
HAL Id: hal-03943947
https://centralesupelec.hal.science/hal-03943947

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Neural Autopilot Training Platform based on a
Matlab and X-Plane co-simulation

Jérémy Pinguet, Philippe Feyel, Guillaume Sandou

To cite this version:
Jérémy Pinguet, Philippe Feyel, Guillaume Sandou. A Neural Autopilot Training Platform based on
a Matlab and X-Plane co-simulation. International Conference on Unmanned Aircraft Systems, Jun
2021, Athens, Greece. �10.1109/icuas51884.2021.9476679�. �hal-03943947�

https://centralesupelec.hal.science/hal-03943947
https://hal.archives-ouvertes.fr


A Neural Autopilot Training Platform based on a Matlab and X-Plane
co-simulation

Jérémy Pinguet1,2, Philippe Feyel1, and Guillaume Sandou2

Abstract— The main objective of this paper is to describe
a tool for the aircraft autopilot deployment only based on a
flight database. Flight simulators such as X-Plane turn out to
be powerful and efficient tools for creating such database and
controller experimentation. The paper outlines the development
of a co-simulation framework between Matlab and X-Plane using
the User Datagram Protocol (UDP). The flight data collected
during a first step are then used for the training of neural
controllers. The approach is based on the neural network
imitation ability to learn the piloting skills implicitly stored
in the dataset. Also, in order to include fault-tolerant control, a
Neural Multiple Model Adaptive Control (NMMAC) based on
previously learned networks is implemented. This architecture
consists of a bank of local controllers and a switching logic
using a bank of estimators. As an illustration of the proposed
platform, it is assumed that the airspeed is unmeasured for the
flight director. A neural guidance autopilot based NMMAC is
therefore performed on different airspeed values. Experiments
show that the designed neural autopilot can successfully track
both heading and altitude reference signals, while the method
is not restricted to this scope.

I. INTRODUCTION

In the challenging field of autonomous aircraft flight, the
modern autopilot has proven to be very efficient for low-level
piloting tasks in most flight situations. Still, the occurrence
of unusual cases can lead the autopilot to disengage or, in
more critical cases, to execute undesired actions that can
compromise flight safety, as mentioned in [1]. For instance,
strong turbulence or an aircraft position at the stall limit will
cause the autopilot to disengage, and the pilot then has to
take control of the aircraft. Due to the limited autopilots
capabilities, the crew or the pilot must continuously monitor
the flight status and quickly rectify in case of emergencies
or unexpected situations. Overcoming these limitations by
considering a set of rules to be respected through specific
control modes seems unfeasible because of the high number
of specifications and the complexity to formulate them
mathematically. On the other hand, pilots are trained to handle
difficult situations and flight uncertainties. Thus, an alternative
method for autopilot design is to record the action performed
by a pilot for a given state of the system and certain external
conditions. In such a case, these decisions indirectly translate
the specifications, and so the controller can be trained on
the database gathering this information which leads to an
intelligent controller that can manage either nominal flights

1Research & Technology department, Safran Electronics
& Defense, 91300, Massy, France, E-mail: {jeremy.pinguet,
philippe.feyel}@safrangroup.com

2 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des
signaux et systèmes, 91190, Gif-sur-Yvette, France, E-mail: guil-
laume.sandou@centralesupelec.fr

or emergency situations. The purpose of the autopilot will
be to act as an adviser to the pilot before taking control of
the aircraft in the long term.

The Neural Autopilot Training Platform (NATP) is divided
into three main modules corresponding to the three steps in
the development and implementation of the autopilot:
• Collection of pilot data: During different periods of flight,

a database gathers flight data coupled with the actions
of a real pilot or an already implemented autopilot.

• Offline learning: A neural controller is trained on
the database, and system training is also useful for
developing the autopilot.

• Autonomous control: The online implementation of the
autopilot is established alongside the aircraft simulation.
The aircraft supplies the relevant data (position, attitude,
etc.) to the autopilot so that it can calculate and send back
the signal control values (actuators position, reference
guidance angle, etc.).

This work aims to describe a controller design tool that can
learn from a flight database. The major contributions lie in
the formalization of a complete method from data acquisition
to autopilot implementation in three steps that are often
addressed separately in the literature. The NATP is organized
into three modules as shown by the flowchart in Fig 1. The
modules can be of interest to the reader independently, and
the sections can be read separately.

Co-simulation
module

Autopilot
implementation

module

Training
module

autopilot
neural

networks

flight data

Fig. 1: The three modules of the Neural Autopilot Training
Platform

Firstly, a co-simulation module is realized for data col-
lection and aircraft simulation. Due to the recent significant
progress in the field, flight simulators offer a high degree of
realism, and thus they are used as training cockpits for pilots.
These software programs are also attractive from the engineer
perspective for their accuracy in aerodynamic calculations



and their ability to exchange data with external systems. X-
Plane is one of the most popular realistic flight simulations
software and has already been successfully used in many
research projects on Unmanned Aerial Vehicle (UAV), such as
UAV dynamics identification [2], UAV structure development
[3] or control law validation [4], [5]. It offers a wide range
of simulation diversity since its use as a simulation brick
for the development of controllers has been realized for
other various aircrafts such as helicopters [6], quadrotors
[7], flapping-wing UAV [8], or tilt-rotor UAV [9]. Data
transmission with X-Plane is ensured by the User Datagram
Protocol (UDP), which is a relatively simple communication
protocol, so the advantages and drawbacks lie in the absence
of mechanisms like handshaking, back confirmation or Cyclic
Redundancy Check (CRC) checksum. So the flight simulator
is an opportunity to collect flight data, including the piloting
skills of a human pilot or an implemented and approved
autopilot. This paper described the development of a co-
simulation module, which is running X-Plane in co-simulation
with Matlab & Simulink. The simulator models the aircraft
dynamics while Matlab will compute the autopilot control
system in the end.

