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Abstract: This paper focuses on the study of the behavior of critical roots when a dynamical
system is stabilized by a PD-controller, for which the derivative action has been approximated
by using two commensurate delays. The use of such an approximation leads to a characteristic
quasipolynomial whose coefficients depend explicitly on the delay parameter. The aim of the
paper is to address the way the delay parameter may affect the location of the roots of the
corresponding characteristic function, and in particular the cases when “small” delays induce
instability in the closed-loop systems. Such an analysis is performed by expressing the critical
solution of the system as a delay-dependent power series. Illustrative examples complete the
presentation. ©IFAC, all rights reserved.
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1. INTRODUCTION

It is well known that, due to its simple implementation
and effectiveness for solving real world problems, PID
controllers are among the most popular controllers in the
industry (O’Dwyer, 2009; da Silva et al., 2020; Astrom and
Hagglund, 1995). The implementation of such controllers
has been studied for several years by control engineers,
and it has been pointed out that the use of a derivative
action may induce some “bad behaviors”. Indeed, there
exists a problem with the implementation of such an
operator, since it tends to amplify any noise presented
on the signal. In this sense, Figure 1 illustrates such a
phenomenon: a very small noise signal is strongly amplified
when the derivative action is applied. A classical solution
to such problems is to add a low-pass filter (Michiels, 2022)
to the derivative action. Alternatively, another solution
to the above problem is to approximate the derivative
action by intentionally introducing a single delay in the
measured signal (see, for instance (Ramı́rez et al., 2021;
Jin et al., 2018, 2017)). The study of time-delay based
controllers is not new, see for example Villafuerte et al.
(2012); Villafuerte-Segura et al. (2019); Ochoa-Ortega
et al. (2020). Such tools have demonstrated to be both
powerful and useful, since, as mentioned in Appeltans
et al. (2022) and Méndez-Barrios et al. (2021), there exist
cases where neither the pure derivative action nor the low-
pass filter implementation stabilize the system, but the
time delay approximation does. However, there are some

⋆ This work is partially funded by CONACyT, under the grant
CONACyT-929482.
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Fig. 1. Derivative effect on signal with small noise.

restrictions on its implementations. On the one hand, the
approximations using a single time-lag needs the delay
τ to be very small in order to correctly reproduce the
derivative, but it is not a trivial task to induce such
a small delay, thus, one may increase the precision of
the approximation by adding more delays to it (as one
might expect, increasing the number of delays may also
produce a noise amplification effect, since we are obtaining
an operator that is closer to the ideal derivative action)
(Ackleh et al., 2009). On the other hand, the use of this
kind of approximation bears a characteristic equation with
coefficients that explicitly depend on the delay τ . Such
a characteristic equation may have solutions exhibiting
singular behavior, and in certain cases, such a solution



can be an unstable one. It is also worth mentioning that
the use of delays may induce essential problems due to the
sensitivity of the system to such a class of parameter (see
Logemann et al. (1996) and Engelborghs et al. (2001)).

In the light of these observations, it is of special importance
to characterize the solutions of systems under the action
of controllers for which the derivative action has been
approximated using time-delays. That, in the simplest case
(one delay only), is

ẏ(t) ≈ y(t)− y(t− τ)

τ
(1)

Observe that considering approximation (1) generates a
time-delay system with parameters that are also delay-
dependent. While there have been several studies of sta-
bility of time delay systems (see for instance Niculescu
(2001); Sipahi et al. (2011); Michiels and Niculescu
(2007)), the analysis of systems with delay-dependent pa-
rameters is not common. It is, however, a very common
practice to study stability in terms of the system parame-
ters. In particular the τ−decomposition method presented
in Lee and Hsu (1969) studies stability in terms of the
system’s delay, however, it does not consider that the
system parameters explicitly depend on such delay.

The case of the approximation (1) of the derivative action
has already been investigated on Méndez-Barrios et al.
(2021). There, the concept of an improperly-posed closed-
loop system is presented and studied by means of the
Newton Diagram method. In Sipahi et al. (2006), the
authors also consider the approximation of the derivative
action, but the presented analysis is based on a geometric
approach.

