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A novel atomistic effective Hamiltonian scheme, incorporating an original and simple bilinear energetic
coupling, is developed and used to investigate the temperature-dependent physical properties of the prototype
antiferroelectric PbZrO3 (PZO) system. This scheme reproduces very well the known experimental hallmarks of
the complex Pbam orthorhombic phase at low temperatures and the cubic paraelectric state of Pm3̄m symmetry
at high temperatures. Unexpectedly, it further predicts a novel intermediate state also of Pbam symmetry, but in
which antiphase oxygen octahedral tiltings have vanished with respect to the Pbam ground state. Interestingly,
such a new state exhibits a large dielectric response and thermal expansion that remarkably agrees with previous
experimental observations and the x-ray experiments we performed. We also conducted direct first-principles
calculations at 0 K, which further support such a low-energy phase. Within this fresh framework, a reexamination
of the properties of PZO is thus called for.

DOI: 10.1103/PhysRevB.106.214108

I. INTRODUCTION

Antiferroelectrics (AFEs) form an important class of ma-
terials that are characterized by antipolar arrangement of
dipoles. Because of the various attractive functionalities pro-
vided by these materials, there is a growing interest in their use
in technological applications, in particular, for energy stor-
age [1–5]. PbZrO3 (PZO) is the prototypical antiferroelectric
(AFE) perovskite, and AFE archetype, and its characteristics
have been studied since the 1950s. Recent research activities
were aimed to better understand its properties [6–12]; how-
ever, despite intensive investigations, PZO is still puzzling
regarding several issues, including the origin and complex
nature of its ground state and possible existence of interme-
diate phases before reaching its paraelectric high-temperature
state [13,14]. PZO exhibits a cubic perovskite structure of
Pm3̄m symmetry at high temperatures and an antipolar or-
thorhombic ground state below a critical temperature Tc, of
about 505 K, which has the space group Pbam [15,16]. This
Pbam ground state [6–10,12] consists of three structural dis-
tortions in terms of phonon mode instabilities of the cubic
parent phase. The first one is a strong R+

4 soft phonon mode
associated with the zone boundary 2π

a ( 1
2 , 1

2 , 1
2 ) k-point of the

cubic first Brillouin zone, where a is the lattice constant of
the five-atom cubic perovskite cell. This mode characterizes
an antiphase tilting of the oxygen octahedra about the [110]
direction in the perovskite lattice. A second mode is the �2

mode and is indexed by the 2π
a ( 1

4 , 1
4 , 0) k-point. The �2 mode

*Corresponding author: laurent@uark.edu

consists of complex antipolar displacements of Pb ions along
[110] accompanied by some oxygen displacements resulting
in an unusual tilting pattern about the [001] pseudocubic
axis. There is also a third mode contributing to the Pbam
ground state, but that is rather weak. It has the S4 sym-
metry and is associated with the 2π

a ( 1
4 , 1

4 , 1
2 ) k-point [17].

It was first assumed that a trilinear coupling between these
three modes, i.e., R+

4 , �2, and S4 modes, plays an impor-
tant role to stabilize PZO’s Pbam ground state (see, e.g.,
Refs. [7,8]). However, first-principles studies of Ref. [6] re-
vealed that the contribution of this trilinear term to the total
energy is small compared to the energy gain of the ground
state with respect to the cubic phase [6]. Recently, a theo-
retical framework has rather suggested that another trilinear
coupling term, which is similar to flexoelectricity but that
involves gradients of the octahedral tilt modes rather than
strain, is responsible for the ground state of PZO with Pbam
symmetry [18]. In contrast, a recent experimental work us-
ing resonant ultrasound spectroscopy has rather suggested
biquadratic and higher-order terms couplings through strains
between the R and � modes [19]. Remarkably, the authors
of Ref. [20] discovered a novel and simpler atomistic en-
ergy which only bilinearly couples the A-cation displacements
and oxygen octahedral tilting [also known as antiferrodis-
tortive distortion (AFD)] in ABO3 perovskites and which
straightforwardly provided an unified description of many
antiferroelectric and incommensurate perovskites, as well as
ferrielectrics [21]. This finding, therefore, raises the question
if such previously overlooked and simple bilinear coupling is,
in fact, the main contributor to stabilize the Pbam ground state
of PZO.
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Moreover, new low-energy phases were recently predicted
by first-principles calculations in PZO, such as those of Ima2
and Pnam symmetries containing 30 atoms and 80 atoms
per primitive cell, respectively [7,22,23]. The energy differ-
ence between these phases is very small and dramatically
depends on the pseudopotentials and other computational de-
tails, further emphasizing that PZO is rather challenging to
understand and to correctly simulate. PZO has another unset-
tled related question regarding a possible intermediate phase
for temperatures in-between the cubic paraelectric Pm3̄m state
and the antiferroelectric orthorhombic Pbam ground state.
Experimentally, such an intermediate phase is sometimes sta-
bilized for a narrow temperature range between the AFE and
the cubic phase but still, the structure of the intermediate
phase is not really fully known [24–30]. Depending on the
crystal growth conditions, intrinsic or intentional chemical
doping/defects may extend the temperature range in which
the intermediate phase develops and/or causes the appearance
of a second intermediate phase showing isothermal, i.e., time-
dependent, transition process [13,31]. A recent first-principles
study by Xu et al. suggested possible candidates for inter-
mediate phases of PZO [32], including one consisting of a
dynamical average between the rhombohedral ferroelectric
R3c phase and antiferroelectric Pbam phases. Involvement of
ferroelectric rhombohedral phases and/or intermediate state
was also indicated (1) in a high temperature x-ray diffraction
study proposing the existence of a ferroelectric rhombohedral
phase on heating the PZO crystal [26] and (2) by Tangantsev
et al. [10] who studied the lattice dynamics of PZO from
x-ray and Brillouin scattering and showed that PZO exhibits
an intermediate phase on heating the crystal. One can also find
in the literature other possibilities for that intermediate phase,
such as one associated with lattice distortion corresponding to
the M-point [k = 2π