Secondly, a training module takes advantage of the flight
data to learn the controller. The machine learning methods
have a wide range of flexible tools that can learn these types
of complex input-output mappings. The complexity of the
processes to be identified leads to the use of neural network
controllers for their universal approximation property [10].
In an imitation approach using pilot experience, supervised
training techniques have proven performance in autopilot [1],
[11], [12] or high-level controller such as navigation [13]. In
this work, a framework is proposed with neural networks for
control, and more precisely an identification method based on
Outputs State-Space Neural Network (OSSNN) is presented.

Thirdly, autonomous control is finally carried out by
the autopilot implementation module. The multiple model
approach provides a powerful solution to many problems
dealing with complex real-life processes based on the prob-
lem decomposition strategy. The Multiple Models Adaptive
Control (MMAC) assumes that the system to be controlled can
be represented by a finite number of sub-models, each of them
being valid in a given operating domain. Some controllers
are respectively designed for each model, and a selection
algorithm decides at each moment which controller(s) should
be involved for the real system. MMAC is a widely used
control strategy in the context of autonomous aircraft flight,
such as in [14], [15], [16], [17]. In such circumstances, each
local model describes a particular fault scenario or operating
condition. The study presents a fault-tolerant control denoted
Neural MMAC (NMMAC), which combines a multiple
models approach with pre-trained neural networks.

This paper is organized as follows: section II presents
the co-simulation framework. Neural networks training is
described in section III and the NMMAC is the subject of
section IV. Experiments results that combine the presented
techniques, are given in section V. Section VI provides some
conclusion while section VII offers some forthcoming works.

II. THE CO-SIMULATION MODULE

In the co-simulation approach, the flight dynamics calcu-
lations are performed by the simulator. This process works
as a black box for Matlab as it would be the case for a real
aircraft (Fig. 2). This method benefits from the high degree
of realism provided by the simulator, which uses realistic
flight dynamics models. The experiment platform is based
on X-Plane 11, a commercially flight simulator developed
by Laminar Research. This software was used in this work
because of its high simulation reliability and its flexibility
of use. This section highlights the key steps to develop
the co-simulation environment with Matlab R2019b using
the Instrument Control Toolbox and the Simulink Desktop
Real-Time Toolbox. Because of the required computational
resources and real-time simulation constraint, both software
programs are run on two separated computers.

X-Plane
Dynamic model

Matlab
Control system

input signals

flight data

U
D
P

Fig. 2: Co-simulation between X-Plane and Maltab

A. X-Plane presentation

Thanks to its extreme accuracy, X-Plane enables a sim-
ulation with a high degree of similarity compared with an
actual flight. This simulator developed as an engineering
tool is distinguished by its flight model based on the aircraft
geometric shape. The simulation models the forces acting on
the different parts of the aircraft in real-time to determine lift
and drag, and then calculates the acceleration, speed and po-
sition of the aircraft. This process called blade element theory
involves breaking a blade down into several small parts, then
determining the forces on each of these small blade elements.
This approach differs from the conventionally used method of
aggregating empirical measures and determining aerodynamic
forces with predefined lookup tables. The X-Plane simulator
is certified by the Federal Aviation Administration (FAA) to
be used by pilots as a training tool while connecting with
certified hardware (cockpit and flight controls).

Another key element of X-Plane is its wide range of
options allowing the creation of a rich simulation environment.
It is possible to easily use different aircrafts, including
prototype models designed with the Plane-Maker. Many
settings on the aircraft allow simulating failure scenarios
or other specific events that are very useful for intelligent
autopilots training. Other features are also integrated with
X-Plane for environmental issues management, such as
the atmospheric conditions, wind speed and direction or
turbulence. Moreover, the simulator game interface enables
a pilot intervention to analyze his behaviour and record his
reaction in various situations.



B. Data interface
Communication between the simulator and Matlab is

ensured by the UDP communication. This telecommunication
protocol is part of the transport layer of the Open Systems
Interconnection (OSI) model. It allows the transmission of
data in the form of datagrams in a simple way between
two entities defined by their IP address and a port number.
This approach makes it possible to run the two softwares
on different platforms as long as they are on the same
local network. This protocol does not have a handshaking
mechanism, and it is exposed to network reliability problems.
Consequently, transmission is not guaranteed in terms of
delivery and accuracy of data such as the order of arrival
or the possible duplication of datagrams. This protocol is
therefore, suitable for use without detection and correction
of errors. In a real-time simulation context, the UDP nature
makes it useful for quickly transmitting small amounts of
data, since it is preferable to eventually lose a datagram rather
than wait for it to be retransmitted.

X-Plane data packet follows a standard format consisting
of stream of datasets. The data package is a string of bytes
illustrated by Table I and respecting the following pattern:
• Header consisting of 5 bytes: The first four bytes are

ASCII code for the key words ’DATA’ indicating that
it is a data packet. The fifth byte is an internal code
defined as ’0’.

• Dataset consisting of 36 bytes repeated by the total
number of datasets: The four bytes following the header
are the dataset index in decimal from 0 to 133. The next
32 bytes represent the data of 8 parameters with 4 bytes
for each. One parameter representing the data value in
single precision floating point. The other datasets follow
by packets of 36 bytes respecting the same pattern. As
a format illustration, the Table II gives an example of
dataset.

Other clarifications may be added to facilitate implementation:
• The length of the data packet varies according to the

total number of selected datasets. According to their
index ascending order, datasets are then sorted one after
the other in the message. The dataset with the lowest
index will be inserted just after the header and so on.

• A majority of datasets contain less than 8 parameters,
therefore the unused information is filled by the number
’-999’. This number, when used for sending, also means
that the parameter value will not be changed in X-Plane.

