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ABSTRACT
Efficient control of disturbed industrial systems requires methods to handle, directly in the control
design process, complex and nondifferentiable performance criteria given by customers. The
aim of this paper is to take into account any evaluable performance criterion in the design of
control laws for nonlinear systems subject to additive disturbances. Model Predictive Control
using barrier functions is proposed for that purpose. First of all, the stability of the method is
proven in the linear case using Lyapunov function and invariant set theories. The presented law
is also improved by considering robust tube-based Model Predictive Control for systems subject
to additive disturbances. The method is then extended to nonlinear systems that can be modeled
by neural networks if the model is unknown. The stability in the nonlinear case is not proven but
the method has shown its efficiency for different applications.

1. Introduction
Development of a control law for industrial applications, which generally involves nonlinear models together with

constraints and specifications of physical nature, is often a very complex task. Approximations such as linearization
are often introduced to handle constraints and specifications in a well-suited mathematical framework that can be
tackled with conventional control tools, although often with some conservatism. Our goal in this paper is to avoid,
as much as possible, such approximations. To do so, different points have to be considered. First of all, two kinds
of constraints have to be taken into account: those that are essential to the system to operate and those that ensure
satisfactory performances, respectively named hard constraints and performance constraints in this paper. Moreover,
systems are often subject to additive disturbances and measurements errors. Furthermore, as the number of sensors is
generally restricted, the whole state cannot be measured. In such a case, an observer has to be used in order to estimate
the system state.

Finally systems are generally nonlinear and nonlinear models are difficult to determine and identify. Thus a generic
method should be used to get a model for the purpose of reducing the time allowed for model determination in global
controlled system development and improving model accuracy. To this end, neural networks seem to be an appropriate
tool since they can efficiently model nonlinear systems.

Model Predictive Control (MPC) is a widely used method that allows in particular to take into account constraints
online, Mayne et al. (2000). As a reminder MPC works as follows, a sequence of future control inputs is determined at
each sampling instant by online optimization over a finite horizon, while only the first one is actually applied to the
system. Constraints are directly considered by the optimizer along the prediction horizon. Furthermore, MPC has been
designed to be used as well with nonlinear models thus the use of neural network models can be done with the same
framework used for linear models as long as the optimization algorithm can solve the corresponding complex problems.

To take into account disturbances and modeling uncertainties, looking for a robust control design appears as a
crucial point. To this end, robust MPC has been proposed in Mayne et al. (2006) with tube-based MPC and Scokaert
and Mayne (1998) with min-max MPC. In this paper we have chosen to use tube-based MPC since this method generally
leads to better performances than other robust MPC methods. This robust MPC is based on tubes of robust positive
invariant sets (Blanchini (1999), Rakovic et al. (2005)) centered in the system nominal trajectory. With this method,
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system state is guaranteed to remain inside the tube, close to the nominal desired trajectory regardless of disturbances
which are supposed to be bounded.

In this paper, it is admitted that hard constraints are satisfied thanks to a high level supervisor and that a Linear
Quadratic (LQ) control law that permits to respect hard constraints has been previously designed for that purpose. As a
consequence, only performance constraints will be considered is this paper. To consider performance constraints in
MPC, different methods have been proposed. The first one is to formulate them as hard constraints, as presented in
Mayne et al. (2000), but this solution is quite restrictive as the system could operate even if performance constraints are
temporarily unsatisfied. A different method based on barrier functions has been proposed in Wills and Heath (2004): it
permits to give the system the opportunity to go temporarily beyond the performance constraints.

Barrier-based MPC stability and practical implementation have been studied in Feller and Ebenbauer (2015)
and Feller and Ebenbauer (2017). Recently, Petsagkourakis et al. (2019) proposed a barrier-based MPC that improves
robustness with respect to unstructured model uncertainty. Pouilly-Cathelain et al. (2020) proposed robust MPC for
nonlinear performance constraints satisfaction. In this paper, further details are given in the linear case and the possibility
extension to nonlinear models is discussed. Our work consists of a new cost function formulation of the MPC in
order to ensure fulfillment of nonlinear and nondifferentiable performance constraints for systems subject to disturbances.

This paper is organized as follows. Section 2 reminds some definitions and presents how performance constraints
are considered throughout the paper. Then, section 3 presents the cost function definition and the control law design.
The stability in the nominal linear case, which means without considering disturbances is discussed in section 4.
Disturbances are considered in section 5 using robust model predictive control. Section 6 gives a linear example where
an Unmanned Aerial Vehicle (UAV) is used for reading QR codes in a storage space: hard constraints to avoid collision
and performance constraints to remain at the right distance of the QR code are considered. The method is then extended
to the case of nonlinear systems in section 7. Stability and robustness regarding the use of neural networks predictor in
MPC are discussed. Finally, section 8 gives an application of the proposed methodology on a submarine system subject
to disturbances and performance constraints. Conclusions and future works are given in section 9.
Notations. In the following,ℝ andℕ are respectively the set of real numbers and the set of positive integers. ℕ∗ = ℕ∖{0}.
U denotes the input constraint set. If A is a matrix, � (A) denotes its spectral radius. The norm (or pseudo-norm)
||x||2Q = xTQx, withQ a positive definite (or semidefinite) matrix, is considered. ||x||∞ = max

i
|xi| denotes the infinity

norm of a vector. The Minkowski sum of two sets A and B is the set A⊕ B = {a + b|a ∈ A, b ∈ B}. The Pontryagin
difference of two sets A and B is the set A ⊖ B = {a ∈ A|a + b ∈ A,∀b ∈ B}. d(x,A) = inf

{

||x − a||2, a ∈ A
}

denotes the distance between vector x and set A. The Hadamard A◦B product, also known as the element-wise product
is defined for two matrices A and B of the same dimension by (A◦B)ij = (A)ij (B)ij .

2. Performance constraint consideration
This section aims to present the definitions used in the paper and presents how performance constraints are considered.