As it has already been mentioned, this methodology allows
to reduce the noise amplification in a very effective way,
but the derivative may not be precise enough. One might
obtain a more precise approximation to the derivative by
considering more points. Consider, for example, the three-
points approximation, which is obtained via the finite-
difference method (see for instance LeVeque (2007))

ẏ(t) ≈ 1

2τ
[3y(t)− 4y(t− τ) + y(t− 2τ)]. (2)

Indeed, as we increase the number of points, we get a more
precise approximation, as shown in Figure 2.

Despite the benefits of using approximations such as those
given by (1) and (2), another problem may arise. In point
of fact, there might be cases where a controller with an
ideal derivative action stabilizes the system but, for the
same set of control gains, the approximation produces an
unstable behavior on the system. A system for which this
situation arises is known as an improperly-posed system.

The main contribution of this paper is twofold. First, to
extend a previous result where a one delay approximation
is considered to the case of a two delays approximation.
Such a case is of interest since adding more points to the
approximation allows to obtain a good approximation to
the derivative action without the need of a very small
delay, which is not easy to implement. Another important
contribution of the present note is to study the singular be-
havior of some roots of the characteristic quasi-polynomial
when implementing the derivative action by means of a
discretization. In this vein, some properties of the auxiliary
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Fig. 2. Approximation of the derivative with different num-
ber of points. The pure derivative action is presented
with no noise in order to depict the accuracy of each
approximation. The five points case was added to the
image in order to depict how adding points brings
a better approximation to the derivative, but at the
same time produce a bigger noise amplification. The
zoom presented in both graphs shows how there exist
a bigger gap between the derivative and the approxi-
mation when less points are considered.

quasi-polynomial, that were not previously shown in the
study of simpler cases of the approximation, are presented.
To the best of the authors’ knowledge, does not exist
similar contributions in the open literature devoted to such
topics.

The remaining of this article is organized as follows: Sec-
tion 2 introduces some preliminary results and definitions,
as well as the problem formulation. The characterization
and analysis of the improperly posed case for the three
points approximation of the derivative action is presented
in Section 3. In Section 4 some numerical examples are
included. Finally, some concluding remarks are presented
in Section 5.

Notations: Throughout this paper, the following standard
notations are used: C represents the set of complex num-
bers. The set of real numbers is denoted by R. Finally,
deg(f) represents the degree of the polynomial f .

2. PRELIMINARY RESULTS AND PROBLEM
FORMULATION

Consider the class of strictly proper LTI SISO system
described by the following transfer function:

Hyu (s) :=
P (s)

Q (s)
, (3)

where Q and P are polynomials in s, with real coefficients:

Q(s) := sn +

n−1∑
j=0

qjs
j , P (s) :=

m∑
j=0

pjs
j , qj , pj ∈ R,

(4)
such that n := deg(Q) > m := deg(P ). The control scheme
considered in this paper, is the classical PD-feedback law
with the following structure:

u(t) = −kpy(t)− kdẏ(t), (5)



where (kp, kd) ∈ R2 \ {(0, 0)}. In frequency-domain, the
corresponding PD-controller will be denoted by C0 and
given by

C0(s) := −kp − kds. (6)
In the sequel, we denote by Stab(H) the set of all stabi-
lizing controllers and assume that this set is nonempty.

Consider now the closed-loop system (3) & (6) with the
characteristic function ∆ : C 7→ C given by:

∆(s) := Q(s) + (kp + kds)P (s). (7)

Under the assumption that C0 ∈ Stab(H), the interest is
to find at least one pair (kp, kd) ∈ R2 such that (7) has
all of its roots located in the left-hand side of the complex
plane. As it has already been pointed out in Section 1,
due to the different problems associated to the derivative
operator, one may consider an approximation for which
the frequency-domain controller writes as:

Cτ (s) = −kp − kd
3− 4e−τs + e−2τs

2τ
. (8)

In this vein, consider the following definition from Méndez-
Barrios et al. (2021):

Definition 2.1. (Improperly-posed system). Consider the
LTI SISO system with frequency domain representation
given by the transfer function (3). Suppose that C0 with
the form (6) is a stabilizing controller C0 ∈ Stab(H) and
is replaced by Cτ given in (8). If there exists a sequence
of real numbers (τn)n∈N, τn → 0+ when n → ∞ such that
for all ϵ > 0, there exists some positive integer nu, with
τnu < ϵ and Cτnu

/∈ Stab(H) the controller Cτ is called
an improperly-posed controller for “small” delays. In this
case, the closed-loop system is improperly posed 1 .