a ( 1
2 , 1

2 , 0)] of the first Brillouin zone — as
similar to the phase obtained by the authors of Ref. [16]. Note
also that based on several experimental techniques, some polar
clusters were proposed to coexist in the paralectric phase,
suggesting that the purely paraelectric state is only achieved
above 593 K, i.e., far above TC (see Ref. [11]).

The goal of this article is two-fold. First of all, to demon-
strate, via the development of a novel ab initio effective
Hamiltonian (Heff) that the bilinear coupling of Ref. [20] can
indeed lead to the stabilization of the complex antiferroelec-
tric orthorhombic Pbam ground state in PZO. Second, to use
such novel atomistic scheme to predict that there is indeed
an intermediate state in PZO being in-between the known
Pm3̄m and Pbam states, but which is a state that has never
been previously mentioned in the literature — to the best of
our knowledge and that shows instabilities allowing to better
understand the reported experimental observations. Effective
Hamiltonian calculations yield that such intermediate state
can be thought of as originating from the known Pbam ground
state but when removing the R+

4 phonon mode (and also the S4

mode). Such a state, which is further confirmed here to be of
low energy by conducting additional direct ab initio calcula-
tions, is coined here in the � phase due to the predominance
of the �2 mode. It also has the Pbam symmetry, therefore
resulting in an isostructural transition in PZO with temper-
ature when going from that phase to the ground state under
cooling. Interestingly, the Heff computations also provide an

intermediate state that possesses (i) a large dielectric response,
as it is experimentally known in PZO for temperatures above
the transition towards the ground state [33–41]) and (ii) a
thermal expansion that agrees well with our measurements.
These calculations also yield pseudocubic lattice parameters
that are all close to each other in this intermediate state, which
indicates that this novel Pbam � state can be thought to be
a cubic phase in disguise and thus may explain why it may
have been missed up to now. This � state is also found to be
very close in free energy to a tetragonal ferroelectric P4mm
phase or other ferroelectric states that we believe could be
easily triggered through constraints such as chemical doping
and defects, as well as the application of external electric or
mechanical fields, and, therefore, explain many of the experi-
mental observations.

This article is organized as follows. Section II reports de-
tails about theoretical and experimental methods developed
and/or used here. Section III provides and discusses the re-
sults, while Sec. IV summarizes the article.

II. METHODS

A. Effective Hamiltonian

As indicated above, an effective Hamiltonian Heff is
developed in the aim of understanding and modeling finite-
temperature properties of PbZrO3 bulk. This Heff has the
following degrees of freedoms: (1) the local soft modes ui in
each five-atom cells i, which are proportional to the electric
dipoles of that cell [42] and that are centered on Pb ions here;
(2) the ωi pseudovectors that describes oxygen octahedral
tiltings in the unit cells i [43] and that are centered on Zr
ions; ωi is such as its direction is the axis about which the
oxygen octahedron of cell i rotates and its magnitude is the
angle (in radians) of such rotation; (3) the {ηH } homogeneous
strain tensor for which the zero value of its diagonal elements
(in Voigt notation) ηH,1 = ηH,2 = ηH,3 is associated with the
calculated first-principles-derived lattice constant of the para-
electric cubic state of PbZrO3 at 0 K; and (4) vi vectors that
quantify the inhomogeneous strain at each five-atom cell i
[42], and that are centered on Zr ions here.