2.1. Invariant set definition
Invariant sets are of great interest for stability of MPC. Some important definitions used in the sequel are recalled

below.
Definition 1 (Admissible set, Blanchini (1999)). A set is said to be an admissible set if for all elements of this set, it
is possible to find an input sequence that enforces the system to reach the origin, which is the target point, without
violating any hard constraint.
Definition 2 (Control Positive Invariant (CPI) set, Blanchini (1999)). A set S is said to be a Control Positive Invari-
ant set for the system xk+1 = Axk + Buk under the feedback law uk = Kxk if ∀xk ∈ S, (A + BK) xk ∈ S.

Starting from these two definitions, assumption 1 is done. As a consequence, hard constraints are not considered in
this paper except for the input hard constraint, ∀k ∈ ℕ, uk ∈ U.
Assumption 1. The state of the system always remains in an admissible set that is positive invariant under a known LQ
control law of gain KLQ. It is assumed that this LQ control law satisfies the input constraint. This set is denoted by X.
M Pouilly-Cathelain et al.: Preprint submitted to Elsevier Page 2 of 23
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Definition 3 is also needed for the sequel.
Definition 3 (m-backward reachable set, Blanchini and Miani (2008)). For all m ∈ ℕ∗, the m-backward reachable
set Pre (S, m), also named m-preimage set, is defined as the set from where it is possible to reach S in at most m steps.

The maximalm-backward reachable set included in a given set can be defined using the algorithm presented in Dorea
and Hennet (1999).
2.2. Performance constraint classification

In this paper, only inequality performance constraints cp defined by (1) are considered since equality performance
constraints can be converted into two inequalities using (2). In (1) and (2), X denotes a set of any predicted states and
U a set of any element of the input sequence:

cp (X ,U ) ≤ 0 (1)

cp (X ,U ) = 0 →

{

cp (X ,U ) ≤ 0
cp (X ,U ) ≥ 0 (2)

TheNr performance constraints can be classified into two categories:
1. Performance constraints that are independently applied to each single predicted state. N∗

r denotes the number of
performance constraints that belong to this category.

2. Performance constraints that are applied to a set of predicted states. The number of performance constraints that
belong to this category isNr −N∗

r .
The following parts of this section present how performance constraints can be handled using barrier functions and

some related definitions needed for the sequel.
2.3. Definition of the performance constraint admissible set
Definition 4 (Maximal Performance Constraint Admissible set). A set M is said to be Maximal Performance Con-
straint Admissible (MPCA) if all sets A where the performance constraints are satisfied are such that: A ⊆ M.

The construction of a MPCA set M is now described. If for each performance constraint r ∈ J1 ∶ NrK, thecorresponding MPCA set is Xr, M is defined by (3).

M =
Nr
⋂

r=1
Xr (3)

Xr can be determined exactly if the performance constraint can easily be handled, for instance if each state variable
has to satisfy some bounds. However, in some cases, conservative approximations have to be used.
Assumption 2. All performance constraints are satisfied at the origin: ∀r ∈ J1;NrK, 0 ∈ Xr.

In order to prove stability, the MPCA set M needs to be CPI. For this purpose, a set MCPI ⊆ M will be considered
as a CPI approximation of M. A convex CPI approximation can be defined, taking into account the constraint:
∀k ∈ ℕ, uk ∈ U, by using the algorithm defined in Gilbert and Tan (1991).
2.4. Barrier function definition

In order to prove stability, only performance constraints that fall in the first category presented in 2.2 (performance
constraints independently applied to each predicted state) are considered in the barrier function definition. The barrier
function lr corresponding to performance constraint r is required to satisfy property (4).

∀(u, k) ∈ UN × J0;NK,
{

lr(x̄k,u) = 0 if x̄k ∈ Xr
lr(x̄k,u) ≥ 0 if x̄k ∉ Xr

(4)
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In (4), x̄k is the predicted state for time index k ∈ J0;NK with N denoting the prediction horizon and u =
[u0,… , uN−1] is the input sequence determined by the MPC optimizer. Consequently, the global barrier function lb canbe defined by (5).

∀(u, k) ∈ UN × J0;NK, lb(x̄k,u) =
N∗
r

∑

r=1
lr(x̄k,u) (5)

Remark 1. Similarly to (4), lb is a null function on the set where all requirements are satisfied and a positive function
on the set where at least one requirement is unsatisfied.

Since lb is a barrier function that may be applied to each predicted states x̄ =
[

x̄0,… , x̄N
], the notation lb (x̄,u)will be used in the following.

Remark 2. The barrier functions defined above should rather be called penalty functions (since they do not strictly
prevent the system from violating the corresponding constraints). We nevertheless use the term "barrier function"
which is usually used in the literature and in particular in the works cited above.

3. Control law definition
We first consider linear systems defined as:
{

xk+1 = Axk + Buk
yk = Cxk

(6)

As a first step, no disturbances are considered and all state variables are supposed to be available for the feedback
control law design. These assumptions will be later removed in section 5.

As a reminder, assumption 1 is considered. It means that a LQ control law with gain matrix KLQ that permits to
reach the origin while satisfying hard constraints (including the input constraint) is available.
3.1. Cost function definition

As it is often the case in MPC, the design of the cost function has to be chosen in particular to ensure stability,
Rawlings and Muske (1993). In classical MPC formulation where the cost function is used as a Lyapunov function, the
cost function is required to decrease from one sampling instant to the next one. Since this paper deals with nonlinear
performance constraints that can be nonconvex, it cannot be easily ensured that the barrier function decreases inX∖MCPIfrom one sampling instant to the next one. Nevertheless, it will be shown in section 4 that thanks to the CPI property of
MCPI, a sequence of inputs does exist that permits, when x̄0 ∈ Pre (MCPI, N

), the decrease of a cost function which
includes barrier functions. As a consequence, the proposed method aims to enforce the system to reach Pre (MCPI, N

)

by considering the set MCPI as a terminal constraint and to satisfy performance constraints by applying a barrier-based
MPC. The method is based on the following cost function.

