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Abstract: Under the vertex representation for the state partitions, this paper studies the
fragility of piecewise affine (PWA) control laws for constrained discrete-time linear systems.
In particular, the aim is to evaluate the impact of uncertainty in the representation of state-
space partition. Practically, the notion of coupled vertex sensitivity (CVS) is defined to inscribe
the joint uncertainty in the vertex positioning. This novel concept reduces the computational
complexity and the conservativeness of the construction compared to the use of independent
vertex perturbation through the iterative procedure using the existing results. A numerical
example illustrated the effectiveness of our work.
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1. INTRODUCTION

Model predictive control (MPC) is an effective and widely
accepted method for complex constrained multivariable
control problems in the process industries (Maciejowski,
2002). Based on the formulation of the optimal solution
underlying the control law, MPC can be divided into two
main categories: implicit MPC and explicit MPC (EMPC)
(Rawlings et al. (2017)). The former approach iterates an
online optimization process to compute a control action for
a constrained control system based on current states and
the strategy applied successfully to chemical processes on a
large scale. However, the characteristics of online optimiza-
tion limit its application to systems with high requirements
from a computational perspective (small sampling time).
EMPC, on the other hand, solves the problem to obtain an
explicit control law with system states as parameters. This
approach reduces the computational efforts of solving an
online multi-parametric programming problem to a simple
evaluation of a control law that is stored in the form
of a look-up table (Bemporad et al. (2002)) and moves
the computational problem to the storing and evaluation
mechanisms.

The robustness of closed loop control systems requires
uncertainty handling related to the design and implemen-
tation. In recent years, many researchers have investigated
the robustness or fragility of EMPC from different perspec-
tives. Given a polytopic uncertainty on the nominal model
of the system, in Olaru et al. (2013), authors proposed an
explicit robustness margin for discrete-time linear systems
with PWA control. In Nguyen et al. (2016), authors ex-
tended this work to the direction of admissible variations
in the PWA control law coefficients and denoted it as the
fragility margin such that the positive invariance of sys-

tems states set is guaranteed. Different from the theoreti-
cal analysis of EMPC in the design process, the robustness
analysis of the system model and the corresponding PWA
controller, in Suardi et al. (2014), researchers investigated
the impact of the unavoidable errors on the system per-
formance during the practical application of EMPC. This
work analyzed the quantization operation for the point of
view of the state-space partitions and PWA control laws
assuming that the states regions after quantizing are non-
overlapping. In Koduri et al. (2017b), the conservative
assumption of non-overlapping property was relaxed in
the presence of quantization and the vertex sensitivity
set satisfying the non-overlapping partition is given by
theoretical analysis under the state partitions vertex rep-
resentation. In Koduri et al. (2017a), authors showed that
the non-overlapping and the invariance properties of a
PWA controller are preserved when the perturbation takes
place on the vertices.

The present paper pursues the analysis of the robust-
ness of PWA control systems under the vertex repre-
sentation of state partitions. With respect to the results
mentioned above and available in the literature, the main
contribution is related to the coupled vertex sensitivity
(CVS), which is proposed as a concept to describe the
simultaneous uncertainty in the location of two vertices
of the original explicit PWA solution of the parametric
optimization within MPC. Multi-vertex uncertainty is a
complex phenomenon in the representation of the state-
partitioned controllers and brings the robustness analysis
to a relevant practical dimension. Indeed, previous work
addressed only single-vertex uncertainty and treated the
presence of uncertainty in multiple vertices in terms of
sequential single vertex analysis. This approach has the



shortcomings of computational complexity, high conserva-
tiveness in practice, and dependence of the solution on
the processing order. By the proposed CVS, we partially
cope with the shortcomings of sequential analysis and open
the way for the characterization of uncertainty in terms of
the half-space representation of the state partitions of the
PWA controllers.