Following the authors of Refs. [44–46], the total internal
energy contains two different main energies

E tot = EFE({ui}, {ηl}) + E tilt({ωi}, {ui}, {ηl}), (1)

where EFE describes the energetics associated with local
modes, elastic variables, and their interactions, while E tilt

characterizes the energetics involving oxygen octahedral tilts
and their couplings with local modes and the total {ηl}
strain (that is the sum of inhomogeneous and inhomogeneous
strains).

As indicated in Ref [42], EFE can be decomposed into five
terms:

EFE = E self({ui}) + Edpl({ui}) + E short({ui})

+ E elas({ηl}) + E int({ui}, {ηl}), (2)

where E self is the local mode self-energy, Edpl pertains to
the long-range dipole-dipole interaction, E short represents the
short-range interactions between local modes that go beyond
dipole-dipole interactions, E elas denotes the elastic energy, and
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E int describes the interaction between elastic variables and
local modes. As proposed in Ref. [42], these five energies can
be written as follows:

E self =
∑

i

{
κ2u2

i + αu4
i + γ

(
u2

ixu2
iy + u2

iyu2
iz + u2

ixu2
iz

)}
,

Edpl = Z∗2

ε∞

∑

i< j

ui · u j − 3(R̂i j · ui )(R̂i j · u j )

R3
i j

,

E short =
∑

i �= j

∑

αβ

Ji jαβuiαu jβ,

E elas = N

2
B11

(
η2

1 + η2
2 + η2

3

) + NB12(η1η2 + η2η3 + η3η1)

+ N

2
B44

(
η2

4 + η2
5 + η2

6

)
,

E int = 1

2

∑

i

∑

lαβ

Blαβηl (Ri )uα (Ri )uβ (Ri ), (3)

with Ri j = Ri − R j for which Ri and R j are the lattice vectors
locating sites i and j, respectively. α and β denote Cartesian
components along the [100], [010], and [001] directions that
are chosen to span the x-, y-, and z-axes, respectively. The i
index runs over all the Pb ions. For any given Pb-site i, the j
index in Edpl runs over all the other Pb ions. In contrast, the
j index in E short “only” runs over the first, second, and third
nearest Pb neighbors of the Pb ion located at the site i.

Furthermore, the Ji jαβ coefficients in E short can be written
in the following way for the different nearest neighbor (NN)
interactions:

first NN: Ji jαβ = ( j1 + ( j2 − j1)|R̂i j,α|)δαβ,

second NN: Ji jαβ = ( j4 +
√

2( j3 − j4)|R̂i j,α|)δαβ

+ 2 j5R̂i j,α · R̂i j,β (1 − δαβ ),

third NN: Ji jαβ = j6δαβ + 3 j7R̂i j,α · R̂i j,β (1 − δαβ ), (4)

where δ is the Kronecker symbol and R̂i j,α represents the
α-component of Ri j/Ri j . A detailed explanation of the j3
coefficient is mentioned in Ref. [42]. It represents the strength
(and sign) of a specific intersite interaction between second
nearest neighbor for the local mode.

Regarding the second main energy of Eq. (1), we general-
ize that found in Refs. [44–47] by writing

E tilt({ωi}, {ui}, {ηl})

=
∑

i

[
κAω2

i + αAω4
i + γA

(
ω2

ixω
2
iy + ω2

iyω
2
iz + ω2

ixω
2
iz

)]

+
∑

i j

∑

αβ

Ki jαβωiαω jβ

+
∑

i

∑

α

K ′ω3
i,α (ωi+α,α + ωi−α,α )

+
∑

i

∑

αβ

Clαβηl (i)ωiαωiβ +
∑

i, j

∑

α,β

Di j,αβu j,αωi,αωi,β

+
∑

i, j

∑

αβγ δ

Eαβγ δωiαω jβu jγ uiδ +
∑

i, j

∑

α,β

Fi j,αβωi,αu j,β ,

(5)

where the sums over i run over all the Zr sites. The first
sum of E tilt describes the onsite contributions associated with
the oxygen octahedral tilts, as proposed in Refs. [47–50].
The second and third terms represent short-range interactions
between oxygen octahedral tiltings [47,49] being first-nearest
neighbors in the Zr sublattice. Note that j runs over the six
Zr sites that are first-nearest neighbors of the Zr site i in
the second term while ωi+α,α in the third term denotes the
α-component of the ω pseudovector at the site shifted from
the Zr site i to its nearest Zr neighbor along the α axis. Note
also that the Ki jαβ parameters of this second energy are written
as

first NN: Ki jαβ =(k1 + (k2 − k1)|R̂i j,α|)δαβ. (6)