J (x̄,u) =
⎧

⎪

⎨

⎪

⎩

J1(x̄,u) if x̄0 ∉ Pre (MCPI, N
)

−1∕J2(x̄,u) if x̄0 ∈ Pre (MCPI, N
) and J2(x̄,u) ≠ 0

−∞ if x̄0 ∈ Pre (MCPI, N
) and J2(x̄,u) = 0

(7)

where:
J1(x̄,u) = d(x̄N ,MCPI) (8)

which corresponds to a terminal constraint, and

J2(x̄,u) =
N−1
∑

k=0
l(x̄k, uk) + lN (x̄N ) + lb(x̄,u) (9)
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where l denotes the MPC nominal cost: l(x̄k, uk) = ||x̄k||2Q + ||uk||2R where Q and R are respectively symmetric
positive semi-definitive and symmetric positive definitive and the terminal cost is chosen to be lN (x̄N ) = x̄TNPx̄Nwhere P is the positive definite solution of the Ricatti equation:

P = Q + ATPA − ATPB(BTPB + R)−1BTPA (10)
It will be shown in section 4 that this choice permits to ensure stability.

Remark 3. From an implementation point of view, the problem is solved thanks to a gradient-free optimization
algorithm. By using this kind of algorithm there is no need to reformulate or linearize any performance constraint since
non-differentiable barrier functions can be tackled and hard constraint u ∈ U is considered as the search space. Because
the two cases presented in (7) are taken into account in the optimization algorithm, there is no switch between both
modes from a system point of view.

3.2. Implemented control law
In order to ensure stability, the proposed law follows these conditions. Once the optimization problem defined by (7)

has been solved,
• if the cost J is positive (which means that a solution such that xN ∈ MCPI has not been found) then the LQ

control law is applied to the system.
• if the cost J is negative (which means that a solution such that xN ∈ MCPI has been found) then the first inputgiven by the MPC is applied to the system.
Receding horizon is used in the later case: only the first input of the vector of future inputs found by the MPC is

applied to the system, and, at the next time step, the optimization algorithm is solved again.
The control law is summarized in figure 1 where the predictor contains the model (6) of the system.

Predictor

Optimization algorithm
Cost function

MPC
If J > 0
u = KLQx0

Else
u = u[1]

System

Control law

Reference

Performance
constraints

J

u

u x0

Figure 1: Proposed control law

Remark 4. As presented in figure 1, the applied input is chosen according to the sign of J whereas in (8), onlyMCPI isneeded for calculation: it is not necessary to explicitly define Pre (MCPI, N
).

4. Proof of stability in the nominal case
In this section, a proof of stability for the proposed MPC using the cost function presented in section 3.1 is provided.

Theorem 1 will be proven in this section.
Theorem 1. The control law defined in section 3.2 and summarized in figure 1 permits to reach the origin and is
asymptotically stable.
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In order to prove theorem 1, properties 1 and 2 will be respectively proven in section 4.1 and 4.2.
Property 1. If x = x̄0 ∉ Pre (MCPI, N

)

, then, the system state converges to Pre (MCPI, N
)

by applying the control law
defined in section 3.2.

Property 2. If x = x̄0 ∈ Pre
(

MCPI, N
)

, the system with the control law defined in section 3.2 is asymptotically stable.

If properties 1 and 2 are satisfied then theorem 1 is proven. Therefore, it will be firstly shown in section 4.1 that
property 1 holds and secondly in section 4.2 that property 2 holds too.

Assumption 3 is done for sake of clarity of the proof but in practice this assumption can be relaxed as it will be
discussed in sections 4.3 and 5.
Assumption 3. The optimization algorithm always finds the global minimum.

4.1. Proof of property 1
The aim of this section is to give a proof of property 1.
The cost function has been formulated in order to determine in priority a trajectory such that d(x̄N ,MCPI) = 0, but

in the case where x = x̄0 ∉ Pre (MCPI, N
), which is the assumption of property 1, such a trajectory does not exist. In

practice, it corresponds to a positive cost at the end of the optimization. In this case the LQ control law is applied to the
system. Thanks to assumption 1, this law ensures the system state to converge to 0 and therefore to Pre (MCPI, N

).
4.2. Proof of property 2

The aim of this section is to give a proof of property 2.
To begin with, proof of property 3 is given below.

Property 3. The set Pre
(

MCPI, N
)

is positive invariant under the proposed control law.

Proof. Let x be an element of Pre (MCPI, N
), then it exists an input sequence u =

[

u0,… , uN−1
] which leads to a

final predicted state x̄N ∈ MCPI. As the system is not subject to disturbances in this section, then x+, which denotes
the state at the next time step follows, x+ = x̄1 = Ax̄0 + Bu0. Because MCPI is positive invariant with respect to U, it
exists u+ ∈ U such that x̄+N = Ax̄N + Bu+ ∈ MCPI. Therefore, by applying the input vector u+ =

[

u1,… , uN−1, u+
],

x̄+N ∈ MCPI. Thus Pre
(

MCPI, N
) is positive invariant.

Property 2 is now proven using property 3. As it is usually done in MPC, a Lyapunov function based on the
cost function will be used in this section. The following function V will be considered, taking into account that
x̄0 ∈ Pre (MCPI, N

):

∀(x̄,u) ∈
(Pre (MCPI, N

))N+1 × UN , V (x̄,u) = −1
J (x̄,u)

= J2(x̄,u) (11)

Because l and lN are positive functions, V is a positive function. Moreover, V (0, 0) = 0.
The + notation denotes quantities at the next sampling instant, for instance the next input sequence is denoted by u+.

Similarly to the warm start method presented in Rawlings et al. (2017), it can be chosen: u+ = [u1,… , uN−1, u+] where
u+ ∈ U such that x̄+N ∈ MCPI. The existence of such u+ is directly derived from the property of positive invariance of
MCPI.The difference V (x̄+,u+) − V (x̄,u) has to be evaluated:

V (x̄+,u+) − V (x̄,u) =
N−1
∑

k=0
l(x̄+k , u

+
k ) + lN (x̄+N ) + lb(x̄+,u+) −

[

N−1
∑

k=0
l(x̄k, uk) + lN (x̄N ) + lb(x̄,u)

]

=
N−1
∑

k=0

[

l(x̄+k , u
+
k ) − l(x̄k, uk)

]

+ lN (x̄+N ) − lN (x̄N ) + lb(x̄+,u+) − lb(x̄,u)
(12)
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As a reminder from section 2.4, only barrier functions derived from performance constraints applied independently
to each predicted state are taken into account. Because no disturbances are considered, x̄+ =

