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Abstract—Analyzing the stability of nonlinear systems, with
or without external inputs, is still a very challenging task. An
efficient way consists in using the Lyapunov theory which can
be deployed by searching for a Lyapunov function satisfying
constraints depending on the considered stability problem. By
showing that a majority of stability problems can be deduced
from the Input-to-State Stability (ISS) one, a generic framework
is proposed for tackling a catalog of stability analysis problems
for continuous time systems. More precisely, it allows the user
to determine Lyapunov functions, whose structure can be arbi-
trarily chosen, and that maximizes the size of the corresponding
estimation of the Domain Of Attraction (DOA). This generic
work is illustrated by ISS example showing the efficiency of the
approach.

Index Terms—Lyapunov theory, Input-to-State stability, opti-
mization, nonlinear systems, genetic algorithm.

I. INTRODUCTION

Lyapunov theory, introduced in the late nineteenth century
[1], is a practical way to investigate for the stability of an
equilibrium point for a dynamical system. The method relies
on searching for a function (called Lyapunov function) that
exhibits four important properties in the case of continuous
time systems that are sufficient for establishing stability on a
Domain Of Attraction (DOA) of a stable equilibrium point :
(1) it must be a local positive definite function; (2) it must
have continuous partial derivatives; (3) its time derivative
along any state trajectory starting from the DOA must be
negative semi-definite; and (4) the function tends to infinity
whatever the direction in the state space.

The general problem of constructing a Lyapunov function
in order to maximize the size of a guaranteed stability region
included in the actual unknown DOA is difficult. There have
been numerous attempts and methods in the literature on
how to compute Lyapunov functions for various kinds of

systems in order to achieve a stability result. Some of them
use physical insights into the system to have a good intuition
about a candidate for a Lyapunov function, for instance using
some energy concepts leading to quadratic forms. Although
more conservative in this form, those Lyapunov functions have
a physical meaning and their computation are simpler. Other
approaches allow more generic Lyapunov functions to be
obtained, using modern optimization tools or machine learning
techniques. In spite of a reduced physical meaning, those
techniques are less conservative but are ensuring, which is the
most important in our opinion, a larger estimation of the DOA.

Attempts have been made to compute quadratic Lyapunov
function maximizing the estimate of the DOA. One of the
first such publication is [2] where authors minimize the
product of the eigenvalues of P > 0 in V (x) = xTPx. In
[3], the authors are looking for the best quadratic Lyapunov
function using adaptive tabu-search. The best quadratic
function is the one which ensures the largest DOA for
this form of Lyapunov function. Besides, [4] proposed to
compute a quadratic Lyapunov function which maximizes
the volume of the DOA using Linear Matrix Inequalities for
polynomial nonlinear systems. The reader can have a wide
overview of existing methods for computing such Lyapunov
functions in [5]. These methods have good assets : first,
there is a physical insight behind this and a link between
the quadratic Lyapunov function and the energy laws of a
system can be done. Moreover, the calculation time remains
quite reasonable. However, from our point of view, these
methods may become too conservative to be usable in case
of industrial complex systems to estimate a sufficiently large
DOA. Thus, it could be interesting to have easy-to-use tools
for computing Lyapunov functions less depending on their
form and with less assumptions about the form of the system.



In the paper [6], the authors propose an interesting and
promising approach for the construction of a Lyapunov func-
tion which is modeled by a neural network using the well-
know universal approximation capability of neural networks.
Although effective, the main difficulty of this approach is
related to the absence of the maximisation of the DOA and
the use of barrier functions, which do not ensure that the
final result is a Lyapunov function : a post verification is
required. Besides, [7] suggests a symbolic regression strategy
for computing Lyapunov functions for nonlinear systems.
However, in this paper, the conservatism of the Lyapunov
function depends on the function library that the user has to
chose. In addition, more complex stability problems are not
tackled, such as exponential stability or ISS.

In [8], we propose to use a new constrained optimization
scheme to determine a Lyapunov function modeled by a neural
network while maximizing the domain of attraction. Indeed,
the weights of this neural network are calculated in a way that
is mathematically proven to result in a Lyapunov function. The
authors made an extension for discrete time cases in [9].
However, the approach appears to be quite generic and in fact
not only dedicated to neural networks. In fact, it could be
a good politics to allow user to use any form for Lyapunov
functions provided that they are differentiable. Indeed, if the
system is not too complex, determining a quadratic Lyapunov
function can be a good choice to gain some computation
time. On the contrary, complex industrial systems need more
complex Lyapunov functions as the ones modeled by a neural
network.