Here, k2 characterizes the strength and sign of a specific in-
teraction between first nearest neighbors for the tilting modes
(it is the equivalent of j2 shown in Fig. 1 of Ref. [42] but for
the tilting degrees of freedom rather than the local modes).
Moreover and following Ref. [49], the fourth term of E tilt

characterizes the interaction between strain and tiltings. As
first proposed in Ref. [47], the fifth term (that depends on
the Di j,αβ coefficients) represents a trilinear coupling be-
tween oxygen octahedral tiltings and local modes. The sixth
energy, which involves the Eαβγ δ parameters, characterizes
biquadratic couplings between such tiltings and modes [49].
Note that the j index runs over the eight Pb ions that are first
nearest neighbors of the Zr-site i in these fifth and sixth terms.
Finally, the seventh term is the novelty here with respect to
the energies provided in Refs. [47–50]. It represents a recently
discovered energy that couples oxygen octahedral tiltings and
local modes in a bilinear fashion [20,51]. It is allowed by
symmetry and was proposed to explain the occurrence of
complex antiferroelectric, ferrielectric, and even incommen-
surable phases in some materials [20,21,51]. Note that the sum
over j is about the eight Zr sites that are nearest neighbors
of the Pb-sites i. It is given, in a less compact form than in
Eq. (5), by

�E = Fii

∑

i

[(ui,x + ui,y )(−ωi100,z + ωi010,z − ωi101,z

+ ωi011,z ) + (−ui,x + ui,y )(−ωi,z + ωi110,z − ωi001,z

+ ωi111,z ) + cyclicpermutation], (7)

where Fii is a material-dependent constant that characterizes
the strength of this coupling. The sum over i runs over all the
five-atom cells of the perovskite structure, and the x, y, and z
subscripts denote the Cartesian components of the ui vectors
and ωi pseudovectors. ωilmn, with l , m, or n being 0 or 1,
characterizes the ω pseudovectors located at a(l x̂ + mŷ + nẑ
from that of site i), with a being the five-atom lattice pa-
rameter and x̂, ŷ, and ẑ being the unit vectors along the x-,
y-, and z-axes, respectively. Note that the Zr site i is located
at −a( 1

2 x̂ + 1
2 ŷ + 1

2 ẑ) with respect to the Pb site i. Figure 1
schematizes the coupling terms inherent to the first line of
Eq. (7). This new coupling term is important in some systems
having Pb atoms (Ref. [20]), and hence relaxors.

All the parameters of this effective Hamiltonian are
provided in Table I. They are determined by conducting first-
principles calculations using the local density approximation
(LDA) [52] within density functional theory. Cells containing
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FIG. 1. Sketch of the bilinear coupling terms of the first line of
Eq. (7). The red and blue arrows on the central Pb cations represent
the ui,x and ui,y displacements, respectively. The green arrows on
some Zr cations represent the ω pseudovectors.

up to 40 atoms are employed, along with the CUSP code [53]
and the ultrasoft-pseudopotential scheme [54] with a 25 Ry
plane-wave cutoff. Practically, we use the same pseudopoten-
tials than those of Ref. [55], and thus consider the following
valence electrons: Pb 5d , Pb 6s, Pb 6p, Zr 4s, Zr 4p, Zr 4d ,
Zr 5s, O 2s, and O 2p electrons. It is important to know
that these effective Hamiltonian parameters are determined by
considering small perturbations with respect to the cubic state,
and thus do not involve the full ionic and cell relaxation of any
phase [42]. Consequently, the fact that we used LDA to obtain
these parameters does not automatically imply that our ener-
getic results for relaxed structures predicted by the effective
Hamiltonian will be closer to those resulting from the direct
use of LDA than to those obtained from other functionals
such as the generalized gradient approximation (GGA) in the
form of revised Perdew-Burke-Ernzerhof [56] (PBEsol). This
is especially true if employing these two functionals within
first-principles calculations provides similar results in terms of
structure, but rather small differences between the total energy
of different relaxed phases — as it is, in fact, known in PbZrO3

bulk [22].

This Heff, along with its parameters, is then used in Monte
Carlo (MC) computations on 12 × 12 × 12 supercells (which
contains 8640 atoms) for different temperatures. Typically,
40 000 MC sweeps are conducted for each considered tem-
perature, with the first 20 000 sweeps allowing the system to
be in thermal equilibrium and the next 20 000 sweeps being
employed to obtain statistical averages. However, near phase
transitions, a larger number of MC sweeps is needed to have
converged results, namely up to 1 million (with the first half
used for reaching thermal equilibrium and the next half to
extract statistical averages). It is also important to know that
a temperature-dependent pressure is added in these Monte
Carlo simulations, with this pressure P acting on the strains
to produce the following energy:

Epres = Pa3(1 + ηH,1)(1 + ηH,2)(1 + ηH,3), (8)

where ηH,i, with i = 1, 2, and 3, being the diagonal elements
of the homogeneous strain tensor in Voigt notations [57] (note
that the shear strains are neglected in Eq. (8) because they are
either null for the cubic paralectric phase or found to be rather
small for the other phases encountered in the simulations).
Such a dependence is assumed here to be linear, as proposed
in Ref. [58], and is given, in GPa, by: P = −5.489655172 −
0.001034483 × T , where T is the temperature in Kelvin with
the two coefficients having been numerically found by trying
to reproduce the experimental lattice constants at 10 K and
300 K.