2.1 Motivating example

Consider the first-order dynamical system given by the
scalar differential equation:

ẏ(t) = p0y(t) + u(t), (9)

where u(t) is a classic PD controller given by

u(t) = −kpy(t)− kdẏ(t).

Consider now both the three and two “points” (two and
one delay respectively) approximation previously men-
tioned. With τ → 0, the closed-loop characteristic function
associated to the three points approximation is given as

∆1(s; τ) = (s− p0)−
(
kp +

kd
2τ

(3− 4e−τs + e−2sτ )

)
,

while the one linked to the two points approximation
writes as:

∆2(s; τ) = (s− p0)−
(
kp +

kd
τ
(1− e−sτ )

)
.

Both characteristic functions can be respectively rewritten
as follows:

sf̂1(s; τ) = s

[
(1− p0

s
)− kp

s
− kd

2sτ
(3− 4e−τs + e−2sτ )

]
,

sf̂2(s; τ) = s

[
(1− p0

s
)− kp

s
− kd

sτ
(1− e−sτ )

]
,

where f̂j(s; τ) = f0(s) − fj(sτ), j ∈ {1, 2} with the
functions f0(s) and fj(sτ) defined as:

f0(z) = 1− p0 + kp
z

1 for “small” delays

and

f1(z) = kd
(1− e−z)(3− e−z)

2z
; f2(z) = kd

(1− e−z)

z
.

It is easy to observe that s0 such that f0(s0) = fj(s0τ)
is a root of ∆j . Considering that kd > 1 and p0 +
kp > 0 (conditions for the stability when the PD controller
stabilizes the system free of delay, that is, τ = 0) there
exists a root located in the right-hand plane that persists
for any positive value of τ , as depicted on Figure 3.
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Fig. 3. Plot of f0(s) and fj(sτ).

Remark 2.1. Figure 3 shows that even though the stability
conditions for the ideal derivative implementation case
are fulfilled, there is always a positive root for both
approximation cases. This follows from the fact that there
exist a point s0 where f0(s0) = fj(s0τ), meaning that s0 is
a solution of ∆j(s; τ) for j ∈ {1, 2}. It is worth mentioning
that Fig.3 shows only positive values of s.

Observe that, as we increase the number of points used in
the approximation, the crossing point between the func-
tions f0 and fjτ moves to the right. This observation sug-
gests that, regardless of the number of points considered
for the derivative action approximation, the singular root
may persist.

The main objective of this note is to characterize the sin-
gular unstable root presented whenever a system subjected
to a PD controller is improperly-posed. The main tool to
achieve such an objective is known as the Newton Diagram
method which, as presented in the next section, allows
us to find an adequate change of variable, in order to
regularize the singular root.

3. ASYMPTOTIC BEHAVIOR ANALYSIS

3.1 Improperly-posed case characterization

As it has been pointed out in the previous sections, the
interest of this work is to characterize a singular unstable
root. For such a task consider the closed-loop characteristic
function given as

∆(s; τ) = Q(s)+

(
kp + kd

(
1− e−τs

τ

)(
3− e−τs

2

))
P (s).

(10)
Inspired by the methodology presented in Simmonds and
Mann Jr (1998), we seek for a convenient change of variable
that allows observing the singularity presented in a certain
solution s∗ of (10). In this vein, a tool that helps to choose
the adequate change of variable is the Newton’s Diagram



(readers may refer to (Baumgärtel, 1985; Walker, 1978;
Krantz and Parks, 2002) for a deep explanation of such a
tool). First, consider the following expansion of (10) into
a power series

∆(s; τ) = Q(s) + (kp + kd

∞∑
j=1

ajs
jτ j−1)P (s), (11)

where,

aj = − (−1)j2 + (−1)j+12j−1

j!
.

To simplify the problem, we may want to consider rewrit-
ing (11) as ∆̃(s; τ) = τ∆(s; τ). The Newton’s Polygon of

∆̃(s; τ) can be obtained using the algorithm presented in
Mart́ınez-González et al. (2019).

Proposition 3.1. For an improperly-posed system, the
characteristic function (11) has a singular solution given
by

s∗(τ) =
1

τ
λ∗(τ), (12)

where λ(τ) is an analytic function, such that λ(0) ̸= 0.