TABLE I: X-Plane data packet format

Header Dataset n°1 Dataset n°2 · · ·
5 bytes 9x4 bytes 9x4 bytes

’DATA0’ Index 8 Parameters Index 8 Parameters · · ·
5 bytes 4 bytes 8x4 bytes 4 bytes 8x4 bytes

C. X-Plane settings
The development of X-Plane as an engineering tool makes

its use very flexible for experimentation. Many data are

TABLE II: Dataset format example

"Pitch, roll & headings" Dataset
Index Parameter 1 Parameter 2 · · · Parameter 8

Labels 17 pitch, deg roll, deg · · · none
Bytes 17-0-0-0 156-162-9-192 240-92-19-65 · · · 0-192-121-196
Values 2.3822 10−44 −2.15055 9.21016 · · · -999

accessible and can be displayed during simulation, sent over a
network, or written to a file. Data selection and use are made
through the data output table. The table indicates datasets
indexes for proper identification, however their contents can
be obtained from their display in the cockpit or the record
file. Users can choose the datasets to be sent or saved and
the rate up to 99.9 data packets per second. For the UDP
correct operation, the machine IP address where Matlab is
running must be specified likewise as the receiving port to
bind.

Many other options are also available, especially in terms
of graphics. The display level can be adjusted to suit the
machine used to ensure the real-time performance of the
simulator. A parameter that can be important is the flight
model per frame. This parameter represents the number of
times the simulator calculates the aerodynamic forces for
each frame. It must be adjusted if the frame rate is very low
and even more so if the plane is small, fast or light.

D. Matlab & Simulink settings

On Matlab side, receiving and sending data to X-Plane
is handled in the Simulink environment. The Instrument
Control Toolbox provides blocks for communicating over
UDP network. It is possible to bypass the use of the toolbox
by using a similar method to the one proposed in [18].
Nevertheless, attention must be paid to the code optimization
and its computation speed not to slow down the execution of
Matlab and its good real-time operation.

Receiving and decrypting data in the Simulink environment
involves the following steps:
• UDP Receive: Receive the UDP message from the IP

address where X-Plane software runs and specifies the
port to bind. The received message is in 8-bit unsigned
integer variable (uint8) format and its size will be 5
bytes for the header plus 36 bytes per each selected
output dataset in the X-Plane data output table.

• Byte Unpack: Unpack data into an array of bytes. The
header is an uint8 equal to ’68-65-84-65-48’ for ’DATA0’
whereas the rest of the message must be separated into
9 groups of single-precision variables (32-bit) for each
dataset.

• MATLAB Function: Obtain each parameter individually
by selecting the dataset in which it is contained and its
position within that dataset.

• Data Type Conversion: Convert data in double-precision
variables is often required for correct use with Simulink.

Other blocks handle the data transmission to the simulator.
The number and selection of datasets sent are independent



of those received. A similar reverse protocol is used to send
the desired data to X-Plane:
• Data Type Conversion: Convert data in single-precision

variable.
• MATLAB Function: Create the datasets that need to be

modified by placing the 8 parameters in the right order
and adding the value ’-999’ in uint8 format for unused or
unmodified parameters. The index of the corresponding
dataset must precede each group of parameters also in
uint8 format.

• Byte Pack: Pack input data into a single output vector of
uint8 containing the header and datasets in succession
without worrying about order.

• UDP Send: Send the UDP message to X-Plane with the
correct IP address and a different port than the receiving
one.

A crucial point of the co-simulation relies on time synchro-
nization. Care must be taken that Matlab does not take to
much time to compute and send data to X-Plane. Otherwise
packages are buffered and Matlab calculations are based on
out-dated flight data, leading to unintended behavior. To our
knowledge, there is no possibility to synchronize the clocks
of the flight simulation software and Matlab. Even if it is
possible to imagine a pause and play mode sequencing of
X-Plane enforced by Matlab, this manipulation turns out
to be impractical. The simplest way to proceed is to set
a real-time operation on both software. On the X-Plane
side, the simulation follows the real-time performance, and
it is very straightforward to spot a simulation slowdown
through warning messages. On Matlab the use of the Real-
Time Synchronization block provide by the Simulink Desktop
Real-Time Toolbox allows to run the simulink model with a
real-time clock.

III. THE TRAINING MODULE OF NEURAL NETWORKS FOR
CONTROL

Black-box identification of processes based on input-output
data is performed with neural networks. The use of specific
shallow network structures provides a link with control theory,
and a training method is then developed on Matlab with the
help of the Deep Learning Toolbox.

A. Training procedure

The learning considered in this work does not require
any knowledge of the internal structure of the process to
be identified. Black-box training focuses on stimuli inputs
and output reactions. Thus, the unknown system is based on
a finite database consisting of pairs of input-output vectors
Zdt = {udt(k), ydt(k) | k = 1,...,Ndt} with udt(k) ∈ Rmu

and ydt(k) ∈ Rmy . The data are assumed to be rich enough
and with a proper sampling frequency to characterize the
system dynamics as well as the corresponding control law,
and the noise is supposed to be centered. In practice, these
data may be derived from an acquisition phase followed
by a pre-processing phase (cleaning, reduction, partitioning,
etc.). Multilayer perceptron (MLP) is one of the most widely
used structures for system identification. The training method

consists of supervised learning on the dataset, whose goal is
to obtain a time series regression. To this end, weights and
biases of the network are optimized to minimize a fitness
function which is here the Mean Square Error (MSE) between
the estimated outputs ynn and the measured outputs ydt:

J =
1

2Ndtmy

Ndt∑
k=1

[ydt(k)− ynn(k)]
T

[ydt(k)− ynn(k)]

(1)
The error is then back-propagated through the network to
obtain the required derivatives for the use of gradient descent
algorithms. Among the numerous learning algorithms [19], the
most well known are Backpropagation, Momentum Backprop-
agation, Levenberg-Marquardt (LM), BFGS, or Conjugate
Gradient. Some of these algorithms require the Jacobian
calculation of the cost function, which has to be approximated
when networks are recurrent ones by algorithms such as
Real-Time-Recurrent-Learning (RTRL) or BackPropagation-
Through-Time (BPTT) [19].