This paper is organised as follows. In the preliminaries,
the background of EMPC and related research are pre-
sented. In section 3, the CVS and associated constructive
approach are given. Then, an algorithm to calculate CVS
is designed. A numerical example is presented to illustrate
the effectiveness of the proposed CVS.

Notions: R and N denote the field of real numbers and the
non-negative integers. IN denotes the set {1, 2, . . . , N},
while IN represents the N -dimensional identity matrix.
The convex hull of a set of points {v1, v2, . . . , vn} ∈
Rn is denoted conv{v1, v2, . . . , vn}. For a given bounded
polyhedral set P ⊂ Rn the (finite) set of vertices is denoted
V(P).

2. PRELIMINARIES

2.1 PWA control

Consider a discrete-time linear system:

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu are the state vector and
control input vector respectively at time k. The states and
inputs are bounded by polytopes as:

x(k) ∈ X , u(k) ∈ U ,∀k ∈ N,
X = {x : Hxx ≤ bx},U = {u : Huu ≤ bu},

where bx, bu, Hx, and Hu are constant matrices with suit-
able dimension. Before referring to the PWA control prob-
lem of (1), the related definitions are recalled.
Definition 1. A collection of polyhedral sets {Xi}∀i∈IN

is
called a polyhedral partition of X if

X = ∪N
i=1Xi,

int(Xi) ∩ int(Xj) = ∅, i ̸= j,∀i, j ∈ IN .

Such a polyhedral partition will be denoted as PN (X ).
Definition 2. Consider a polyhedron X ⊂ Rnx with
a related polyhedral partition PN (X ), a piecewise affine
(PWA) function over PN (X ) is defined as:

fi : Rnx → R (2)

fi(x) = aTi x+ bi,∀x ∈ Xi. (3)

Following the classic EMPC design Bemporad et al.
(2002), a PWA control law is obtained based on the so-
lution of a multi-parametric quadratic programming (mp-
QP) problem with the following structure:

J(x(k)) := min
u

1/2uTHu+ xT (k)Fu (4a)

s.t. Gu ≤ W + Sx(k). (4b)

The solution u = gTi x(k) + fi for all x(k) ∈ Xi, i ∈ IN
is a PWA funciton defined over a polyhedral partition
PN (X ) of the state set X . The control input u(k) is the
first component of the input sequence u.

The polyhedral partition PN (X ) and related control law
u(x) have to be stored, and the online computational

effort is concentrated on the evaluation of the appropriate
local affine function. Such a look-up table implementation
of a nonlinear control has apparent advantages in safety
certification in industrial application. However, their use
in dedicated hardware devices comes inevitably accompa-
nied by quantization operations, which are used on the
representation of the state regions and the associated PWA
control laws (Knyazev et al. (2015)).

In Koduri et al. (2016), Koduri et al. (2017a), authors
studied the effectiveness of quantized operations on the
PWA control laws and proposed a sensitivity margin to
reduce these unflattering effects. After a short analysis of
the current work in the following subsection, a question
worth exploring is raised.

2.2 Existing results on PWA sensitivity

In the following, let us consider a PWA control law and
associated state regions designed for the stabilization of
the system (1). The vertex representation of the state
region Xi is given as:

Xi = conv{vi,1, vi,2, . . . , vi,ri}, i ∈ IN , (5)

where IN and ri are the region number set and the number
of vertices of Xi, respectively.

As discussed in Knyazev et al. (2015), the quantization
is inevitable in the process of numerical representation of
the regions in the state space and consequently on the
PWA control law evaluation. On one hand, the quan-
tization operations can reduce the storage requirements
and consequently the evaluation. On the other hand,
quantization-induced changes in control laws need to be
carefully analyzed as they may lead to non-unicity at the
evaluation stage, loss of invariance properties, and even
system instability. In this respect, in Koduri et al. (2017a),
authors investigated the admissible perturbation set for
vertices in the vertex representation of state regions. In
particular, a sensitivity margin (SM) was introduced to
describe the vertex sensitivity after perturbation in terms
of a set that can guarantee the non-overlapping property
of the resulting partition.
Definition 3. Consider the polyhedral partitions PN (X )
of a PWA control law for system (1) with each region given
by its vertex representation (5). Let v ∈ Rnx be a vertex of
the regions composing PN (X ) and denote Θ(v) as the set
of indices of all polyhedral regions having v as a vertex:

Θ(v) = {j ∈ IN |v ∈ V(Xj)}.
The sensitivity margin of a vertex v within PN (X ) is
defined as the set Φ ⊂ Rnx containing all the points (v+δv)
for which the collection of sets

X̂j = conv{V(Xj) \ {v}, v + δv},∀j ∈ Θ(v),

X̂j = Xj ,∀j ∈ IN \Θ(v),

represents a polyhedral partition: P̂N (X ) = {X̂1, . . . , X̂N}.
Each vertex of the regions within the polyhedral partition
PN (X ) has an SM. In the following, the SM of a given
vertex v will be denoted Φ for simplicity. If the SMs of
different vertices vi and vj are dealt with, they will be
denoted Φi and Φj to avoid ambiguity.

Clearly, the SM contains the original vertex, i.e., v ∈ Φ,
and its uniqueness and structural properties can be fully
characterized as resumed by the following result.



Lemma 1. (Koduri et al. (2017b)) Consider the poly-
hedral partition PN (X ) ⊂ Rnx composed by the regions
Xi, i ∈ IN . For v ∈ V(Xi), the SM is unique and the
corresponding set Φ is a polyhedron.

If the vertex v is perturbed within its SM region, the result-
ing polyhedral partition will preserve the non-overlapping
property. However, SM merely defines the sensitivity of a
single vertex, whereas the study of coupled vertex sensitiv-
ity of a pair of vertices is an open problem and represents
a challenge from the computational point of view.

It should be mentioned that Koduri’s work explored and
eventually implemented perturbation studies of multiple
vertices, but the essence of this sensitivity analysis was
built on the sequential perturbation of the vertices. This
essentially iterative procedure increases the conservative-
ness of the robustness margin and is highly dependent on
the order (priority) of processing the multiple vertices.

In order to address all these issues and reduce the conser-
vativeness of joint vertex sensitivity, a method is proposed
next to define and characterize the sensitivity margin of
two vertices concomitantly.

3. MAIN RESULT

3.1 Coupled vertex sensitivity definitions

This subsection proposes a vertex sensitivity analysis for
the simultaneous perturbation of two vertices starting
from the former SM and introduces the coupled vertices
sensitivity (CVS), aiming at reducing the conservativeness
of multiple vertices perturbation analysis in calculating
vertex sensitivity. It expands, then, the model of vertex
perturbation and provides ideas for further study of half-
space perturbation.
Definition 4. Consider the polyhedral partition PN (X ) ∈
Rnx with each region given by its vertex representation
Xi = conv{vi,1, . . . , vi,ri}, i ∈ IN . Let v1, v2 ∈ Rnx be
vertices within PN (X ) and denote the set of indexes of
polyhedral regions having v1 or v2 as a vertex as follows:

Θ12(v1, v2) = {j ∈ IN |v1 ∈ V(Xj), v
2 ∈ V(Xj)}, (6)

Θ1(v1, v2) = {j ∈ IN |v1 ∈ V(Xj), v
2 /∈ V(Xj)}, (7)

Θ2(v1, v2) = {j ∈ IN |v1 /∈ V(Xj), v
2 ∈ V(Xj)}. (8)

The pair of sets (Ψ1,Ψ2) is describing a coupled vertex
sensitivity of vertices pair (v1, v2) within the polyhedral
partition PN (X ) if the following conditions are satisfied:

• Ψ1 ⊂ X ⊂ Rnx ,Ψ2 ⊂ X ⊂ Rnx ,
• v1 ∈ Ψ1 and v2 ∈ Ψ2,
• for all (v1 + δv1) ∈ Ψ1 and (v2 + δv2) ∈ Ψ2, the

collection of sets P̂N (X ) = {X̂i}∀i∈IN
.