Thus, in this paper, we propose to generalize the proposed
method of [9] by a generic framework to determine a Lya-
punov function : the Lyapunov function can be modeled by any
differentiable function and a variety of stability problems are
tackled : Lyapunov stability, asymptotic stability, exponential
stability and Input-to-State stability. Indeed, by addressing the
ISS problem, we show, thanks to the form of the proposed con-
strained optimization scheme, that the other types of stability
problems can be easily derived from the ISS case.

In this work, we propose a unified framework to determine
Lyapunov functions. Our main contributions rely on the fol-
lowing aspects :

• We propose an efficient and generic constrained optimiza-
tion scheme to generate a Lyapunov function and prove
the positiveness and definitiveness properties.

• We show that treating different stabilities (from ISS to
basic stability) can be handled by adding constraints to
the algorithm, and requires no additional tuned-by-hand
parameters compared with the initial method.

• We provide a comprehensive method, allowing a user-
friendly approach, to generate a Lyapunov function for
several classes of systems.

Note that the goal of this study is not to stabilize a given
plant, but to analyze its stability, by computing automatically
an estimation as large as possible of the DOA. This paper

does not deal of the stabilization with the system itself.

The paper is composed of 3 sections : the first one reminds
some key features related to the Lyapunov theory. The second
one proposes a generic approach to compute a Lyapunov
function maximizing the DOA. Starting from the ISS problem,
it is shown how to extend it easily to other simpler stability
problems. Finally, we provide one example which deals with
Lyapunov function modeled by a neural network and Input-
to-State stability.

II. KEY FEATURES ABOUT THE LYAPUNOV
THEORY

A. Lyapunov Theory for Continuous Time Systems

In this section, we introduce notations and definitions, and
present some key results required for the development of
the main contribution of this paper. Let R denote the set of
real numbers, R+ the set of nonnegative real numbers, ‖.‖
denotes a norm on Rn, and X ⊂ Rn, a set containing X = 0.

Consider the autonomous system given by (1).

Ẋ = f(X) (1)

where f : X → Rn is a locally Lipschitz map from a domain
X ⊂ Rn into Rn and there is at least one equilibrium point
Xe, that is :

f(Xe) = 0. (2)

Theorem 1 [10]. Let Xe = 0 be an equilibrium point for
(1) and a set D containing 0 in its interior is the domain of
attraction. If there exist a continuously differentiable function
V such that :

V (0) = 0 and V (X) > 0 in D − {0} (3)

V̇ (X) ≤ 0 in D (4)

then, Xe = 0 is Lyapunov stable, where D ⊂ X ⊂ Rn is called
the Domain Of Attraction (DOA). Qualitatively, the larger the
DOA is, the more disturbances can be accommodated that
will ”move” the system from its equilibrium point.

For readability, we note G(X) = V̇ (X).

Note that if 0 is an equilibrium point, then G(0) has to be
equal to 0.

Finally if,

G(X) < 0 in D − {0} (5)

then, Xe = 0 is asymptotically stable.



This means that the system will converge to 0 from every
initial point X0 belonging to D.

Outside D, one can not conclude anything about the stabil-
ity. In this paper, the continuous case will be presented, but
the discrete time side can be easily obtained from the work in
[9].

B. A Catalog of Stability Problems

A list of stability properties achieved in this paper is showed
here.

Exponential Stability

Theorem 2 [10]. Let Xe = 0 be an equilibrium point for
(1). Let V : D → R be a continuous function such that [10] :

0 < k1||X||p ≤ V (X) ≤ k2||X||p in D − {0} (6)

G(X) ≤ −k3||X||p < 0 in D − {0} (7)

where k1, k2, k3 and p are positive constants, then Xe = 0
is exponentially stable.

Note : λ < k2
k3

is an upper-bound of the exponential
convergence rate of ||X(t)|| [11].

Input-to-State stability

Consider the system given by (8).

Ẋ = f(X,Γ) with Γ an exogenous signal (8)

where f : Rn × Rm → Rn is a locally Lipschitz map from
a domain X ∈ X ⊂ Rn, Γ ∈ L ⊂ Rm into Rn and there
is at least one equilibrium point Xe = 0, for the autonomous
system, i. e. Γ = 0.