A significant problem with training is the ability of
the neural network to generalize. The network learns the
submitted training data, but it must also be able to interpolate
or extrapolate to new situations. As the network learning
capacity and complexity increase with the number of neurons,
the structures tend to be oversized, and the training is subject
to overfitting. A way used in this work to avoid overfitting
is to detect it using the cross-validation method and early
stop the training. The database is finally separated into a
learning set, used by the optimization algorithm; a validation
set, whose learning error will cause the algorithm to stop if
it increases a given number of times successively; a test set,
independent of the learning process, allowing to measure its
generality.

Besides, a normalization phase is added to the data pre-
processing. This step is often essential to the learning process
proper functioning and allows a faster convergence of the
gradient descent algorithm. The used normalizations are those
known as min-max and z-score. The first is one of the simplest
methods of resizing the data range between [−1; 1], while the
second imposes a null mean and a unit standard deviation on
the data distribution.

Finally, the learning algorithms are relatively sensitive to
initial points that will impact their more or less effective
convergence towards the global optimum. It is a well-known
procedure in the offline training context to make several runs
and keep the one with the lowest cost.

B. Neural identification methods

Feedforward Neural Networks (FNNs) are inherently
static structures. The way these networks can approximate
spatio-temporal sequences is artificially realized by providing
a series of past inputs and outputs to the network. Through
tapped delay line (TDL), presented input-output vectors are
u(k) =

[
uT
dt(k) uT

dt(k−1) · · · uT
dt(k−nin)

]T∈ Rnu and
y(k) =

[
yT
dt(k) yT

dt(k−1) · · · yT
dt(k−nout)

]T∈ Rny

whose dimensions are nu = mu(nin + 1),



ny = my(nout + 1), so that the FNN can generate the
estimated output:

ynn(k + 1) = fFNN

 udt(k)...
udt(k−nin)

 ,
 ydt(k)...
ydt(k−nout)

 (2)

The main characteristic of these neural networks is that they
do not have any intrinsic dynamics in their structure. The
advantage of FNN training is that it is relatively quick and
efficient. One of the well-known drawbacks of this approach
is that it can only handle a finite number of past inputs
and outputs. Furthermore, this representation suffers from
high sensitivity to the delay windows and an unavoidable
vulnerability to noisy inputs and outputs. Indeed, the learning
stability of FNNs is not guaranteed, and the prediction can
change significantly when the inputs are slightly modified.
When FNNs are used as dynamic systems or long-term
predictors, an output feedback loop is artificially created
to provide the past outputs to the network. However, this
feedback connection, which has not been taken into account
during training, causes errors that may be further accumulated,
which does not guarantee the use of FNNs as a dynamic
model.

Another way to represent dynamic systems is to include
feedback connections through Recurrent Neural Networks
(RNNs):

ynn(k + 1) = fRNN

 udt(k)...
udt(k−nin)

 ,
 ynn(k)...
ynn(k−nout)

 (3)

This recurrent structure embodies a larger class of nonlinear
dynamical systems because the model dynamics intrinsically
integrate the system history. Thus, RNNs provide universal
identification models in the sense that they can uniformly ap-
proximate any nonlinear multi-inputs multi-outputs (MIMO)
nonlinear dynamic system over a finite time interval, and for
any continuous and bounded input signal [20], [21]. Moreover,
RNNs are less vulnerable to noisy data because the input
vector provided to the network does not include the previous
outputs.

Despite being more stable in the learning meaning, RNNs
have difficulty to converge during the training with data from
highly complex systems. As previously mentioned, initial
weights have an influential role in the convergence of learning
algorithms. A proposed solution is to train the network with
an FNN structure, then add artificial feedback to transform it
as RNN to initialize the second training in RNN. This method
significantly improves algorithm convergence and reduces the
required time compared to classical RNN training.

A complementary method is used to enhance the FNN
stability after training when used as closed-loop dy-
namic models. This method derived from the work of
[22] consists of supervising a sliding window of out-
puts and not only outputs at a given moment. The
learning fitness function, therefore, consists of mini-
mizing the MSE between the estimated output win-
dow ỹ(k) =

[
yT
nn(k) yT

nn(k−1) · · · yT
nn(k−nout)

]T∈ Rny

and the data window:

J+ =
1

2Ndtny

Ndt∑
k=1

[y(k)− ỹ(k)]
T

[y(k)− ỹ(k)] (4)

The resulting networks are found to accumulate fewer errors
when they are closed into RNNs.

C. Outputs State-Space Neural Network (OSSNN)

The purpose here is to present a neural network topology
than can efficiently represent a general class of nonlinear
systems, and that can suit to control theory methods. The
State-Space Neural Network (SSNN) allows using a nonlinear
equation to represent the network dynamics in the classical
control manner. There are numerous formulations and uses
in the literature, as well as links established in particular
with Linear Parameter-Varying (LPV) [23], [24], [25], [26].
The particular architecture proposed in this work is the
Outputs State-Space Neural Network (OSSNN) consisting of
one hidden layer, as depicted in Figure 3. This structure

Wu
h

Wx
h

+

bh

Wx

B

A

+

bx

u(k)
x̃(k)z−1

h(k)

Fig. 3: OSSNN topology

allows representing the neural network in a state-space
form whose state keeps a physical meaning since it is
constituted of delayed outputs. This topology includes neurons
with two types of activation functions, namely hyperbolic
tangent activation and linear activation. The OSSNN have
the following nonlinear state-space representation: h(k) = tanh(Wx

hx̃(k) + Wu
hu(k) + bh)

x̃(k + 1) = Ax̃(k) + Bu(k) + Wxh(k) + bx

ynn(k) = Cx̃(k)
(5)

where x̃(k) =
[
yT
nn(k) yT

nn(k−1) · · · yT
nn(k−nout)

]T ∈
Rny is the state vector, u(k) ∈ Rnu is the input signal,
ynn(k) ∈ Rmy is the output vector of the neural network,
Wu

h ∈ Rnh×nu , Wx
h ∈ Rnh×ny and bh ∈ Rnh are the

weights and the bias of the hidden layer while Wx ∈ Rny×nh ,
A ∈ Rny×ny , B ∈ Rny×nu and bx ∈ Rny are the weights
and bias of the output layer. The activation function of the
hidden layer is the hyperbolic tangent function. During the
training phase, it is essential to set appropriate values for the
network hyper-parameters, i.e. the number of neurons nh in
the hidden layer alongside with the size of the windows of
past inputs nin and outputs nout.