Proof. The Newton’s Polygon gives the information to
construct a power series for a solution of the form:

s(τ) = µϵ1τ
ϵ1 + µϵ2τ

ϵ2 + ...

where ϵ = −β is given by the slopes on the Newton’s
Polygon of the equation for which we are finding roots.
Applying the algorithm to (11) we obtain Figure 4.
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Fig. 4. Newton’s polygon of quasi-polynomial (11).

One can observe that there exists a constant slope identi-
fied by the value of 1. ■

Taking into consideration the above proof along with
Figure 4, we may consider the change of variable s = τs
obtaining

τ−1∆̃(τs; τ) = Q(τs)+(kp+kd

∞∑
j=1

ajs
jτ2j−1)P (τs). (13)

Observe that such a change of variable regularizes the
problem since s∗τ = λ∗(τ), which presents no-singular
behavior.

Now that the problem has been regularized, consider
the following auxiliary quasi-polynomial together with
Proposition 3.2

pa(w) := lim
τ→0+

∆̃(w; τ), (14)

which is

pa(w) = wn−1

[
w +

1

2
(1− e−w)(3− e−w)kdpn−1

]
, (15)

where n is the degree ofQ(s) and pn−1 is the corresponding
coefficient to sn−1 on P .

Proposition 3.2. For a quasi-polynomial of the form (11)
at τ → 0+, the singular root s∗ is given by

s∗(τ) =
1

τ
z∗ +O(1),

where z∗ is a solution of the auxiliary quasi-polynomial pa
Remark 3.1. It is easy to observe that w = 0 is always a
solution of (15).

Remark 3.2. In the case of transfer function having the
relative degree equal to one, some simple, but tedious
algebraic manipulations allow concluding that the closed-
loop system is properly-posed as long as | kdpn−1 |< 1.
Such a condition was proposed in Appeltans et al. (2022)
by using a different argument. It should be noted that
such a sufficient (inequality) condition is not necessary for
guaranteeing that the corresponding closed-loop system
is properly posed (see, for instance, the discussions in
Méndez-Barrios et al. (2021) in the case of a simpler
approximation scheme).

4. NUMERICAL EXAMPLES

Through this section, numerical examples are presented to
emphasize the methodology proposed in this work.

4.1 Example 1: Second order improperly-posed system

Consider the system described by the transfer function
given as

H(s) =
−s

s2 − ω2
0

. (16)

We know that the system is improperly-posed for the gains
(kp, kd) = (1, 2). Following the procedure presented in this
work, the auxiliary quasi-polynomial is given by:

pa(w) = 4e−w − e−2w − 3 + w.

Rewriting pa(w) allows to observe that, as remarked
before, there exists a root at ω = 0

pa(w) = w + (1− e−w)(e−w − 3).

If the system is improperly-posed then pa(w) must have at
least one positive solution. Observe that for pa(∞+) = ∞
and, since w = 0 is a solution, it suffices to show that for
certain values of w, pa(w) < 0. In this case, evaluating
the derivative of pa at w = 0 shows that at that point
the function is decreasing: ṗa(0) = −2. Finally, solving
pa using the QPmR algorithm (see Vyhĺıdal and Źıtek
(2014)) the real root z∗ of pa is given by the value
z∗ = 2.7478, which means that for small delays the
characteristic function of the system has a singular root

s∗(τ) =
2.7478

τ
+O(1).

Taking for example τ = 0.1, the singular root will be
located around s∗(0.1) ≈ 27.4, which is very close to its
real value which is s∗(0.1) = 28.9.

Figure 5 depicts the behavior of the system roots as the
value of τ decreases. Observe that the rightmost root
moves to the right as τ → 0.

4.2 Example 2: Third order improperly-posed system

Consider the system described by the following transfer
function

H(s) =
1− 5s2

s3 + 8s2 − 13s− 8
. (17)



Fig. 5. Roots behavior of system (16) as τ moves from 0.3
to 0.05.

Under the action of a PD controller with parameters
(kp, kd) = (4, 1) the system in closed-loop is stabilized.
However, it is improperly posed. Its corresponding auxil-
iary quasi-polynomial is given by

pa(w) = −5

2
e−2w + 10e−w + w − 15

2
.

Similarly to the last example, rewriting pa(w) as

pa(w) = w +
1

2
(1− e−w)(5e−w − 15).

Following a similar procedure to the one presented in the
previous example, we observe that pa(∞+) = ∞, and
ṗa(0) = −8. Indicating that the system is improperly-
posed. Using the already mentioned QPmR algorithm we
find a solution of pa at z∗ = 7.4944, meaning that there
exists a singular root of the characteristic function given
by

s∗(τ) =
7.4944

τ
+O(1).