Theorem 3 [10]. Let V : D → R be a continuous function
such that :

α1(||X||) ≤ V (X) ≤ α2(||X||) (9)

G(X) ≤ −α3(||X||) + α4(||Γ||) (10)

where α1, α2, α3 and α4 are K∞, then Xe = 0 is Input-to-
State stable. Remind that a function h(||X||) is K∞ if h is a
scalar increasing function, h(0) = 0 and h∞ → +∞. Thus,
αi(||X||) = ci||X||bi are suitable function (ci > 0, bi > 0)
according to [10]. In the case where Γ ∈ L2, i. e. bounded
energy, one may be interested to the Integral ISS (iISS) which
can be analyzed by enforcing α3 : [0,∞) → [0,∞). In the
ISS framework, G(X) is written :

G(X) =
∂V

∂x
f(x, u) (11)

Note : According to [10], ISS stability requires Lyapunov
stability when Γ = 0.

III. PROPOSED GENERIC FRAMEWORK

A. Introduction

In the following, we assume that Xe = 0 is an equilibrium
point. According to section II, every stability problems (from
simple stability case to the ISS case) implies V (X) > 0 and
G(X) < 0. Stability problems are just different regarding
constraints on bounds for V (X) and G(X). Thus, to tackle
any stability problem, a necessary condition for the searched
Lyapunov function V (X) is that :

• In the DOA, V (X) has a local minimum in 0 and
V(0) = 0.

• In the DOA, G(X) has a local maximum in 0 and
G(0) = 0.

Sufficient conditions for V(X) to have a local minimum at
0 are :

(v1) V(0) = 0.

(v2)
∂V

∂xj

∣∣∣∣
X=0

= 0 for all j=1,2,...,n.

(v3) HV (the matrix of 2nd derivatives of V at X = 0) is
positive definite.

In the same way, sufficient conditions for G(X) to have a
local maximum at 0 are :

(d1) G(0) = 0.

(d2)
∂G

∂xj

∣∣∣∣
X=0

= 0 for all j=1,2,...,n.

(d3) HG (the matrix of 2nd derivatives of G at X = 0) is
negative definite.

In the next section, a generic formula for HV and HG is
computed.

In the following, we assume that the user has chosen a
structure for V (X) which is twice differentiable : polynomial
form, neural network form, quadratic form, network of radial
basis form etc. Even if the approach is well-suited to differ-
entiable systems, one can extend it to several other classes of
systems (potentially non differentiable) if they are previously
identified as such. For instance, saturations, absolute values,
sign functions, etc. can be approximated by efficient regression
technics.
We note X = [x1,...,xn]T and the Jacobian matrix of f is
denoted :

F J := {Jqr, q = 1, ..., n and r = 1, ..., n.} (12)

where :

Jqr =
∂fq
∂xr

∣∣∣∣
X=0

(13)



B. Expression of HV

The second derivative of V can be straightforwardly ob-
tained :

HV := {Vqr, q = 1, ..., n and r = 1, ..., n.} (14)

where :

Vqr =
∂2V

∂xq∂xr

∣∣∣∣
X=0

(15)

C. Expression of HG

By definition,

G(X) =
dV

dt
=

n∑
h=1

∂V

∂xh
fh(X) (16)

And then, with l = 1, ..., n :

∂G

∂xl
=

n∑
h=1

∂2V

∂xh∂xl
fh(X) +

n∑
h=1

∂V

∂xh

∂fh
∂xl

(17)

In the case where 0 is an equilibrium point, the following
property holds :

∂G

∂xl

∣∣∣∣
X=0

= 0 (18)

The second derivative of G is as follows :

∂2G

∂xl∂xp
=

n∑
h=1

∂3V

∂xh∂xl∂xp
fh(X)

+

n∑
h=1

∂2V

∂xh∂xl

∂fh
∂xp

+

n∑
h=1

∂2V

∂xh∂xp

∂fh
∂xl

+
∂V

∂xh

∂2fh
∂xl∂xp

(19)

with l = 1, ..., n and p = 1, ..., n.

We denote by :

HG := {Glp, l = 1, ..., n and p = 1, ..., n.} (20)

where :

Glp =
∂2G

∂xl∂xp

∣∣∣∣
X=0

(21)

Taking into account (2) and (v2), (19) results in :

Glp =

n∑
h=1

Vhl Jhp +

n∑
h=1

Vhp Jhl (22)

Note that the discrete time case can be found in [9].

D. Domain Of Attraction

In this section, the Input-to-State stability DOA maximiza-
tion problem is addressed. It is reminded (see section III.A)
that other stability problems can then be derived from that
case.

DOA Maximization Problem

In the following, we keep the notations established in
section II.A. In order to tackle the ISS problem (see section
II.B), one assumes that the autonomous system is stable,
according to [10]. Thus, the searched Lyapunov function has
to satisfy (v1)-(v3) and (d1)-(d3) (local minimum for V and
local maximum for G at X = 0).