The proposed OSSNN owns hybrid features since it
includes a linear contribution from the linear activation
function and a nonlinear contribution from the hidden layer
activation function. The combination of both contributions
improves the network modeling performance since dynamic
systems also usually respect this hybrid behaviour.



While SSNNs are effective for dynamic system modeling,
they can present the same training difficulties as other RNNs.
Learning can be slow to converge and get stuck in local
minima. An advantage of the OSSNN architecture is that
through the physical meaning of the state, learning in FNN
is possible. The state that consists of the delayed outputs is
substituted in this learning type by the data output window to
feed both network layers. The resulting network can then, as
mentioned above, initiate a second training of the presented
recurrent OSSNN. This structure, therefore, represents a
practical compromise between easily trainable FNNs and
very generic SSNNs.

IV. THE AUTOPILOT IMPLEMENTATION MODULE BASED
ON NMMAC

A. MMAC presentation

The multiple model approach is an adaptive control tech-
nique dealing with systems with large parametric uncertainties
or with a strong nonlinear behaviour. The starting point is
that a single fixed controller cannot stabilize all possible
configurations and simultaneously meet some performance
requirements. The plants are described by a combination of
local models around operating points where each model is
valid in a particular region.

Basically, MMAC architecture is divided into two au-
tonomous entities. First, the control process consists of a
bank of non-adaptive controllers designed for each model.
The second entity is the adaptive mechanism composed of
a bank of observers declined from models and the selection
logic, which makes use of the monitoring outputs estimation
errors. Typically, this second process employs the Multiple
Model Adaptive Estimation (MMAE) consisting of a bank
of Kalman Filters (KFs) (see [15], [27], [28]).

In the training platform framework, a nonlinear version
of MMAC is involved, so that a nonlinear version of both
subsystems is then presented in this section. The original
MMAE is modified to an Extended MMAE by the use of
Extended Kalman Filters (EKFs) as nonlinear estimators
instead of the linear KFs (as in [15] or suggested in [29]).

B. MMAC architecture

Consider a plant model G subject to parameter variations
θ ∈ Rnθ taking values over a compact set Ω ⊂ Rnθ . It
is assumed that G is a Multiple-Inputs-Multiple-Outputs
(MIMO) plant model of the form:

G(θ) :=

{
ẋ(t) = f

(
x(t), u(t), θ(t)

)
y(t) = g

(
x(t), θ(t)

) (6)

where x(t) ∈ Rnx denotes the state of the system, u(t) ∈ Rnu

is the vector of control inputs and y(t) ∈ Rny is the vector
of measured outputs.

First let’s suppose that N models are necessary to cover
the uncertainty set of the real plant. Considering a finite
set of candidate parameter values Θ := {Θ1,...,ΘN}, for
each nominal configuration Θi ∈ Θ, i = {1,..., N} a
corresponding nominal model is obtained Mi := G(Θi).
For instance, Θi can represent a brutal variation in a physical

parameter value due to default or a specific value of an
unmeasured parameter, etc.

Once a bank of models has been obtained after a training
procedure or by using physical equations, a bank of controllers
can be associated with it. For each ith local model, a
local controller is designed to guarantee local stability and
performance robustness. The bank of controllers is composed
of N controllers Ki which have the following state-space
representations:

Ki :=

{
ẋKi (t) = fK

(
xKi (t), r(t)− y(t)

)
ui(t) = gK

(
xKi (t), r(t)− y(t)

) (7)

where r(t) ∈ Rny is the reference to be tracked. These
controllers are partially combined to form the global control
law. The final control signal applied to the real plant is a
weighted sum of the outputs of each local controller:

u(t) =

N∑
i=1

wi(t)ui(t) (8)

where wi(t) is called the validity reflecting the relative
importance of each ith model compared to the real plant.
Suitable validities are assigned based on the probabilities such
that less probable models are associated to smaller weights.
This ensures that designed controllers for less probable models
have less influence on the resulting control value. The validity
vector w ∈ RN have the following convex property:

∀i ∈ {1,..., N} wi(t) ≥ 0 ,

N∑
i=1

wi(t) = 1 (9)

The next step is to determine a bank of estimators consisting
of N estimators Ei that generate estimated system outputs
ŷi(t) for each nominal model Mi based on the applied control
inputs u(t) and measured outputs y(t) of the real plant. These
estimates will provide the basis for the validities computation.
As mentioned above, EKFs, that are a nonlinear derivation
of the original KFs, are used.

Fig.4 presents a general MMAC where Ŷ =
[
ŷT1 · · · ŷTN

]T
is the concatenation of the estimated outputs from the bank
of estimators and U =

[
uT1 · · · uTN

]T
are the outputs of the

bank of controllers.

K1

...

KN

N∑
i=1

wiui G

E1

...

EN

Validities
computation

U u y

Ŷw

r

Fig. 4: MMAC method

The last and one of the most fundamental aspects of
the MMAC is the methodology to determine the validity
associated with each controller for the evaluation of the actual



control signals. This logic must identify which controllers
must be involved in the control loop and their contributions
depending on the real value of parameter θ that is supposed
to be unknown. The validity calculation is based on the
distance between the system output and those of the different
estimators defined in the bank. This distance called residual
or innovation is therefore defined for the ith model as:

εi(t) = y(t)− ŷi(t) (10)

The normalized validity is online-computed at each sample
time index k ∈ N by the Posterior Probability Evaluator
(PPE) in three step:

1) Recursive update:

w′i(k) =
βi(k)emi(k) w′i(k−1)∑M

j=1 βj(k)emj(k) w′j(k−1)
(11)

with

βi(k) =
[
(2π)ny det(Si(k))