Figure 6 shows the behavior of the rightmost root s∗(τ) as
τ decreases its value. It can be observed that it moves to
the right.
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Fig. 6. Rightmost root behavior of system (17) for decreas-
ing τ .

4.3 Example 3: Properly-posed system

The previous examples shown the behavior of the system
roots when the system is improperly-posed. However, a

system that is improperly-posed for a certain pair (kp, kd)
may be properly-posed for some other pair. In this vein,
for a last example, consider the system described by the
following transfer function

H(s) =
−2s

s2 + 3s+ 1
, (18)

subjected to the PD controller with gains (kp, kd) = (1, 1
3 ).

It is clear that such gains suffice to stabilize the closed-loop
system. Now, considering the two-delays approximation
of the derivative action, the auxiliary quasi-polynomial is
given by

pa(w) = w − 1

3
(e−w − 3)(e−w − 1).

Similarly to the previous examples, pa(w) has a solution
at the origin. Derivating w.r.t. w we obtain:

dpa(w)

dw
= 1 +

2

3
e−2w − 4

3
e−w,

which is positive for all positive w. This means that there
are not positive roots, and thus, the singular root is placed
on the LHP. Figure 7 shows the behavior of the roots
placed more to the right of the system (18).
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Fig. 7. Roots behavior of properly-posed system (18).

5. CONCLUSIONS

In this note, we studied quasi-polynomials with delay-
dependent coefficients. Such dependency comes from an
approximation of a derivative action. The main objective
was to analyze the case when the quasi-polynomial is
improperly-posed. In such a case, there exist unbounded
(singular) roots for τ → 0. We analyze this problem by
expressing the singular solution into a power series, and
regularizing it by applying an adequate change of variable.

Future work might be focused on finding conditions under
which the system is improperly-posed in the general case,
that is, for an approximation of the derivative action via
n-points discretization, as well as determining the ideal
number of delays depending on the application. It is also
of interest to study the behavior of the approximation
when a higher order derivative is implemented. Indeed,
as seen in Sahib (2015) and Saab and Jaafar (2021), some
engineering problems require derivative action of second
or higher order and, for such actions, the same problems
associated to this operator appear. Future research may
also consider the analysis of a system with a delayed input



subjected to a PD controller for which the derivative action
has been approximated by means of time-delays.
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A., Ramirez-Neria, M., and Lozada-Castillo, N. (2020).
Cascade delayed controller design for a class of under-
actuated systems. Complexity, 2020.

O’Dwyer, A. (2009). Handbook of PI and PID Controller
Tuning Rules. Imperial College Press (ICP), London,
3rd edition.

Ramı́rez, A., Sipahi, R., Méndez-Barrios, C.F., and Leyva-
Ramos, J. (2021). Derivative-dependent control of
a fuel cell system with a safe implementation: An
artificial delay approach. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, 09596518211012784.

Saab, S.S. and Jaafar, R.H. (2021). A proportional-
derivative-double derivative controller for robot manip-
ulators. International Journal of Control, 94(5), 1273–
1285.

Sahib, M.A. (2015). A novel optimal pid plus second order
derivative controller for avr system. Engineering Science
and Technology, an International Journal, 18(2), 194–
206.

Simmonds, J.G. and Mann Jr, J.E. (1998). A first look at
perturbation theory. Courier Corporation.

Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W.,
and Gu, K. (2011). Stability and stabilization of systems
with time delay. IEEE Control Systems Magazine, 31(1),
38–65.

Sipahi, R., Arslan, G., and Niculescu, S.I. (2006). Some re-
marks on control strategies for continuous gradient play
dynamics. In Proceedings of the 45th IEEE Conference
on Decision and Control, 1966–1971. IEEE.

Villafuerte, R., Mondie, S., and Garrido, R. (2012). Tuning
of proportional retarded controllers: theory and exper-
iments. IEEE Transactions on Control Systems Tech-
nology, 21(3), 983–990.

Villafuerte-Segura, R., Medina-Dorantes, F., Vite-
Hernández, L., and Aguirre-Hernández, B. (2019).
Tuning of a time-delayed controller for a general class
of second-order linear time invariant systems with
dead-time. IET Control Theory & Applications, 13(3),
451–457.
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