To determine which structural phases are predicted from
the effective Hamiltonian simulations, the following quanti-
ties are extracted from the outputs of the MC simulations at
any investigated temperature

uk,α = 1

N

∑

i

ui,αexp(ik · Ri ), (9)

ωk,α = 1

N

∑

i

ωi,αexp(ik · Ri ), (10)

where k are vectors belonging to the cubic first Brillouin zone,
α denotes Cartesian components, and the sums run over all the
five-atom sites. Typically, for the local modes, we look at the
k-vectors at the zone-center (for the polarization), but also at
the �-point (for complex antipolar displacements associated
with the Pbam state) that is defined as � = ( 1

4 , 1
4 , 0) in 2π/a

TABLE I. Parameters of the presently developed effective Hamiltonian for PbZrO3. Atomic units are used and the reference cubic lattice
parameter is 7.763 Bohr.

Dipole Z∗ +6.383 ε∞ +6.970
u on-site κ2 +0.00628158 α +0.00943 γ −0.00201
u short range j1 −0.004023 j2 +0.008550

j3 +0. 000614 j4 −0.0005768 j5 +0.0004896
j6 +0.0000301 j7 +0.0000151

Elastic B11 +4.775 B12 +1.302 B44 +0.0.912
u-strain coup. B1xx −0.293 B1yy +0.0522 B4yz +0.00294
ω on-site κA −0.15579 αA +3.523804 γA −3.20618
ω short-range k1 +0.0389464 k2 +0.00413634 K ′ −0.1241
ω-strain coup. C1xx −0.317612 C1yy +1.440823 C4yz −0.011972
ωu coup. (bilinear) Fii +0.02117
ωu coup. (trilinear) Dii,xy −0.0430
ωu coup. (bi-quadratic) Exxxx +0.13945 Exxyy +0.339915 Exyxy −0.667303
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FIG. 2. (a) Temperature dependence of some physical properties of PbZrO3 bulk under heating: (a) the x and y components of the antiphase
tilting 〈ωR〉 and the z-component of the complex tilting 〈ω�〉, respectively, of the oxygen octahedra, (b) the x and y components of the 〈u�〉
vector characterizing antipolar displacements centered on Pb cations and associated with the � point of the cubic first Brillouin zone.

units. The last point is also investigated for the tilting of the
oxygen octahedra, in addition to the R-point that is given by
R = ( 1

2 , 1
2 , 1

2 ) still in 2π/a units. Note that a nonzero ωR,α

characterizes antiphase tilting about the α-axis while a finite
ω�,β should also happen for the Pbam ground state with β

being different from α.

B. Direct first-principles calculations

We also used direct first-principles calculations to check
some unexpected predictions arising from the use of the ef-
fective Hamiltonian and that will be discussed in Sec. III.
Practically, we use the generalized gradient approximation
(GGA) within the revised Perdew-Burke-Ernzerhof functional
(PBEsol) [56], as implemented in the VASP package [59],
for these first-principles computations. The projector aug-
mented wave (PAW) [59,60] is also applied to describe the
core electrons, and we consider the Pb (5d106s26p2), Zr
(4s24p65s24d2), and O (2s22p4) as valence electrons with a
520 eV plane-wave cutoff.

C. Experiments

The lattice parameters were determined by x-ray diffrac-
tion using a high-resolution diffractometer with a Copper
radiation (λ = CuKα,1 = 1.5405 Å) issued from an 18-kW-
rotating anode from room temperature to 750 K using a
furnace with a resolution better than 0.1 K. The x-ray di-
agrams were analyzed fitted with a pseudotetragonal unit
cell due to the overlap of the peaks related to the a and b
lattice parameters of the orthorhombic unit cell. The lattice
parameters at 10 K and 300 K were obtained by Rietveld
analysis (JANA software) [61] on results obtained from neutron
diffraction performed at the Laboratoire Léon Brillouin (beam
line 3T2, λ = 1.2252 Å). The lattice parameters obtained at
room temperature from neutron diffraction and from x-ray
diffraction are in very good agreement. The orthorhombic
unit cell parameters (ao, bo, co) are presented in Fig. 3(b) in
a pseudotetragonal (apt, cpt) setting where ao = √

2apt, bo ≈

2
√

2apt, and co = 2cpt. At room temperature the orthorhom-
bic cell parameters are ao = 5.878Å, bo = 11.783Å, co =
8.228Å while, at 10 K, they are ao = 5.878 Å, bo = 11.784 Å,
and co = 8.197 Å.