]− 1
2

mi(k) = − 1
2ε

T
i (k)S−1i (k)εi(k)

2) Bounding away from zero:

w′i(k) =

{
w′i(k) if w′i(k) > δ

δ otherwise
(12)

3) Normalization:

wi(k) =

{
w′
i(k)∑

j∈J w′
j(k)

if w′i(k) > δ

0 otherwise
(13)

where J := {j ∈ {1,..., N} | w′j(k) > δ}
Validities are led by a Bayesian validity formula where Si(k)
is the residual covariance matrix calculated by estimators.
These matrices play an important role in tuning the conver-
gence rate of probabilities wi(k). To keep models alive, a
threshold δ is used. The probabilities are bounded to this value
and not allowed to go to zero. This threshold represents the
sensitivity of the algorithm to new information, a high value
will improve responsiveness while a lower value will yield
less varying probabilities. At last, the weights are normalized
by excluding the models having reached the threshold.

C. Neural MMAC (NMMAC)

In the proposed flight data learning approach, the blocks
that constitute the MMAC are based on the already trained
neural networks. The data is separated according to different
aircraft operating points, that are particular values of varying
parameters or specific failure scenarios.

The networks structure is the OSSNN presented in the
previous section. The neural controllers identified on the data
can be directly used to build the bank of controllers. On
the other hand, the state-space representation of the OSSNN
allows the implementation of nonlinear observers such as
EKFs to form the bank of observers.

V. EXPERIMENTS

The experiment presented here is intended to illustrate the
proposed NATP rather than a practical case. The interest of
this example is solely to demonstrate the platform capabilities
through a simple application of the intelligent controller built
with the NATP. Thus, it could be more sophisticated in the
long term and deal with more realistic problems, for instance,
the reconfiguration of low-level controllers in case of default
or an intelligent controller that could be trained to steer
several planes.

The illustration of the NATP is based on an aircraft
guidance controller, also named flight director, whose airspeed
is not measured for control purposes. Therefore, an NMMAC
considering longitudinal and lateral coupled dynamics is
performed on three different airspeed values selected inside
the aircraft flight envelope. The simulations reported in this
paper use the Vision SF50. It is a single-engine, very light jet
aircraft manufactured by Cirrus Aircraft. This model, which is
one of those installed in the X-Plane default fleet, is equipped
with an autopilot. The objective is to use the flight data to
recreate this autopilot in a neural version organized in an
NMMAC, as shown in Fig 5. Remember that a real recorded
flight could also generate those data.

Matlab & Simulink X-Plane

K−NN 1

K−NN 2

K−NN 3

3∑
i=1

wiui
servo

autopilot aircraft

EKF−NN 1

EKF−NN 2

EKF−NN 3

Validities
computation

U

[
φr
θr

] [
ψ
h

]

Ŷ

w

[
ψr

hr

]

Fig. 5: Neural autopilot

Black-box models of the aircraft and the existing corre-
sponding autopilot are identified by neural networks for the
three airspeed values Θ = {v1, v2, v3}, leading to the neural
controllers K−NN i and the EKFs based on neural models
EKF−NN i. The controllers are those of guidance, and the
identified systems include the aircraft dynamics together with
the internal servo autopilot of X-Plane. The neural autopilot
aims to track the heading ψr and altitude hr reference signals.
The control signals composed by the roll reference φr and
pitch reference θr are computed in Matlab and sent to the
simulator, which returns the aircraft heading ψ and altitude
h.

A. Data collection

In an effort to have a sufficiently rich learning signal,
heading and altitude references are sent to X-Plane, and the
autopilot has the task of controlling the aircraft in complying
with these references. These reference signals are composed
of a succession of steps with random amplitude and length.
Amplitudes are bounded by minimum and maximum values,



which are forced to appear in the excitation signal at least
once to ensure the system is excited on the desired range.
Similarly, steps full duration are determined so that the steady-
state is reached in a more or less important proportion of
the cases. The desired headings are chosen between 150°
and 300°, and the steps have a duration not exceeding 60s.
Simultaneously, the specified altitude steps are bounded by
3500 feet and 6000 feet and their duration by 120s. During
altitude change phases, the autopilot manages the rate of
climb and maintains a vertical speed of 1500 ft/min.

During the flight, the autopilot also maintains airspeed
(Knots Indicated Airspeed) around three successive operating
points, v1 = 130kt, v2 = 160kt and v3 = 190kt. Each of
the flight phases is 45min long, X-Plane records the data at
a writing frequency of 20Hz, i.e. a sampling time of 0.05s
which is a typical guidance frequency. The flight is carried
out in calm weather around Paris Orly airport.

B. Neural networks training

Once the flight data is available, it is extracted from the
text file and separated according to the three operating points
for the offline learning in Matlab. In the pre-processing, each
dataset is resampled at 0.05s for a uniform sampling time,
normalized using the min-max method before being divided
into three sets with 70% for the training set, 15% for the
validation set and 15% for the test set.

The used learning algorithm is the LM which is usually the
most efficient for shallow network training, combined with
RTRL for the Jacobian approximation during RNN training.
The early stopping criterion is used when the validation
cost increases 300 times successively. A number of 8 runs
is performed, and the network with the lowest validation
performance is selected. Finally, the input and output weights
are modified according to the data normalization values to
avoid input-output normalization and de-normalization when
using the network. Each run is divided into two steps: the
network is first trained in FNN, i.e. the outputs vector is
supplied to the network; the obtained network is then used
to initiate a second RNN training where generated outputs
are fed back to the network. An OSSNN structure is used, a
succession of trial-and-error tests are required to set the hyper-
parameters nh, nin and nout to obtain the most optimized
networks.

Table III and Table IV respectively show the best results
for identifying the systems and the controllers on the three-
speed operating points v = {130kt, 160kt, 190kt}. The hyper-
parameters used for each training are specified in the table
title. The given results are: the performance according to the
MSE (4) obtained on each data set, the number of iterations
where the minimum is reached before the validation cost
increases, and the computing time required by parallelizing
the calculations on an Intel(R) Core(TM) i5-8400H-2.50GHz
processor and Matlab 2019b.