[

x̄1,… , x̄N , x̄+N
] thus

lb(x̄+,u+) − lb(x̄,u) can be simplified by looking only at the influence of the first component: x̄0, and the last one: x̄+N .
In order to make it appear explicitly, the notation lb(x̄+,u+) − lb(x̄,u) = lb(x̄+N ,u

+) − lb(x̄0,u) is used in the following.
Equation (12) is therefore simplified as:

V (x̄+,u+) − V (x̄,u) = l(x̄+N−1, u
+
N−1) − l(x̄0, u0) + lN (x̄+N ) − lN (x̄N ) + lb(x̄+N ,u

+) − lb(x̄0,u) (13)
By definition ofMCPI, x̄+N ∈ MCPI ⇒ lb(x̄+N ,u

+) = 0 and considering property 3, (13) can be simplified as:
V (x̄+,u+) − V (x̄,u) = l(x̄+N−1, u

+
N−1) − l(x̄0, u0) + lN (x̄+N ) − lN (x̄N ) − lb(x̄0,u) (14)

lb is a positive function then:
V (x̄+,u+) − V (x̄,u) ≤ lN (x̄+N ) − lN (x̄N ) + l(x̄+N−1, u

+
N−1) − l(x̄0, u0) (15)

The right part of inequality (15) corresponds to the classical equation that is found in the proof of stability of the original
Model Predictive Control. According to Rawlings et al. (2017), considering a terminal cost lN (x̄N ) = x̄TNPx̄N , aspresented in 3.1, permits to ensure that:

lN (x̄+N ) − lN (x̄N ) + l(x̄+N−1, u
+
N−1) − l(x̄0, u0) < 0 (16)

Because the influence of the barrier functions has been simplified between equality (14) and inequality (15), the
theory presented in Rawlings et al. (2017) is still valid.

From (15), we finally have V (x̄+,u+) − V (x̄,u) < 0. As a conclusion, V is a strictly positive decreasing function
with V (0, 0) = 0 thus it is a Lyapunov function and asymptotic stability is proven for xk ∈ Pre (MCPI, N

).
4.3. Stability in case of suboptimal solution

Stabilizing conditions for MPC usually rely on the assumption 3. Nevertheless, this assumption is generally
impossible to satisfy in a practical use, especially in this paper where the cost function is possibly non-convex and
non-differentiable and where a gradient-free optimization algorithm is used. Some works have been done in order
to prove stability of MPC in case of suboptimal solution given by the optimizer, Scokaert et al. (1999), Allan et al.
(2017). Proposed solutions are essentially based on the warm-start method that consists of using a well-chosen initial
guess obtained by the optimization result at the previous sampling instant. Cited papers propose methods to relax
assumption 3 and prove stability in case of suboptimal solution. The goal of this paper is not to demonstrate the practical
use of the method but the ability of the method to robustly satisfy performance constraints thus this section only gives
an overview of how the suboptimal method could be implemented in practice, but does not provide all details.

For the first case: xk = x̄0 ∉ Pre (MCPI, N
) (section 4.1), it is still possible to apply a linear feedback law. This law

ensures that the state converges to Pre (MCPI, N
).

For the second case: xk = x̄0 ∈ Pre (MCPI, N
) (section 4.2), the method proposed by Scokaert et al. (1999) can

be extended to the barrier function proposed in this paper to relax assumption 3. The cost function J2 is modified as:
J2(x̄,u) =

∑N−1
k=0 l(x̄k, uk) + lb(x̄,u) and the stability is guaranteed using the terminal constraint: x̄N = 0, Mayne et al.

(2000). Because {0} ⊆ M implies that the N-backward reachable set of {0} is included or equal to Pre (MCPI, N
),

then we have to consider a prediction horizon of lengthM > N in order to be able to find a solution such that: x̄M = 0.
Following algorithm of Scokaert et al. (1999), this recursive method is used:

• Choose � ∈]0, 1]

• At time k = 0, find a control sequence u = [u0,… , uM−1] such that x̄M = 0.
• For time k > 0, find a control sequence u+ such that x̄M = 0 and (17); the optimization algorithm should be

initialized with u+ =
[

u1,… , uM−1, 0
]:

J
(

x̄+,u+
)

≤ J (x̄,u) − �
[

l(x̄k−1, uk−1) + lb(x̄k−1, uk−1)
] (17)

The optimization problem becomes easier by choosing a value of � close to 0. As the authors of Scokaert et al. (1999)
state, in some cases this algorithm may fail to find a solution that respects (17). In this case there is no guarantee of
stability.
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5. Robust satisfaction of performance constraints using tube-based MPC
In this section, the MPC with the cost function proposed above is extended to output tube-based MPC. The system

considered is subject to additive disturbances as shown in (18):
{

xk+1 = Axk + Buk +wk
yk = Cxk + vk

(18)

where, for all k ∈ ℕ, xk ∈ X ⊆ ℝn, uk ∈ U ⊆ ℝp, yk ∈ ℝm, wk ∈ W and vk ∈ V . W and V are two compact sets with
0 in their interior. Assumption 4 is done.
Assumption 4. A is non-singular, (A,B) is controllable and (A,C) is observable.

We do not deal with robustness with regard to unstructured model uncertainty that has been discussed in Petsagk-
ourakis et al. (2019).

In this section, we suppose that only output y is available for feedback thus an observer has to be designed in order
to initialize the prediction. This observer is a discrete-time Luenberger observer defined by (19) where L ∈ ℝn×m:

{

x̂k+1 = Ax̂k + Buk + L(yk − ŷk)
ŷk = Cx̂k

(19)

The tube-based MPC strategy presented in Mayne et al. (2006) consists of applying the MPC method on a nominal
predictor defined by (20) that gives the nominal input sequence ū; the nominal input ūk is summed with a feedback law
according to (21) where K ∈ ℝp×n:

∀k ∈ J0;N − 1K,
{

x̄k+1 = Ax̄k + Būk
ȳk = Cx̄k

(20)

uk = ūk +Kek where ek = x̂k − x̄k (21)
The control law (21) guarantees that the system state remains in a tube centered on the nominal trajectory. Figure 2

sums up the tube-based MPC method. In order to define this tube we introduce the estimation error: x̃k = xk − x̂k anddefine the Robust Positive Invariant set (definition 5).
Definition 5 (Robustly Positive Invariant (RPI) set, Blanchini and Miani (2008)). For the autonomous discrete
time system xk+1 = Axk + wk, a set S is said to be Robustly Positive Invariant if for all xk ∈ S and wk ∈ W,
xk+1 ∈ S. This condition is equivalent to AS⊕W ⊆ S.