Consider Z a set of points obtained from a hypercube whose
faces are gridded in order to cover a sufficiently large enough
included in ⊂ X×L .
We denote P = max (ratiov , ratiodv) where ratiov are
the number of points (X, Γ) ⊂ Z where the condition
α2(||X||) < V (X) < α1(||X||) is not satisfied and ratiodv
are the number of points (X, Γ) ⊂ Z where the condition
G(X) > −α3(||X||) + α4(||Γ||) is not satisfied. In order to
maximize the estimated DOA, we have to minimize P .

Optimization Scheme

We assume that a suitable structure for Vθ(X) has been
chosen where all the parameters that aim to characterize the
Lyapunov function are collected into θ.
According to section II.B, one searches for functions
α1, α2, α3 and α4 belonging to K∞. Then, the function αi(x)
can have the following form :

αi(x) = ci||x||bi , ci > 0 and bi > 0. (23)

Then, all searched parameters are collected into Θ where :

Θ = [θ, ci, bi, i = 1, ..., 4]. (24)

For an appropriate Lyapunov function to be determined,
conditions (v1)-(v3) and (d1)-(d3) need to be satisfied. To
this end, a fitness function, Q, should be selected so that
positiveness and negativeness respectively of HV and HG are
constrained. The symmetric matrix HG is negative definite if
all its eigenvalues are negative.

Constrained Implementation

Denote λvi , i=1,...,n the set of the n eigenvalues of HV and
λgi , i=1,...,n the set of the n the eigenvalues of HG.

The problem can be expressed in the general form of an
optimization problem in which the cost function Q needs to
be minimized.

To this purpose, we define :

HV′= HV × -1

Denote λv ′ the eigenvalues of HV′,
−
λv ′ = max(real(λv ′)),
−
λg = max(real(λg)) and
−
λ = max (

−
λv ′,

−
λg)

Then, the fitness function to be minimized has the following
form :

min
Θ
Q



If
−
λ ≥ 0, Q =

−
λ

Else, Q = -
1

P + 1

Note that the definition of Q can not be singular, even if
P = 0 or α4 = 0.

Adaptation to the other stability problems

For an exponential stability problem :

• Z is reduced to X.
• Θ is reduced to [θ, ci, bi, i = 1, ..., 3].
• An additional constraint related to the rate of convergence

of ||X|| can be enforced according to section II.B.

For an asymptotic stability problem :

• Z is reduced to X.
• Θ is reduced to θ.

For Lyapunov stability problem :

• Z is reduced to X.
• Θ is reduced to θ.
• ratiodv are the number of points X ⊂ Z where G(X) > 0

is evaluated.

IV. EXAMPLE

In this section, we apply our approach to a nonlinear
continuous system to prove ISS with a Lyapunov function
modeled by a neural network.
The entire test was performed on a machine equipped with an
Intel Core i5 - 8400H (2.5 GHz) processor and 16 GB RAM.
In order to minimize Q, the Genetic Algorithm (GA) from
the Global Optimization Toolbox in Matlab is used. We keep
all the defaults settings of the GA.

Let us consider the following system :{
ẋ1 = −tan(x1) + x2

2

ẋ2 = −x2 + x1u
2

The ranges for x1, x2 and u are x1 ∈ [−1.5, 1.5], x2 ∈
[−1.5, 1.5] and u ∈ [0, 4].

Parameters settings

The parameters settings used in this example are as follows :

• We consider 1 hidden layer and the number of neurons
of this hidden layer is arbitrarily set to K = 12.

• We set X as a rectangle of 21 × 21 × 21 points
centered at 0. Therefore, the conditions α2(||X||) <
V (X) < α1(||X||) and G(X) > −α3(||X||) + α4(||Γ||)
are evaluated in 9 261 points in the range of the system.

• The number of searched variables Θ (38) is : K × (2n)
+ 1 + 4×2 = 57. The searched parameters relative to V
∈ [-4,4] and the parameters relative to αi functions ∈
[0,1000].

The Lyapunov Function

In this example, we assume that the Lyapunov function
V (X) is represented by a neural network where the xi are
the inputs, wji are the weights of the hidden layer, ai the
weights of the output layer, hi are the biases of the hidden
layer, β is the bias of the output layer; i=1,...,n and j=1,...,K
where K is the number of neurons of the hidden layer and σ
is the activation function of the neural network. Here, σ(ν) =
tanh(ν) is chosen.