C. Autonomous control

The NMMAC is now built based on the trained neural
networks. The controllers are directly used in their neural

TABLE III: System training results on the input-output data{[
φr θr

]T
,
[
ψ h

]T}
with nh = 15, nin = 3 and nout = 1

training
type

training
perf.

validation
perf.

test
perf. iterations time

Model
n°1

FNN 3.29e−12 5.44e−12 7.53e−12 388 2m12s
RNN 5.65e−4 4.93e−3 3.51e−2 303 11m16s

Model
n°2

FNN 7.39e−12 8.43e−12 1.72e−11 345 1m46s
RNN 3.60e−4 1.01e−3 2.79e−2 302 11m12s

Model
n°3

FNN 5.94e−11 3.55e−11 6.97e−11 423 1m18s
RNN 8.03e−6 3.73e−4 5.94e−3 780 18m20s

TABLE IV: Controller training results on the input-output
data

{[
ψr−ψ hr−h

]T
,
[
φr θr

]T}
with nh = 15, nin = 3

and nout = 1

training
type

training
perf.

validation
perf.

test
perf. iterations time

Controller
n°1

FNN 2.20e−7 2.54e−7 2.43e−7 212 13s
RNN 7.09e−3 4.70e−4 9.77e−3 302 3m22s

Controller
n°2

FNN 2.47e−7 2.90e−7 1.81e−7 231 18s
RNN 6.83e−3 7.11e−3 8.44e−3 159 1m56s

Controller
n°3

FNN 2.85e−7 2.34e−7 2.71e−7 1111 52s
RNN 9.62e−3 7.12e−3 1.32e−2 20 10s

form to constitute the bank of controllers. Discrete EKFs are
designed from the OSSNNs to form the bank of observers.
EKFs are nonlinear observers that can be easily implemented,
but their design can be challenging to set up. A first setting
is obtained by using the MMAE alone and by feeding the
MMAE with flight data. EKFs are then fine-tuned when
using the MMAC with X-Plane, and the following setting is
retained for each ith estimator: the process noise covariance
Qi = diag(

[
10−4 10−3 10−4 10−3

]
), the observation

noise covariance Ri = diag(
[
1 10

]
) and the initial estimate

covariance Pi(k=0) = 103. The residuals covariance Si are
then used by the PPE to calculate the validities with the
following settings: a threshold δ = 0.01 and initial weights
wi(k=0) = 1/3.

The control system is then co-simulated with X-Plane, as
previously shown in Fig 5. The proposed neural autopilot
tracks two reference signals, including steps and ramps. The
airspeed is managed by the inner servo autopilot, but it is
not taken into account by the neural autopilot in Matlab. Fig
6 shows the results obtained for a flight in calm weather, and
Fig 7 shows the comparison of the responses with the imitated
X-Plane autopilot. The results show satisfying performance in
controlling heading and altitude that match X-Plane autopilot,
appropriate control signals followed by the internal aircraft
autopilot, and convergence of the validities according to the
unknown speed according to the neural autopilot.

VI. CONCLUSIONS

The research principal goal was to develop a platform to
train a neural autopilot to mimic the piloting abilities of an
artificial or human pilot known to be skilled in handling
real-world flight conditions. For the purpose set, a controller



Fig. 6: Proposed NMMAC responses for a airspeed variations

Fig. 7: Comparison of neural autopilot and X-Pane autopilot responses for the same reference signals

design tool was elaborated based on three modules. First,
with the presentation of a co-simulation between X-Plane and
Matlab, the paper gives the key features to help researchers
benefit from this accurate and flexible flight simulator. This
study then provides an offline black-box identification method
based on neural networks that can suit to control theory

framework. Finally, fault-tolerant control is proposed through
an NMMAC. The approach relevance is shown by designing
a speed sensor fault-tolerant flight director based on the data
from the autopilot available in the simulator. This application
demonstrates the proposed platform capabilities, which is
promising for addressing more realistic cases in the future.



VII. THE NEURAL AUTOPILOT TRAINING PLATFORM: AN
EFFICIENT TOOL FOR ROBUST AUTONOMOUS CONTROLLER

DEPLOYMENT

This paper provides an illustration of the proposed method;
however, the platform offers a much broader application scope
than the one presented.

Indeed, this work aims to imitate X-Plane autopilot.
However, in the future approach, the data will be generated
using a human pilot to build an autopilot, reproducing its
behaviour automatically. It is conceivable to use real flight
data to develop the autopilot. It is also possible to shift the
control law to another control stage than guidance, such as
steering or even navigation. Finally, the work is not specific
to aircraft since the multipurpose method using input-output
data from a system and an existing controller to provides a
nonlinear self-adaptive controller.

Due to the stability analysis challenge, the proposed
autopilot will primarily assist the pilot. Nevertheless, in
future works, the learning must be performed under stability
constraint. The use of state-space neural networks opens
up new analysis perspectives, particularly with the help
of their already established links with Linear Fractional
Transformation (LFT) and the associated robust control work
[25], [26], [30]. The approach suggests the possibility of
providing stability margins of the neural controller useful for
certification.

Finally, the neural autopilot based on the NMMAC will
become more and more intelligent and increase its reliability
with the development of additional models based on new
data. Its robustness will also be enhanced with observers
considering an augmented state with disturbance.

REFERENCES

[1] H. Baomar and P. J. Bentley, “An intelligent autopilot system that
learns flight emergency procedures by imitating human pilots,” in 2016
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2016, pp. 1–9.

[2] M. Agha, K. Kanistras, P. C. Saka, K. Valavanis, and M. Rutherford,
“System identification of circulation control uav using x-plane flight
simulation software and flight data,” in AIAA Modeling and Simulation
Technologies Conference, 2017, p. 3154.

[3] C. W. Thong, “Modeling aircraft performance and stability on x-
plane,” Australian Defence Force Academy, Univ. of New South Wales,
Canberra, Australia, 2010.