Tube-based MPC

Predictor

Optimization algorithm
Cost function

MPC System

Observer

K

Reference

Performance
constraints

Nominal
input(s)ū

Input(s)
u

Output(s)
y

Measure(s)

Observed
statex̂

Predicted
statex̄

e

Figure 2: Tube-based MPC
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Quantities ek and x̃k respectively follow the difference equations (22) and (23):
ek+1 = (A + BK)ek + �̄k where �̄k = LCx̃k + Lvk (22)

x̃k+1 = (A − LC)x̃k + �̃k where �̃k = wk − Lvk (23)
According to Rakovic et al. (2005), if �(A + BK) < 1 and �(A − LC) < 1 then RPI sets S̄ and S̃ exist and are

finite time computable respectively for (22) and (23). Thanks to assumption 4, it is possible to find K and L such that
�(A + BK) < 1 and �(A − LC) < 1. For instance, K and L can be determined by using LQG design or pole placement
method.

It has been proven in Mayne et al. (2006), that if x̃k = xk − x̂k ∈ S̃, ek = x̂k − x̄k ∈ S̄ and the control law is given
by (21) then, using the fact that the system state follows xi = x̄i + x̃i + ei, for all i ∈ ℕ and all admissible disturbances
wk+i ∈ W and vk+i ∈ V , xk+i ∈ {x̂k+i}⊕ S̃ ⊆ {x̄k+i}⊕ S̃⊕ S̄. Finally, the state xk follows:

xk ∈ {x̂k}⊕ S̃ ⊆ {x̄k}⊕ S where S = S̃⊕ S̄ (24)
Because the input follows (21), a tighter constraint has to be applied to the nominal input ū to ensure that: u ∈ U.

This tighter constraint is defined by (25):
ū ∈ Ū where Ū = U⊖KS̄ (25)

In order to ensure that performance constraints are also robustly satisfied, the setM defined by (3) has to be restricted
toM− = M⊖ S. M−

CPI ⊆ MCPI denotes the CPI set included in M− by considering Ū rather than U.
Tighter performance constraints also have to be considered for barrier function definition. For each performance

constraint r, the set Xr considered in (4) must be replaced by Xr ⊖ S.
Remark 5. As a reminder from Mayne et al. (2006), robust control by using tube-based MPC can only be achieved if
W and V are sufficiently small because the set S becomes larger whenW or V grows.
Remark 6. The suboptimal MPC method briefly introduced in section 4.3 is not necessary when tube-based MPC is
used because small optimization errors could be seen as disturbances. For instance if the optimal input is u∗k but thealgorithm finds u∗k + uek, then xk+1 = Axk + B

(

u∗k + u
e
k
) and by choosing wk = Buek, the equation corresponds to theone used in tube-based MPC framework (18). The only assumption is that ue is bounded. Thanks to the warm start

method, this is in practice often true.

6. Linear application: UAV altitude control
The methodology developed in the previous section is now applied to an UAV used to read QR codes in a storage

space. In this section, problem definition, problem formatting and results are presented.
6.1. Problem definition

In this application, only altitude control is considered. The system is modelled by (26) where all values have
been normalized. Position and velocity are respectively denoted by z and vz thus in (26), xk =

[

zk, vzk
]T. The

system is subject to uniform additive disturbances wk ∈ W and vk ∈ V where W = {w ∈ ℝ2, ||w||∞ ≤ 0.1}
and V = {v ∈ ℝ, |v| ≤ 0.05}. w and v model external disturbances such as airstreams, measurement errors and
suboptimality of the optimizer (see remark 6).

⎧

⎪

⎨

⎪

⎩

xk+1 =
[

1 1
0 1

]

xk +
[

1
1

]

uk +wk

yk =
[

1 0
]

xk + vk

(26)

It is assumed that hard constraints such as collision avoidance are considered to be satisfied thanks to a high-level
supervisor. The only exception is the input constraint: u ∈ U = {u ∈ ℝ, |u| ≤ 3} that is used as the search space of the
optimization algorithm, namely in our case Differential Evolution, Price et al. (2006). Nevertheless, in order to be able
to read the QR code, the following performance constraints have to be considered regardless of the disturbances:
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• The UAV must stay with an absolute value of the position less than 6 (normalized unit). The target point
corresponds to z = 0.

• The UAV speed must have a variance less than 12 (normalized unit) in order to avoid blurred picture.
The problem statement is summed up in figure 3.

z

vz

Disturbances

z = 6

z = −6

Performance
constraints:

{

|z| ≤ 6
�2 (vz) ≤ 36

Figure 3: UAV problem description

6.2. Problem formatting
In this section, problem formatting is addressed using a barrier function and positive invariant sets. The first

performance constraint presented in section 6.1 leads exactly to the set Xz = {[z, vz]T ∈ ℝ2, |z| ≤ 6} whereas for the
second performance constraint the conservative set Xvz = {[z, vz]T ∈ ℝ2, |vz| ≤ 6} could be considered. Remind that
only the first performance constraint acts for the definition of a barrier function whereas both performance constraints
are used to define the performance constraint admissible set M = Xz ∩ Xvz = {x ∈ ℝ2, ||x||∞ ≤ 6} which is not
maximal performance constraint admissible.

Only the position can be measured thus a Luenberger observer (19) tuned by pole placement is used with the gain
L =

[

1.3 0.42
]T. The gain K, of the feedback law defined in (21), is tuned using linear quadratic method, the solution

is K =
[

−0.61 −0.99
]. One can check that �(A + BK) < 1 and �(A − LC) < 1.