X̂j = conv{V(Xj) \ {v1, v2}, v1 + δv1, v2 + δv2},∀j ∈ Θ12,

X̂j = conv{V(Xj) \ {v1}, v1 + δv1},∀j ∈ Θ1,

X̂j = conv{V(Xj) \ {v2}, v2 + δv2},∀j ∈ Θ2,

X̂j = Xj ,∀j ∈ IN \Θ12 ∪Θ1 ∪Θ2

represents a polyhedral partition, where Θ∗ denotes the set
Θ∗(v1, v2).

For this new sensitivity notion, one can establish a series
of properties underlying the non-unicity of the CVS and

the relationships with the SM of each vertex in the pair
considered independently.
Proposition 1. Consider two vertices v1 and v2 within a
polyhedral partition PN (X ). The following properties hold:

• If Θ12(v1, v2) is an empty set, the perturbation of v2

has no effect to the SM of v1.
• Given the SM Φ1 of the vertex v1, the pair (Φ1,

{
v2
}
)

represents a CVS for the pair of vertices (v1, v2).
• The CVS of the pair of vertices (v1, v2) within the

polyhedral partition PN (X ), given by the pair of sets
(Ψ1,Ψ2) may not be unique. Two trivial examples are
(Φ1,

{
v2
}
) and (

{
v1
}
,Φ2).

• If (Ψ1
1,Ψ

2
1) and (Ψ1

2,Ψ
2
2) are two CVS of (v1, v2) then

the pair of sets

(Ψ1
1 ∪Ψ1

2,Ψ
2
1 ∩Ψ2

2) or (Ψ1
1 ∩Ψ1

2,Ψ
2
1 ∪Ψ2

2)

are a CVS of the pair of vertices (v1, v2). As a
particular case, the pair (Ψ1

1 ∩Ψ1
2,Ψ

2
1 ∩Ψ2

2) is a CVS
of (v1, v2) too.

These properties are provided here without formal proof,
but the arguments supporting the claims construct the
CVS as described in the following subsection.

3.2 Constructive approach for the CVS

Taking into account that the CVS of a pair of vertices is
elaborated starting from the essential SM of the vertices
taken independently, we analyzed the interplay of their
variation in this subsection. From a theoretical point of
view, a proposition will formally present the operations
related to the CVS construction. Finally, an algorithm is
provided to calculate the CVS.

Consider v1 and v2, two vertices of the polyhedral partition
PN (X ) of the PWA system (1). The aim is to establish for-
mal conditions to prevent the phenomenon of overlapping
of the regions composing the PWA partition. This non-
overlapping property has been considered in the computa-
tion process of Φ1, the SM for v1 considered independently
(i.e., with fixed positions of the remaining vertices). The
objective here is to point out the role of the uncertainty
on a different vertex v2 acting in this robustness analysis.

Let us begin by considering all the vertices of PN (X )
excepting v1 as fixed and denote their position by v̄i,∀i ̸=
1. In Koduri et al. (2017a), the linear affine inequalities
defining the SM have been characterized thus leading to a
polyhedral set Φ1 = {x|H1x ≤ b1}.

Φ1 = {x ∈ Rn|H1,1x ≤ b1,1}︸ ︷︷ ︸
Γ1

∩{x ∈ Rn|H1,2x ≤ b1,2}︸ ︷︷ ︸
∆1

where the reordering and the separation of halfspace has
been operated such that:

H1 =

[
H1,1

H1,2

]
and b1 =

[
b1,1

b1,2

]
with H1,1v̄2 = b1,1 and H1,2v̄2 < b1,2, where v2 ̸= v1 is a
vertex within PN (X ) subject to a joint disturbance around
its nominal position v̄2, and the related Θ12(v1, v2) is not
empty. By selecting halfspace saturated by v̄2, one can
construct the polyhedral set

Γ1 = {x|H1,1x ≤ b1,1},
which is representative for the effect of variation of v2 on
the robustness margin for v1. Obviously, Φ1 ⊂ Γ1 and



Figure 1 provides a graphical illustration of the sets defined
in the present case. It should be specified that, due to
Φ1 ⊂ X , for the convenience of graphing Γ1, in Figure 1,
we only showed the intersection of Γ1 and X to denote Γ1.