[4] A. Bittar, H. V. Figuereido, P. A. Guimaraes, and A. C. Mendes,
“Guidance software-in-the-loop simulation using x-plane and simulink
for uavs,” in 2014 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2014, pp. 993–1002.

[5] L. R. Ribeiro and N. M. F. Oliveira, “Uav autopilot controllers test
platform using matlab/simulink and x-plane,” in 2010 IEEE Frontiers
in Education Conference (FIE). IEEE, 2010, pp. S2H–1.

[6] R. Garcia and L. Barnes, “Multi-uav simulator utilizing x-plane,” in
Selected papers from the 2nd International Symposium on UAVs, Reno,
Nevada, USA June 8–10, 2009. Springer, 2009, pp. 393–406.

[7] H. V. Figueiredo and O. Saotome, “Simulation platform for quadri-
copter: Using matlab/simulink and x-plane,” in 2012 Brazilian Robotics
Symposium and Latin American Robotics Symposium. IEEE, 2012,
pp. 51–55.

[8] A. Kaviyarasu and K. S. Kumar, “Simulation of flapping-wing
unmanned aerial vehicle using x-plane and matlab/simulink,” Defence
Science Journal, vol. 64, no. 4, p. 327, 2014.

[9] E. Ersoy and M. K. Yalçin, “Designing autopilot system for fixed-
wing flight mode of a tilt-rotor uav in a virtual environment: X-plane,”
International Advanced Researches and Engineering Journal, vol. 2,
no. 1, pp. 33–42, 2018.

[10] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[11] H. Baomar and P. J. Bentley, “Autonomous navigation and landing of
airliners using artificial neural networks and learning by imitation,” in
2017 IEEE Symposium Series on Computational Intelligence (SSCI),
2017.

[12] K. Sezginer and C. Kasnakoğlu, “Autonomous navigation of an aircraft
using a narx recurrent neural network,” in 2019 11th International
Conference on Electrical and Electronics Engineering (ELECO). IEEE,
2019, pp. 895–899.

[13] D. Shukla, S. Keshmiri, and N. Beckage, “Imitation learning for neural
network autopilot in fixed-wing unmanned aerial systems,” in 2020
International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2020, pp. 1508–1517.

[14] M. Athans, D. Castanon, K.-P. Dunn, C. Greene, W. Lee, N. Sandell,
and A. Willsky, “The stochastic control of the f-8c aircraft using a
multiple model adaptive control (mmac) method–part i: Equilibrium
flight,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp.
768–780, 1977.

[15] G. J. J. Ducard, Fault-tolerant flight control and guidance systems:
practical methods for small unmanned aerial vehicles, ser. Advances
in industrial control. Springer, 2009.

[16] S. Fekri, D. Gu, I. Postlethwaite, and M. Athans, “Robust adaptive
fault-tolerant control of the f-14 aircraft under sensor failures,” IFAC
Proceedings Volumes, vol. 41, no. 2, pp. 10 172–10 177, 2008.

[17] P. Bauer, R. Venkataraman, B. Vanek, P. J. Seiler, and J. Bokor, “Fault
detection and basic in-flight reconfiguration of a small uav equipped
with elevons,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 600–607, 2018.

[18] G. Aschauer, A. Schirrer, and M. Kozek, “Co-simulation of matlab and
flightgear for identification and control of aircraft,” IFAC-PapersOnLine,
vol. 48, no. 1, pp. 67–72, 2015.

[19] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jess, Neural
network design. Martin Hagan, 2014.

[20] M. Garzon and F. Botelho, “Dynamical approximation by recurrent
neural networks,” Neurocomputing, vol. 29, no. 1-3, pp. 25–46, 1999.

[21] L. Jin, M. M. Gupta, and P. N. Nikiforuk, “Dynamic recurrent neural
networks for approximation of nonlinear systems,” IFAC Proceedings
Volumes, vol. 32, no. 2, pp. 5213–5218, 1999.

[22] P. M. Nørgård, O. Ravn, N. K. Poulsen, and L. K. Hansen, “Neural
networks for modelling and control of dynamic systems-a practitioner’s
handbook,” 2000.

[23] P. Gil, J. Henriques, A. Dourado, and H. Duarte-Ramos, “On state-space
neural networks for systems identification: Stability and complexity,” in
2006 IEEE Conference on Cybernetics and Intelligent Systems. IEEE,
2006, pp. 1–5.

[24] N. Lachhab, H. Abbas, and H. Werner, “A neural-network based
technique for modelling and lpv control of an arm-driven inverted
pendulum,” in 2008 47th IEEE Conference on Decision and Control.
IEEE, 2008, pp. 3860–3865.

[25] J. A. Suykens, J. P. Vandewalle, and B. L. de Moor, Artificial neural
networks for modelling and control of non-linear systems. Springer
Science & Business Media, 1995.

[26] H. Abbas and H. Werner, “Lpv design of charge control for an si engine
based on lft neural state-space models,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 7427–7432, 2008.

[27] S. Fekri, M. Athans, and A. Pascoal, “Issues, progress and new results
in robust adaptive control,” International Journal of Adaptive Control
and Signal Processing, vol. 20, no. 10, pp. 519–579, 2006.

[28] F. Sims, D. Lainiotis, and D. Magill, “Recursive algorithm for the
calculation of the adaptive Kalman filter weighting coefficients,” IEEE
Transactions on Automatic Control, vol. 14, no. 2, pp. 215–218, Apr.
1969.

[29] S. Fekri, “Robust adaptive mimo control using multiple-model hy-
pothesis testing and mixed-µ synthesis,” Ph.D. dissertation, Ph. D.
dissertation, Instituto Superior Tecnico, Lisbon, Portugal, 2005.

[30] J. D. Bendtsen and K. Trangbæk, “Transformation of neural state space
models into lft models for robust control design,” in Transformation
of Neural State Space Models into LFT Models for Robust Control
Design, 2000.