The method presented above is now applied to the system. First of all, after defining S̃, S̄ and S using the method
presented in Rakovic et al. (2005), the set M− = M⊖ S is defined. The maximal positive invariant set M−

CPI ⊆ M− is
computed using the algorithm presented in Gilbert and Tan (1991). Figures 4 and 5 represent all these sets. Figures 4 also
presents Pre (M−

CPI , N
), theN-backward reachable set included in M−. By using (25), the tighter input constrained

set defined for the MPC applied to the nominal system is Ū = [−1.85; 1.85].
The barrier function corresponding to the absolute position error is tightened by using projections of S onto the z

direction, denoted by p(S, z), in order to use tighter performance constraints (see Fig. 5) on the nominal system. The
barrier function lb is defined by (27) where limz = 6 − max (p(S, z)) and � = 105 is a tuning parameter.

lb(x̄) =
N
∑

k=1

{

0 if |z̄k| ≤ limz
�||z̄k| − limz| if |z̄k| > limz

(27)

6.3. Results
Figure 6 presents a trajectory of the system (26) using a tube-based MPC without performance constraints. In

comparison, Fig. 7 presents a trajectory using the tube-based MPC proposed in this paper that takes into account
performance constraints as barrier functions. The initial point has been chosen in Pre (M−

CPI , N
)

∖M−
CPI . It can beseen that the use of barrier functions permits to find a trajectory that respects performance constraints, which is not the
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Figure 4: Sets where all performance constraints are satisfied
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Figure 5: Sets S, S̄ and S̃ and S projections onto different directions

case without barrier functions. In order to be fairly compared, both simulations have been done with exactly the same
sequence of disturbances. In order to evaluate the influence of the disturbances, Fig. 8 shows results of 75 runs from the
same initial point. On the left part, results are given using a tube-based approach without performance constraints while
the right part corresponds to the proposed method. We can see that in every runs, the proposed barrier tube-based MPC
permits to respect performance constraints while in some cases performance constraints are not satisfied without using
barrier functions. Of course, performance constraints are generally satisfied at the expense of the input.

7. Nonlinear model predictive control using barrier function and neural networks
In this section, barrier-based model predictive control is extended to a nonlinear framework. Stability and robustness

are discussed in the first section. In a second part, the case where the model is unknown or too hard to define is addressed
using neural networks models. In order to do so, neural network predictor and the corresponding nonlinear observer
which is needed to initialize the prediction are presented.
7.1. Nonlinear barrier-based Model Predictive Control
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Figure 6: Example of trajectory with tube-based MPC not using barrier functions
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Figure 7: Example of trajectory with tube-based MPC using barrier functions

In order to be able to use a nonlinear predictor, nonlinear MPC will be presented in this section. As it has been done
in the linear case, we will discuss stability and robustness with regard to additive disturbances.
7.1.1. Stability discussion
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Figure 8: Comparison of 75 runs without performance constraints (left) and with performance constraints (right)

In order to prove stability in the nonlinear case, one can follow conditions introduced by Mayne et al. (2000) which
are recalled below for the system defined by x[k + 1] = f (x[k],u[k]):

• It exists a closed terminal set Xf such that 0 ∈ Xf ⊆ X.
• Control constraints are satisfied in Xf for a control law �f : ∀x, �f (x) ∈ U.
• The set Xf is positive invariant under �f : ∀x ∈ Xf , f

(

x, �f (x)
)

∈ Xf .
• lN , which is the terminal cost function, is a local Lyapunov function.
Terminal constraint such as x̄N = 0 permits to easily satisfy these conditions. The solution that consists of finding a

control law �f and the corresponding positive invariant set is generally more efficient but more difficult to establish.
For this reason, and contrary to the linear case, we will use a terminal constraint such as x̄N = 0. In this case, the cost
function is modified using J3 and J4, respectively defined by (28) and (29), instead of J1 and J2:

J3(x̄,u) = x̄TN x̄N (28)
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J4(x̄,u) =
N−1
∑

k=0
l(x̄k, uk) + lb(x̄,u). (29)

The global cost function is then:

J (x̄,u) =
⎧

⎪

⎨

⎪

⎩

J3(x̄,u) if x̄0 ∉ Pre ({0} , N)
−1∕J4(x̄,u) if x̄0 ∈ Pre ({0} , N) and J4(x̄,u) ≠ 0
−∞ if x̄0 ∈ Pre ({0} , N) and J4(x̄,u) = 0

(30)

Theoretically, using conditions introduced in Mayne et al. (2000), this new definition permits to establish stability
by extension of the developments in the linear case if the whole state can be measured. However, when not using a
knowledge-based model, the state does not have any physical meaning and needs to be estimated. Nonlinear observers
will be presented in section 7.2.3. As a consequence, due to the impossibility to establish a separation principle in
the nonlinear case, we cannot guarantee the stability. Stability of nonlinear model predictive control using nonlinear
observers will be studied in future works.
7.1.2. Robustness with regard to additive disturbances

As in the linear case, the tube-based MPC is used to improve robustness with regard to additive disturbances. The
considered model for additive disturbances is given by (31):

{

x[k + 1] = f (x[k],u[k]) + w[k]
y[k] = ℎ (x[k]) + v[k] (31)

It is still assumed that wk ∈ W and vk ∈ V , where W and V are two compact sets with 0 in their interior.
Nonlinear tube-based MPC presented in Rawlings et al. (2017) can be summarized by figure 9. The main difference

with the linear case is that (21) has to be replaced by an auxiliary Model Predictive Control. Nominal MPC defines
a nominal trajectory and the auxiliary MPC limits disturbance influences by keeping the real trajectory close to the
nominal one. While the nominal MPC keeps the same cost function as presented before, the auxiliary MPC does
not consider barrier functions and uses a terminal constraint. Implementation of the terminal constraint can be done
using (28), (32) and (30). In (32), x̄∗ and u∗k respectively denotes the predicted state and the input given by the nominal
MPC:

J4(x̄,u) =
N−1
∑

k=0
l(x̄k − x̄∗k, uk) (32)

Remark 7. In (32), the cost function l could be different to the one used in the nominal MPC.
As a consequence of not using a linear feedback controller to improve robustness with regard to disturbances but

an auxiliary MPC, the set restriction used in section 5 to respect the performance constraints cannot be determined
analytically. Input constraint for the nominal MPC is generally chosen to be Ūn = �U, and Ūa = (1 − �)U is the
input constraint for the auxiliary MPC. � ∈ ]0; 1[ is a tuning parameter such that � → 0 promotes performances
without disturbance rejection and, on the contrary, � → 1 promotes disturbance rejection at the expense of performance.
Performance constraint setM should also be restricted and one common solution is the use of Monte Carlo method,
Spall (2005). This method permits to determine the restricted set that guarantees performance constraint satisfaction
with a certain probability. In practice, we often look for a set M− = �M where � ∈ ]0; 1[.
7.2. Neural networks used as a MPC predictor