Fig. 1. A polyhedral partition with four regions, a vertex
v1 and the SM Φ1 of v1. Polyhedral Γ1 depicted by
magenta dotted zone denotes the interaction of v2

with v1.

Let us consider now a perturbation affecting the represen-
tation of the vertex v2 to v̂2 = v̄2+δv2. In order to account
for this perturbation in the definition of the SM for v1, one
has to consider the set Φ1 in terms of its parameterization
with respect to the position of the vertex v̂2. Thus in
the following, we will denote by Φ1(v̂2) the SM of v1

assumed that the vertex v2 is displaced from the position
v̄2 to v̂2. Following the same convenience of notation, after
recomputing the set Φ1(v̂2), one can subsequently obtain
Γ1(v̂2). Figure 2 illustrated the position of these regions.

Our objective is to obtain a joint sensitivity for a pair
of vertices (v1, v2) and the first operation is to ex-
tend the CVS from (Φ1(v̄2), {v̄2}) towards the CVS
(Φ1({v̄2, v̂2}), {v̄2, v̂2}).
The next step is to clarify the relationship between Φ1(v̄2)
and Φ1(v̂2) on one side and Φ1({v̄2, v̂2}) on the other side.
It is easy to observe from the definition of SM sets that:

Φ1({v̄2, v̂2}) = Φ1(v̄2) ∩ Φ1(v̂2). (9)

On the left-hand side, Φ1 = Φ1({v̄2, v̂2}) represents the
SM of v1 and should be understood as the margin of
its variation independent of the position of v2 at v̄2 or
v̂2. On the right-hand side, the effect of an undesirable
perturbation of v2 the characterization of the SM of v1

is expressed by the intersection of the SM as long as the
admissible perturbations need to be part of both sets.

The main contribution with respect to these developments
is the extension of the v2 displacement within the set
conv{v̄2, v̂2}. Based on the construction principles for
the sets Γ1(.) which represents the collection of active
constraints for the possible variation of v2 one can note
that whenever Γ1(v2) satisfies

Γ1(v̄2) ∩ Γ1(v̂2) ⊂ Γ1(v2),∀v2 ∈ conv{v̄2, v̂2},
then Φ1, the SM of v1, will not be affected by the per-
turbation of v2 within the set conv{v̄2, v̂2}. Consequently,
(Φ1({v̄2, v̂2}), conv{v̄2, v̂2}) is a CVS of (v1, v2) as illus-
trated in Figure 3.

Fig. 2. With the perturbation of v2 → v̂2, the SM of v1

changed as: Φ1 → Φ1(v̂2) (red zone), the related effect
set changed as: Γ1 → Γ1(v̂2) (magenta zone)

.

Fig. 3. The effect of v2 to the SM of v1: Φ1({v̄2, v̂2}) ⊂
Γ1(v̄2) ∩ Γ1(v̂2) ⊂ Γ1(v2),∀v2 ∈ conv{v̄2, v̂2}.