Therefore, V (X) can be expressed as :

V (X) =

K∑
i=1

aiσ(νi) + β (25)

νi =

n∑
j=1

wjixj + hi (26)

The second derivative of V(X) and G(X) are computed as
functions of the neural network in order to express HV and
HG :

Vqr =
∂2V

∂xq∂xr

∣∣∣∣
X=0

=

K∑
i=1

ai
d2σ(νi)

dν2
i

∣∣∣∣
X=0

∂vi
∂xr

∣∣∣∣
X=0

wqi

=

K∑
i=1

ai
d2σ(νi)

dν2
i

∣∣∣∣
X=0

wriwqi

(27)

Glp =
∂2G

∂xl∂xp

∣∣∣∣
X=0

=

n∑
j=1

(
K∑
i=1

ai
d2σ(νi)

dν2
i

∣∣∣∣
X=0

wjiwli

)
Jjp +

+

n∑
j=1

(
K∑
i=1

ai
d2σ(νi)

dν2
i

∣∣∣∣
X=0

wjiwpi

)
Jjl

(28)

where q=1,...,n; r=1,...,n; l=1,...,n; p=1,...,n.
Assumptions (v2) and (d2) imply the following 2 constraints

directly satisfied :

K∑
i=1

aiσ(hi) + β = 0 (29)

K∑
i=1

ai(1− tanh2(hi))wqi = 0 for q=1,...,n. (30)

Elements of demonstration can be found in [8].

Results

First, the asymptotic stability of the origin with u = 0 is
proven, which is a required condition according to [10].
Therefore, we can check the Input-to-State stability. The ISS
of the origin is considered.



Fig. 1: The estimated DOA for this system.

Fig. 2: The estimated DOA for this system.

In the Fig. 1, we can consider the estimated DOA when u = 4.
The blue/green area represent the region where the origin is
ISS, and the area yellow/orange where the origin is not stable.
In the Fig. 2, we can consider the estimated DOA when
u ∈]0; 4[. The blue/green area represent the region where the
origin is ISS.
In order to show the validity of the results, one uses Simulink
with different starting points belonging or not to the DOA in
Fig. 3.

V. CONCLUSIONS

In this paper, a comprehensive method has been introduced,
which extends a previous published paper with the following
added features: the Lyapunov function can be modeled by any
differentiable function and a variety of stability problems are
tackled. The result demonstrates the ability of the algorithm to
determine a Lyapunov function modeled by any differentiable
function while maximizing the domain of attraction. In the
future, it is believed that the described approach could be
used for complex and intelligent systems that we can find
in industrial frameworks. Besides, future works deal with a

Fig. 3: Time simulations on Simulink.

model-free approach which can be achieved after identifying
the system with a neural network.

REFERENCES

[1] A. M. Lyapunov, “The general problem of the stability of motion,”
International journal of control, vol. 55, no. 3, pp. 531–534, 1892.

[2] E. Davison and E. Kurak, “A computational method for determining
quadratic lyapunov functions for non-linear systems,” Automatica, vol. 7,
no. 5, pp. 627–636, 1971.

[3] S. Panikhom and S. Sujitjorn, “Numerical approach to construction of
Lyapunov function for nonlinear stability analysis,” Research Journal
of Applied Sciences, Engineering and Technology, vol. 4, no. 17, pp.
2915–2919, 2012.

[4] G. Chesi, A. Tesi, and A. Vicino, “Computing optimal quadratic
lyapunov functions for polynomial nonlinear systems via lmis,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 43–48, 2002.

[5] P. Giesl and S. Hafstein, “Review on computational methods for Lya-
punov functions,” Discrete and Continuous Dynamical Systems-Series
B, vol. 20, no. 8, pp. 2291–2331, 2015.

[6] V. Petridis and S. Petridis, “Construction of neural network based
lyapunov functions,” in The 2006 IEEE International Joint Conference
on Neural Network Proceedings. IEEE, 2006, pp. 5059–5065.

[7] C. Banks, “Searching for Lyapunov functions using genetic program-
ming,” Virginia Polytech Institute, unpublished, 2002.

[8] B. Bocquillon, P. Feyel, G. Sandou, and P. Rodriguez-Ayerbe, “Efficient
construction of neural networks Lyapunov functions with domain of at-
traction maximization,” in 17th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), 2020.

[9] ——, “Computation of neural networks lyapunov functions for discrete
and continuous time systems with domain of attraction maximization.”
in IJCCI, 2020, pp. 471–478.

[10] H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice Hall Upper
Saddle River, NJ, 2002, vol. 3.

[11] J. Peuteman and D. Aeyels, “Exponential stability of nonlinear time-
varying differential equations and partial averaging,” Mathematics of
Control, Signals and Systems, vol. 15, no. 1, pp. 42–70, 2002.