The aim of this section is to present how neural networks can be used in MPC as predictors and which structure has
been selected to do so. Neural networks can be considered when a knowledge-based model is difficult to obtain or to
identify.
M Pouilly-Cathelain et al.: Preprint submitted to Elsevier Page 14 of 23



Robust satisfaction of nonlinear performance constraints using Barrier-Based Model Predictive Control

Nonlinear tube-based MPC

Predictor

Optimization algorithm
Cost function

Nominal MPC

System

Observer

Predictor

Optimization algorithm
Cost function

Auxiliary MPC

Reference

Performance
constraints

Nominal
input(s)

Input(s) Output(s)

Measure(s)

Observed
state

Predicted
state

Figure 9: Nonlinear tube-based MPC

7.2.1. Neural network presentation
Neural networks are well-known to be efficient tools to approximate systems with parsimony, Cybenko (1989) and

Hornik et al. (1989). The fundamental property of neural network is recalled below.
Property 4. A two layer neural network with a finite number of neurons can approximate any continuous function with
any degree of accuracy on a compact set.

Remark 8. Property 4 has to be nuanced. Accuracy can sometimes only be reached by considering a number of neurons
that is too important for having a reasonable computation time. In this case, deep learning should be used instead of
considering a two layers neural network. In this paper framework, since the neural network predictor is used in a MPC,
deep learning cannot be considered due to online computation time.

Neural networks used for system identification can be divided into two categories: Feedforward Neural Networks
(FNN) and Recurrent Neural Networks (RNN). The later is generally a preferential choice due to its capacity to model
dynamics. However, learning algorithms are generally more time consuming because the optimization problem is more
complex as presented in Phan and Hagan (2013). Learning algorithms are also more difficult to develop because of the
need to use Real Time Recurrent Learning (RTRL) or BackPropagation Through Time (BPTT) for the calculation of
the jacobian matrix. Versions of RTRL and BPTT can be found in Hagan et al. (1996). Many structures have been
used in automation such as Nonlinear AutoRegressive eXogeneous (NARX), Hagan et al. (1996), State Space Neural
Network (SSNN), Zamarreño and Vega (1998) and Long Short-Term Memory (LSTM), Gers et al. (1999). SSNN
seems to be an interesting compromise between the complexity of the structure and the accuracy of the model. This
structure is described in the next section.
7.2.2. State Space Neural Network

A two layers SSNN can be defined using (33) where � is the sigmoid function defined by (34), Wℎ and Wf are
respectively the weights of the hidden and the final layer and bℎ and bf are respectively the biases of the hidden and
the final layer:

⎧

⎪

⎨

⎪

⎩

x[k + 1] = �
(

WT
ℎ

[

u[k]
x[k]

]

+ bℎ
)

yNN [k] = WT
fx[k] + bf

(33)
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where:
∀x ∈ ℝn s.t. x =

[

x1 … xn
]T , � (x) =

[ 1
(1+exp(−x1))2

… 1
(1+exp(−xn))2

]T (34)
It can be represented as in figure 10 where Lℎ is the hidden layer, Lf the final layer and z−1 the delay operator.

⎡

⎢

⎢

⎣

u1
⋮
un

⎤

⎥

⎥

⎦

Lℎ Lf

z−1

x[k + 1]
yNN [k + 1]

Figure 10: SSNN definition

SSNN can be seen as a classical nonlinear state space representation, thus well-known methods can be applied. For
instance Luzar and Witczak (2014), Lachhab et al. (2008) used some SSNN structures to model a Linear Parameter-
Varying (LPV) system. To the best of our knowledge it does not exist any paper related to SSNN used as a predictor in
a MPC that is robust with regard to additive disturbances.
Remark 9. Because SSNN state does not have any physical meaning, quantities that are needed to apply barrier
function should be considered has outputs of the neural network.

In this paper, following results presented in De Jesus and Hagan (2007), we will restrict our work to the different
parameters presented in Table 1. Further information about these parameters can be found in Hagan et al. (1996).
7.2.3. Nonlinear observer applied to State Space Neural Network

Since the model states have no physical signification for a SSNN, they cannot be simply recovered using some
measures on the system. Thus a nonlinear observer is needed for that purpose. Any observer method such as Extended
Kalman Filter (EKF), Terejanu (2008), Unscented Kalman Filter, Wan and Van Der Merwe (2000), High-gain observer,
Dabroom and Khalil (2001), etc. should work but for its simplicity of implementation, we have chosen to use the EKF
whose equations are recalled below for the system defined by (35), as it has been done in Pouilly-Cathelain et al. (2019):

{

x[k + 1] = f (x[k],u[k],w[k])
y[k] = ℎ (x[k], v[k]) (35)

where w and v are two white Gaussian noises with respectively Q[k] and R[k] as covariance matrix. In the sequel, x
estimation is denoted by x̂ and x̂[k ∣ k − 1] denotes the a posteriori prediction of x.

• Prediction step:
{

x̂[k ∣ k − 1] = f (x̂[k − 1],u[k], 0)
P[k ∣ k − 1] = F[k]P[k − 1]FT[k] +Q[k] (36)

• Update step:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ỹNN [k] = y[k] − ℎ (x̂[k ∣ k − 1], 0)
S[k] = H[k]P[k ∣ k − 1]HT[k] + R[k]
K[k] = P[k ∣ k − 1]HT[k]S−1[k]
x̂[k] = x[k ∣ k − 1] +K[k]ỹNN [k]
P[k] = (I −K[k]H[k])P[k ∣ k − 1]

(37)

Applying these formulas to SSNN, one can find (38) et (39) where ◦ denotes the Hadamard product, 1Tn = [1,… , 1]
and �′ = � (1 − �) is the derivative of the sigmoid function:

F[k] = WT
ℎ,x◦

[

�′
(

WT
ℎ,u (u[k]) +WT

ℎ,xx[k] + bℎ
)

1Tn
]

(38)
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Table 1
Selected parameters for SSNN and associated learning

Learning algorithm Levenberg-Marquardt
Jacobian calculation Real Time Recurrent Learning
Number of hidden layer 1
Activation function of the hidden layer sigmoid
Activation function of the final layer linear
Normalization method max
Stopping criteria validation set

H[k] = WT
f (39)

Figure 11 presents how a neural network predictor and a nonlinear observer can be used in nonlinear model predictive
control. In order to do so, the considered disturbed model corresponding to (31) is now (40).