Proposition 2. Consider the polyhedral partitions PN (X )
of a PWA control law for system (1) and suppose all
the vertices are at their nominal positions excepting the
pair (v1, v2i ). Φ1(v2i ) is the SM of v1 and Γ1(v2i ) is the
parameterized set reflecting the effect of v2i to v1. The
pair of sets

(
Φ1({v21 , v22 , . . . , v2m}), conv{v21 , v22 , . . . , v2m}

)
is

a CVS for (v1, v2i ) if:

Γ1(ṽ2) ⊇
m⋂
l=1

Γ1(v2l ),∀ṽ2 ∈ conv{v21 , v22 , . . . , v2m} (10)

Proof.
(
Φ1({v21 , v22 , . . . , v2m}), conv{v21 , v22 , . . . , v2m}

)
repre-

sents a CVS for (v1, v2) if

Φ1({v21 , v22 , . . . , v2m}) =
⋂

ṽ2∈conv{v2
1 ,v

2
2 ,...,v

2
m}

Φ1(ṽ2). (11)

By definition

Φ1({v21 , v22 , . . . , v2m}) ≡
m⋂
l=1

Φ1(ṽ2l )

and
m⋂
l=1

Φ1(ṽ2l ) ⊇
⋂

ṽ2∈conv{v2
1 ,v

2
2 ,...,v

2
m}

Φ1(ṽ2).

Thus, in order to prove (11) one needs to prove that

Φ1(ṽ2) ⊇
m⋂
l=1

Φ1(v2l )



forall ṽ2 in conv{v21 , v22 , . . . , v2m}. This can be rewritten as

Γ1(ṽ2) ∩∆ ⊇
m⋂
l=1

Γ1(v2l ) ∩∆

Clearly, the condition (10) represents a sufficient condition
and the Proposition is proved.

Figure 3 depicts the central notions of the proof and
points to the essence of the conditions embedded in the
Proposition 2 in the particular case of m = 2 extreme
points for the variation of v2.
Remark 1. The condition (10) provides guarantees for
the existence of a joint sensitivity margin, but the essential
feature to be underlined is that neighbour vertices influence
each other, and the joint sensitivity can be analyzed using
the sensitivity margin at the extreme points of disturbance
for the neighbour vertex. Furthermore, the joint sensitivity
margin opens the way for the treatment of the sensitivity
margin for the H-representation of the polyhedral partition
of the PWA control laws with obvious practical advantages
in the implementation.

Algorithm 1 presented next proposes a constructive pro-
cedure to calculate the CVS for a pair of vertices of a
polyhedral partition (v1, v2). It alternates the construction
of SM for independent vertices and integrates the results to
obtain a non-degenerate pair of sets representing a CVS.
It should be remarked that the construction of CVS is
not unique as it was the case for SM of single vertices.
Consequently, the output depends on the initialization, in
this case, the processing order for the chosen vertices.

Algorithm 1 Calculating the CVS (Ψ1,Ψ2)

Require: X = ∪N
i=1Xi, i ∈ IN and v1, v2 ∈ PN (X ).

Ensure: (Ψ1,Ψ2) as CVS for the pair (v1, v2).
1: Fix v̄1 in the PWA explicit formulation and calculate

the Φ2(v̄1), the SM for v2.
2: Initialize Ψ2 to a subset of Φ2 which satisfy v1 /∈ Ψ2.
3: Get the V-representation of set Ψ2, which it can be

rewrote as Ψ2 = conv{v21 , . . . , v2r2}.
4: for i = 1, . . . , r2 do
5: Fix v2 → v2i and calculate the SM Φ1(v2i ) for v

1.
6: end for
7: Ψ1 = ∩r2

i=1Φ
1
i .

8: return The CVS of (v1, v2) as (Ψ1,Ψ2).

4. ILLUSTRATIVE EXAMPLES

Consider a discrete-time linear system mentioned at Ko-
duri et al. (2017a):

xk+1 = Axk +Buk (12)

with the states and inputs constraints

−5 ≤ [1 0]x ≤ 5, ∥u∥∞ ≤ 5.

The system parameter matrices are:

A =

[
1.4 0
1.8 −1.1

]
, B =

[
0.5
0.7

]
The PWA controller has been obtained in an explicit form
(MPT 3.0 toolbox Herceg et al. (2013)) for this numerical
example with parameters parameters Q = I2, R = 1,

a prediction step equals 2, an LQR terminal set and a
terminal state cost

P =

[
5.6902 0.4862
0.4862 3.1099

]
.