III. RESULTS

A. Results from the Heff simulations and x-ray diffractions

Let us now report the predictions of the effective Hamil-
tonian with the parameters indicated in Table I and the total
energy described in Eq. (1), with the additional feature that
the second line of Eq. (7) is dropped out. This dropping is
made because we numerically found that incorporating all
the terms of Eq. (7) provides unphysical solutions for tilting
arrangements [such as the tiltings associated with the X -point
of the first Brillouin zone, which is given by (0, 0, 1

2 ) in 2π/a
units] while keeping the first eight terms of Eq. (7) gives rise
to a selected Pbam ground state [note that dropping all terms
of Eq. (7) will not yield the later ground state].

Figure 2(a) reports the temperature evolution of the
nonzero tilting-related quantities, namely, ωR,x = ωR,y and
ω�,z, while Fig. 2(b) shows that the only significant local
mode quantity is u�,x = u�,y, as obtained by heating up the
system from the ground state (note that identical results are
obtained by cooling down the system and that the Heff calcu-
lations also provide an S4 mode, but for which the weight is
rather small, namely, less than 0.32%). The fact that all these
quantities are finite at small temperature does characterize a
Pbam ground state.

As the temperature increases up to 
 650 K, u�,x = u�,y

decreases while ω�,z is barely affected and ωR,x = ωR,y (an-
tiphase oxygen octahedra tilts) gets reduced significantly until
vanishing through a jump. A first-order transition to what
we call here the �-phase, and that is only characterized by
nonzero u�,x = u�,y and ω�,z (complex tilts along the z di-
rection), occurs. The latest phase still has the Pbam symmetry
with space group no. 55 (as indicated by the FINDSYM software
[62,63]), therefore indicating that our predicted transition
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FIG. 3. Temperature dependence of the diagonal elements of di-
electric tensor χ11, χ22, χ33, and χav [which is 1

3 (χ11 + χ22 + χ33)]
of bulk PbZrO3.

around 650 K is isostructural in nature [64–66]. Note that
isostructural transitions are usually of first order, which is
consistent with the jump of ωR,x = ωR,y seen here at 650 K
[7]. Interestingly, it is experimentally known that the Pbam
ground-state phase disappears around 511 K, which is not so
far away from our predicted 650 K — especially taking into
account that effective Hamiltonians have the tendency to not
accurately predict transition temperatures (while qualitatively
reproducing phase transition sequences, as demonstrated, e.g.,
by Ref. [42]). However, we are not aware of any previous
work mentioning that the Pbam ground-state phase transforms
into another Pbam state (that is, the � phase here) under heat-
ing, therefore making our predictions provocative and novel.
Within this � phase, Figs. 1(a) and 1(b) indicate that both ω�,z

and u�,x = u�,y decrease with temperature and then vanish
through a jump at about 1300 K. A first-order transition to cu-
bic paraelectric Pm3̄m is thus predicted to happen, according
to our effective Hamiltonian simulations.

To determine if these rather surprising predictions of the
Heff can be realistic, Fig. 3 reports the computed χ11, χ22,
and χ33 diagonal elements of the dielectric tensor as well as
their average χav = 1

3 (χ11 + χ22 + χ33) as a function of tem-
perature. One can see that χ33 and thus χav adopt very large
values at the temperatures around which the known Pbam
ground state transforms into the novel � phase, which is con-
sistent with the experimental observation of a large dielectric
response around the temperatures at which the known Pbam
ground state disappears [33–41]. Strikingly, the coefficient
C in the fitting of χ33 and χav by C

T −T0
is predicted to be

1.81 × 105 K and 1.49 × 105 K, respectively, in the � phase,
which is of the same order of magnitude than the experimen-
tal values ranging between 1.36 × 105 K and 2.07 × 105 K
(see Refs. [34,67] and references therein) for temperatures at
which the known Pbam ground state has vanished.