⎧

⎪

⎨

⎪

⎩

x[k + 1] = �
(

WT
ℎ

[

u[k]
x[k]

]

+ bℎ
)

+wk
yNN [k] = WT

fx[k] + bf + vk
(40)
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System
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J

u
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Figure 11: Presentation of the different concepts

8. Nonlinear application: submarine speed control
8.1. System and performance constraint definition

This methodology is now applied to the unidirectional motion speed control of a submarine subject to fluid friction
at constant depth. The submarine system is nonlinear, in part due to fluid friction and difficult to identify with accuracy
thus it is easier to consider a SSNN predictor of the system. The system should follow these constraints:

1. Submarine speed v is controlled to be 1 m.s−1.
2. Input u is limited to the range [0; 2] m.s−2.
3. Submarine acceleration |v̇| should not exceed 1.5 m.s−2.
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4. To limit the power consumption the product uv should not exceed 1.6 W.
The first performance constraint will be considered as a reference for MPC, the second one as the search space

of the optimization algorithm. The third and fourth constraints corresponds to performance constraints and will be
considered using the barrier functions respectively defined by (41) and (42):

l1(x,u) =
{

0 si |v̇| ≤ 1.5 m.s−2
1010 (|v̇| − 1.5) si |v̇| > 1.5 m.s−2 (41)

l2(x,u) =
{

0 si uv ≤ 1.6 m.s−2
1010 (uv − 1.6) si uv > 1.6 m.s−2 (42)

For evaluating the performance of the proposed control law, a submarine simulation model will be considered.
The simplified model: v̇ = −v|v| + u +w has been proposed in Marchand (2009) where v is the longitudinal speed, u
the input which corresponds to an acceleration and w the disturbance. This disturbance models marine current and
measurements error and is supposed to be a white noise with uniform distribution such that |w| ≤ 0.1m.s−2. Data will
be acquired with a sampled period of Te = 0.1s for the SSNN learning.
8.2. Learning results and EKF estimation

Using the parameters presented in Table 2, learning results presented in figure 12 for the test set have been obtained.
These results are satisfactory and permit to implement the MPC.
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Figure 12: Learning results using parameters described in Table 2 on a test set

Figure 13 presents the performances of the EKF on outputs and some states with a different initialization than the
actual one. In order to realize the figure, and only for this simulation, the system has been replaced by the SSNN model.
It permits to evaluate the convergence of the EKF but, in the following, the model presented above will be used for
system simulation while the SSNN model is only used as a predictor.
8.3. Control results

In order to present the interest of the tube-based MPC approach, figure 14 presents the differences between the
nominal MPC applied with or without disturbance. In this figure 100 runs have been performed using white Gaussian
noise with uniform distribution as a disturbance. All performance constraints are satisfied in the nominal case, on
the contrary, with disturbances and without the tube-based MPC approach, performance constraints are not satisfied
anymore.

While the literature generally encourages the use of the Monte Carlo method to choose parameters � and � of the
tube-based MPC, we have decided to use a different approach which is less time consuming although being suboptimal.
Comparison of multiple couple of variables (�, �) will be performed and compared. Table 3 presents the maximum
value of |v̇| and uv for 100 runs of different disturbances chosen to be uniformly distributed.
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Table 2
Parameter used for SSNN learning

Optimization algorithm Levenberg-Marquardt
Jacobian calculation RTRL
Number of hidden layers 1
Number of outputs 2
Number of neurons in the hidden layer 20
Activation function in the hidden layer sigmoid
Activation function in the final layer linear
Normalization method max
Number of runs 10
Sampling period 0.1s
Size of the leaning set 500
Size of the validation set 500
Size of the test set 500
Input range [0; 2]
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Figure 13: State estimation using Extended Kalman Filter

We can deduce from Table 3 that only (�, �) = (0.9, 0.7) permits to satisfy the performance constraints. Figure 15
presents results for 100 runs using these parameters. We can see that all performance constraints are satisfied regardless
of disturbances.
Remark 10. Simulations have been performed using Matlab R2018a on an i7-6820HQ (2.70GHz). One optimization
problem takes about 7.3s to be performed if no code parallelization is done. This result can be highly improved by
using parallel computing and many-core CPU dedicated to real-time application because differential evolution can be
almost entirely parallelized.

9. Conclusion and future works
To begin with, a method to robustly satisfy nonlinear performance constraint when a linear system is subject to

additive disturbances has been presented. Performance constraints consideration has been achieved using a barrier
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Figure 14: Performance comparison with and without disturbance without using the tube-based MPC approach

Table 3
Maximal value of |v̇| in m.s−2 and uv in W for 100 runs

� = 0.7 � = 0.8 � = 0.9
max (|v̇|) max (uv) max (|v̇|) max (uv) max (|v̇|) max (uv)

� = 0.7 1.56 1.23 1.56 1.47 1.34 1.37
� = 0.8 1.68 1.29 1.85 1.36 1.65 1.34
� = 0.9 1.91 1.34 1.83 1.46 1.62 1.58

function in the MPC cost function and stability of the method has been achieved thanks to invariant set theory and
Lyapunov theory. The proposed method has been extended to nonlinear systems which are modeled using neural
networks. It permits to limit the knowledge needed to model the system in addition to limit specification reformulation
in order to reduce the development time of the control system. The method has been applied efficiently to an UAV
stabilization in the linear case and to the speed control of a submarine vehicle in the nonlinear case.

Future works will deal with establishing a proof of stability in the nonlinear case when using a nonlinear observer
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Figure 15: Results obtained for parameters � = 0.9 and � = 0.7

and comparing performances with stochastic and economic model predictive control.
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