Two scenarios are discussed next to illustrate the charac-
teristics of the coupled vertex sensitivity.

Scenario 1:

In a first approach, the sensitivity analysis is based on
constructing the CVS for a pair of vertices belonging to the
related polyhedral partition to illustrate the efficiencies of
the concept and the realization based on Algorithm 1.

Firstly, let us recall the result of the nominal control
design, which leads to 13 linear-affine controllers and their
associated state space partitions. Next, let us select a
pair vertices (v1, v2) found at the nominal positions: v̄1 =
[0.6361 −6.5235]T and v̄2 = [3.7291 0.9076]T . Based on
Algorithm 1, CVS (Ψ1,Ψ2) was calculated and depicted
in Figure 4. The graphical representation underlines the
advantage of the CVS representation in comparison with
the original SM of the vertices taken independently.

(a) CVS (Ψ1
1,Ψ

2
1) for (v1, v2) with the order of

processing starting at v1 and followed up by v2

(b) CVS (Ψ1
2,Ψ

2
2) for (v1, v2) with the order of

processing starting at v2 and followed up by v1

Fig. 4. Different CVSs obtained for the pair of vertices
(v1, v2).

As expected, the output of the Algorithm 1 is dependent
on the processing order and the Figure 4.a shows the
result of calculating Ψ1 first, while Figure 4.b places
Ψ2 in the first processing stage. The non-uniqueness of
the joint sensitivity margin represents a rich family for
the treatment of the quantization error in the PWA
implementation.



Scenario 2:

Using the analysis performed in Scenario 1 and given the
fact that the pair of vertices are interdependent in the
sensitivity analysis, it opens the way to the characterize
the admissible perturbations in the representation of the
halfspace, which saturates the two vertices.

Similar with the quantization of vertices, one can consider
quantization functions g1(H) = H +∆H and g2(b) = b+
∆b, which were used to describe the perturbation in the
halfspace representation, with ∥∆H∥∞ ≤ 0.1, ∥∆b∥∞ ≤
0.1, Hv1 = b, and Hv2 = b.

We considered the computed CVS as constraints for the
admissible halfspace perturbation. In practice, if the in-
tersection of the half-plane (g1(H), g2(b)) : {x|g1(H)x =
g2(b)} has a non-empty intersection with both sets com-
posing the CVS then the perturbation (g1(H), g2(b)) is
admissible for the half-plane (H, b). Obviously, the original
half-plane is admissible by the fact that v̄1 ∈ Ψ1 and
v̄2 ∈ Ψ2. Figure 5, illustrates graphically the admissible
half-planes, first in the original partition space and sec-
ondly in the space of parameters of the halfspace.

(a) The admissible perturbation position set
{(g1(H), g2(b))} for hyperplane (H, b) who con-
tains v1 and v2, denoted by yellow lines.

(b) Admissible variation of the coefficients char-
acterizing the half-plane under study. g1,1(H)
denotes the value of the first element of g1(H)
and black dot represents the value of H and b.

Fig. 5. Relationship between the CVS (Ψ1
1,Ψ

2
1) and the

admissible perturbation (g1(H), g2(b)) of the half-
plane saturated by these two vertices.

5. CONCLUSION

The paper analyzes the PWA control laws regarding the
sensitivity of their representation. The geometrical proper-
ties of the partition inherited from the control design can
suffer from errors in the numerical representation of the
coefficients. As the main contribution, it has been shown
that the vertex representation of the partition can be
characterized by a coupled sensitivity measure. The CVS
goes beyond state of the art, which handles the sensitivity
for each vertex taken independently.

Several avenues for further development are open. We can
mention the non-unicity of the pairs of sets describing the
coupled sensitivity margins, which deserves further atten-
tion to define an appropriate criterion for the selection
or the interest in the constructive approaches for their
construction. On a broader scope, the gap between the
sensitivity margins for the vertex perturbation and the
halfspace perturbation remains widely uncovered.
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