Note that we found that the increase of χav and χ33 when
the temperature gets reduced in the � phase towards the
known Pbam state can be thought to originate from the fact
that there is a P4mm ferroelectric state (with a polarization
along the z-axis and no oxygen octahedral tilting) that is very
close in free energy for these temperatures. In fact, reducing
the Fii parameter in Table I to a certain critical value of
0.019 makes the intermediate phase in between the known
Pbam state and the Pm3̄m cubic state becoming P4mm rather
than �. Note also that the large dielectric response shown in
Fig. 3 implies that the zone-center mode should soften when
approaching the known Pbam phase from above, which has
been indeed observed [10,68]. It is also worth mentioning that
the proximity in energy of the ferroelectric P4mm state (or
other ferroelectric states) could also explain the experimental
electric-field- or defect-driven single ferroelectric P-E loop
observed above the known Pbam phase [13], or stabilized
under epitaxial strain [69].

Let us now take a look at the behavior of the pseudocubic
lattice parameters as a function of temperature. Figure 4(a)
reports our predictions from the use of the presently devel-
oped effective Hamiltonian (obtained from the strain outputs)
while Fig. 4(b) displays our own experimental results along

FIG. 4. Temperature dependence of the lattice parameters predicted by the (a) effective Hamiltonian and (b) those measured in the present
work as well as in Ref. [70] where a pseudotetragonal unit cell (apt, cpt) is utilized to represent the orthorhombic phase (ao, bo, co) where
ao = √

2apt, bo ≈ 2
√

2apt, and co = 2cpt).
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TABLE II. Energetic gain for different low-energy states with
respect to the cubic paraelectric Pm3̄m state, as predicted by direct
first-principles calculations of PbZrO3.

Phases Energy(meV/fu)

Pbam 278.8
R3c 277.7
� 235.6

with those of Ref. [70]. One can see that, within the known
Pbam state, several features of the measurements are well
reproduced, namely, the a and b pseudocubic lattice constants
are basically independent of the temperature while the c pseu-
docubic lattice parameter significantly increases when heating
PZO. The jump in the c lattice constant seen in Fig. 4(a)
at around 650 K confirms the first-order character of the
isostructural transition between the known Pbam state and the
� phase. What is remarkable is that, within the error bars (the
range of error bars for the a and b pseudocubic lattice parame-
ter is from 0.0013 to 0.007 Å for the whole temperature range,
while it is less than 0.0038 Å for the c lattice parameter),
the a, b, and c parameters are identical within our predicted
� phase, which may thus give the (wrong) impression that
PZO is cubic if solely focusing on pseudocubic lattice pa-

rameters or strains. One can thus think that this � phase is a
cubic state in disguise, when focusing on pseudocubic lattice
parameters. In fact, the predicted temperature evolution of
1
3 (a + b + c) adopts a thermal expansion that is very close in
the � and paraelectric Pm3̄m phases, and that is character-
ized by an average coefficient of 7.97 × 10−6 K−1, –which
is in good agreement with the present measurements giving
7.4 × 10−6 K−1 (note that such a coefficient is numerically
found to be 7.77 × 10−6 K−1 in our � phase versus 8.36 ×
10−6 K−1 in the simulated Pm3̄m state). This facts suggests,
once again, that the present simulations can be realistic. On
the other hand, comparing Figs. 4(a) and 4(b) tells us that the
jump in the c pseudocubic lattice parameter when the known
Pbam state disappears is more pronounced in experiments
than in our present calculations. Such a quantitative discrep-
ancy can be due to the facts that this disappearance happens at
higher temperature in the simulations and/or that the compu-
tations use relatively small 12 × 12 × 12 supercells (implying
that the first-order character of that transition can be re-
duced by the increase in critical temperature and/or finite-size
effects).

Interestingly, near the temperatures at which the known
Pbam state disappears, it was observed in Ref. [67] (see
Fig. 2.9 there) that the ( 1

2 , 3
2 , 1

2 ) diffractions peak typically
associated with antiphase oxygen octahedral tiltings disap-
pears at a temperature lower than the ( 1

4 , 3
4 , 0) diffraction

TABLE III. Crystal structure and atomic positions of the Pbam and � phases at 0 K obtained from first-principles calculations

Pbam phase

Lattice Constants Cell angles

a b c α β γ

11.782 5.887 8.188 90 90 90
Fractional coordinates

Label Symbol Multiplicity Wyckoff label x y z Occupancy

Pb1 Pb 4 g 0.87505 0.20121 0.00000 1
Pb2 Pb 4 h 0.87134 0.20890 0.50000 1
Zr1 Zr 8 i 0.62378 0.24246 0.24995 1
O1 O 4 e 0.00000 0.00000 0.20287 1
O2 O 4 f 0.00000 0.50000 0.77054 1
O3 O 8 i 0.76195 0.03295 0.28113 1
O4 O 4 h 0.09438 0.19920 0.50000 1
O5 O 4 g 0.15771 0.22353 0.00000 1

