which response from
Fig. 4 has been measured in each case and, if necessary, make
the appropriate correction.

Because the electrostrictive response is proportional to a
third derivative of the free energy (Eq. (11)), it can be ex-
pressed in several different ways:

880,5 . 82X7,5 . 86ﬁy5

"B = g0 s T 9€adEs | 9Eq 23)

Therefore, the electrostrictive response can be calculated from
first-principles using three different approaches:

(i) by calculating the linear evolution of the dielectric per-
mittivity with respect to stress or strain.

(ii) by calculating the quadratic stress induced by an ap-
plied electric field.

(iii) by calculating the linear of evolution of the piezoelec-
tric tensor in response to an applied electric field.

Second derivatives of the free energy can be calculated from
first-principles calculations using second-order DFPT, and in
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FIG. 4. Summary of the relations between the free energies, piezoelectric and electrostrictive responses for the four possible scenarios

illustrated in Fig. 2.

ABINIT, the proper piezoelectric response is automatically ob-
tained because reduced units (£/,P') are used for the elec-
tric field and polarization. However, third-order DFPT for the
electrostrictive response is not currently implemented in any
widely available DFT code, and therefore in all three of the
above methods, at least one of the derivatives must be evalu-
ated using finite difference methods. Thus, a correction must
be applied in order to obtain the proper response at fixed volt-
age.

With method (i), first introduced in Ref. [9] and used in
this study, the electrostrictive response is obtained by mea-
suring the derivative of the permittivity with respect to strain.
The permittivity can easily be obtained from a single DFPT
calculation, avoiding the need to perform a set of finite field
calculations for each value of strain. Taking the derivative
of the dielectric permittivity output from the code from fi-
nite differences will yield the improper response, i.e. Eq. (11)
[9]. The proper response can be obtained by taking care to
write the permittivity in terms of £’ and P/, i.e. using Eq. (13),
m e % or by applying the correction (Eq. (15)) to
the improper response. We propose that method (i) is the most
straightforward method for calculating the electrostrictive re-
sponse from first-principles.

With method (ii), the electrostrictive response M is obtained
by measuring the quadratic strain response to an applied field,
and measuring the curvature about zero field. This has pre-
viously been the most widely used method to measure elec-
trostrictive responses from first-principles. However, if fi-
nite electric field calculations are performed [9, 26, 27], the
improper response will be obtained and a correction will be
needed. The proper response can be directly obtained by
fixing the reduced electric field £ or the displacement field

[9, 28, 29], both of which are possible in ABINIT, but not in
most other widely available DFT codes. Additionally, a ge-
ometry relaxation calculation must be performed for each field
value in order to find the induced strain, making this method
more computationally expensive than method (i).

With method (iii), the electrostrictive response could be ob-
tained by measuring the change in the piezoelectric tensor in
response to an applied field [30]. To our knowledge, the elec-
trostrictive response has not yet been calculated from first-
principles in this way. However, if the proper piezoelectric
response is obtained, and the reduced electric field £’ or dis-
placement field is held fixed, then the proper piezoelectric re-
sponse should be obtained.

For the electronic permittivity, the sign of the slope changes
when correcting from improper to proper. The reason for this
is that the electronic permittivity is small and more sensitive
to strain than the larger relaxed-ion permittivity (i.e. including
phonon contributions), and the correction appears relatively
larger.

In each case, the electrostrictive response is larger after cor-
recting to the fixed voltage case. Agreement with experimen-
tal measurements is improved for the case of LiF, but not for
MgO or NaCl. For the case of LiCl, the reported values in
Ref. [21] are an order of magnitude larger than the typical
values measured in other experimental studies. Experimental
measurements of electrostrictive responses tend to vary sig-
nificantly, in part due to the various measurement techniques.
For example, the M electrostrictive coefficient of MgO has
been reported to be 2020 pm?/V? in Ref. [19] and about four
times less (550 pm?/V?) in Ref. [30]. For SrF., the situa-
tion is even more dramatic as experimental reports disagree
even on the sign of the longitudinal M coefficient: -1160



pm?/V? from Ref. [31] and +260 pm?/V? from Ref. [32]. As
a consequence, the agreement with experimental values has
to be considered with care. One typical source of error be-
tween first-principles calculations and experimental measure-
ments is that first-principles calculations are typically done
at zero temperature, whereas experimental measurements are
performed at larger temperatures (in this case room tempera-
ture [19]). However, the evolution of the electrostrictive co-
efficients with respect to temperature is normally very small,
provided a phase transition does not occur [7].

In spite of this, it is important to emphasise that the fixed
field and fixed voltage responses are physically different quan-
tities. When comparing first-principles calculations with ex-
perimental measurements, it is of primary importance to first
ensure that the correct physical quantities are being compared.
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