� phase

Lattice Constants Cell angles

a b c α β γ

11.717 5.913 4.076 90 90 90
Fractional coordinates

Label Symbol Multiplicity Wyckoff label x y z Occupancy

Pb1 Pb 4 g 0.64479 0.30421 0.00000 1
Zr1 Zr 4 h 0.61911 0.75709 0.50000 1
O1 O 4 h 0.73631 0.45735 0.50000 1
O2 O 2 d 0.00000 0.50000 0.50000 1
O3 O 2 b 0.00000 0.00000 0.50000 1
O4 O 4 g 0.35576 0.28658 0.00000 1
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peak that typically characterizes antiparallel displacements
of Pb associated with the � k-point. Such features appear
to be qualitatively consistent with our predictions shown in
Figs. 1(a) and 1(b). Note that our predicted �-phase can be of
short-range or broken into small domains in grown samples,
which may explain why it has not been directly reported and
reported yet. It is also interesting to realize that, in addition
to a zone-center soft-mode, a central mode, with a frequency
being very low, was experimentally reported for temperatures
above the known Pbam state [10,11,68]. Such a feature may
be representative of dynamical jumps between different �-
phases that are with positive or negative ω�,z, ω�,y, and ω�,x.
Such dynamical jumps will render cubic the overall structure
of PZO while not affecting 1

3 (a + b + c).

B. Results from first-principles calculations

Let us now check if such a � phase is also seen as a low-
energy state within direct first-principles calculations. Table II
reports the energy of such � phase, but also those of the
known Pbam and R3c states, choosing the zero of energy to
correspond to the cubic paraelectric Pm3̄m state. One can first
see that the known Pbam is the state with the lowest energy,
but by only a small amount of about 1 meV/f.u. with respect
to R3c. Very interestingly, Table II also tells us that � is
indeed a low-energy state in PZO, with its decrease in energy
being about 235.6 meV/f.u. with respect to the cubic state to
be compared with 278.8 meV/f.u. for the known Pbam phase.
In other words, having finite ω�,z and u�,x = u�,y (like in the
� and known Pbam phases) brings about 85% of the energy
of the known Pbam state with respect to Pm3̄m state, with the
other 15% being due to ωR,x = ωR,y. Such percentages high-
light the importance of the bilinear couplings of Eq. (7), which
are responsible for the finite values of ω�,z and u�,x = u�,y

in both the � and known Pbam states, as well as their low
energies. Table III provides the crystal structure and atomic
positions of the known Pbam and the presently discovered
� phase, respectively, as predicted by direct first-principles
calculations at 0 K, in the hope they can be used in the future
to investigate and/or revisit structural phases of PZO. One can
see from Table III that the pseudolattice parameters of the �

phase are not close to each other at 0 K, while they are at high
temperatures [see Fig. 4(a).

IV. CONCLUSION

We developed and used an original atomistic effective
Hamiltonian, incorporating the bilinear coupling discovered
in Ref. [20] to investigate structural and dielectric properties
of bulk PZO as a function of temperature. We also conducted

x-ray diffraction measurements for various temperatures. This
effective Hamiltonian reproduces well (i) the existence of
the known low-temperature AFE orthorhombic Pbam phase
and the high-temperature paraelectric cubic phase; (2) the
large dielectric response; and (3) the thermal expansion of the
pseudocubic lattice parameters of PZO. Its most provocative
prediction is the existence of an intermediate phase named
here as the � phase and that occurs in-between the known
Pbam and cubic phases. This � phase has the Pbam sym-
metry also, therefore yielding an isostructural transition in
PZO bulks. It mostly differs from the Pbam ground state
of PZO by the vanishing of antiphase octahedral tiltings,
and its low energy is confirmed by conducting additional
direct first-principles calculations. Both the known Pbam state
and this � phase are numerically found to emerge due to
the bilinear coupling terms defined in Eq. (7). Possible rea-
sons explaining why this � phase may have been previously
overlooked are provided here as well. They include the possi-
bilities that the � phase only exists in a short-range fashion
or is broken into small domains in real materials. Another
plausible reason is that its three pseudocubic lattice param-
eters are basically equal to each other, therefore giving the
wrong impression that it is cubic in nature when conduct-
ing, e.g., diffractions studies. Moreover, it is also possible
that the ferroelectric tetragonal-like phase (that is found to
be very close in energy to the � phase) is experimentally
observed, as it might be triggered under external stimulus
(electric field, doping/defects, or stress) which can thus ex-
plain some reported polar intermediate phase or polar clusters
far above the known Pbam state. We hope that the present
work, predicting a phase that has never been mentioned in
the rich literature of the textbook antiferroelectric compound
to the best of our knowledge, will generate new experimen-
tal, theoretical, and computational studies and/or analysis on
PZO.
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